عرض بسيط للتسجيلة

المؤلفPilli, Raveendra
المؤلفGoel, Tripti
المؤلفMurugan, R.
المؤلفTanveer, M.
المؤلفSuganthan, P. N.
تاريخ الإتاحة2025-01-20T05:12:04Z
تاريخ النشر2024
اسم المنشورIEEE Transactions on Cognitive and Developmental Systems
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/TCDS.2024.3349593
الرقم المعياري الدولي للكتاب23798920
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62280
الملخصAccelerated brain aging and abnormalities are associated with variations in brain patterns. Effective and reliable assessment methods are required to accurately classify and estimate brain age. In this study, a brain age classification and estimation framework is proposed using structural magnetic resonance imaging (sMRI) scans, a 3-D convolutional neural network (3-D-CNN), and a kernel ridge regression-based random vector functional link (KRR-RVFL) network. We used 480 brain MRI images from the publicly availabel IXI database and segmented them into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images to show age-related associations by region. Features from MRI images are extracted using 3-D-CNN and fed into the wavelet KRR-RVFL network for brain age classification and prediction. The proposed algorithm achieved high classification accuracy, 97.22%, 99.31%, and 95.83% for GM, WM, and CSF regions, respectively. Moreover, the proposed algorithm demonstrated excellent prediction accuracy with a mean absolute error (MAE) of 3.89 years, 3.64 years, and 4.49 years for GM, WM, and CSF regions, confirming that changes in WM volume are significantly associated with normal brain aging. Additionally, voxel-based morphometry (VBM) examines age-related anatomical alterations in different brain regions in GM, WM, and CSF tissue volumes.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعCerebrospinal fluid (CSF)
gray matter (GM)
kernel ridge regression-random vector functional link (KRR-RVFL)
magnetic resonance imaging (MRI)
white matter (WM)
العنوانKernel-Ridge-Regression-Based Randomized Network for Brain Age Classification and Estimation
النوعArticle
الصفحات1342-1351
رقم العدد4
رقم المجلد16
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة