Influence of Ag nanoparticles on state of the art MnO2 nanorods performance as an electrocatalyst for lithium air batteries
View/ Open
Publisher version (Check access options)
Check access options
Date
2018-02-01Metadata
Show full item recordAbstract
Abstract The need for an alternative and efficient electrocatalyst to replace Pt-based noble materials is a goal of prime importance in Li– air battery technology. In this work, novel silver nanoparticles-incorporated MnO2 nanorods as an air electrode bifunctional catalyst have been synthesized by a simple polyol method. The physical characteristics of the thus prepared materials are analyzed by X-ray diffraction (XRD), SEM, and Brunauer–Emmett–Teller (BET) techniques. These analyses confirmed the successful synthesis of 20 to 25 nm-sized different weight % Ag nanoparticles incorporated on α-MnO2 nanorods. Linear sweeping voltammetric results of AgMnO2 showed improved ORR performance as compared to α- MnO2 nanorods in terms of the onset potential, half wave potential and limiting current. The addition of catalysts has significantly increased the discharge capacity and overall performance of the cells. The first discharge curve of 5 wt% Ag MnO2 sample reached a maximum capacity of 3500 mAhg-1 at 2.0 V with a current density of 0.1 mA cm−2 with a plateau between 2.7 and 2.6 V. Long term stability of increasing weight percentage of Ag nanoparticles on MnO2 samples is increased.
Collections
- Central Laboratories Unit Research [101 items ]