• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Dental Medicine
  • Dental Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Dental Medicine
  • Dental Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Attention-guided convolutional network for bias-mitigated and interpretable oral lesion classification

    Thumbnail
    View/Open
    s41598-024-81724-0.pdf (2.021Mb)
    Date
    2024
    Author
    Patel, Adeetya
    Besombes, Camille
    Dillibabu, Theerthika
    Sharma, Mridul
    Tamimi, Faleh
    Ducret, Maxime
    Chauvin, Peter
    Madathil, Sreenath
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias. The model integrates three components: (i) a Classification Stream, utilizing a CNN to categorize images into 16 lesion types (baseline model), (ii) a Guidance Stream, which aligns class activation maps with clinically relevant areas using ground truth segmentation masks (GAIN model), and (iii) an Anatomical Site Prediction Stream, improving interpretability by predicting lesion location (GAIN+ASP model). The development dataset comprised 2765 intra-oral digital images of 16 lesion types from 1079 patients seen at an oral pathology clinic between 1999 and 2021. The GAIN model demonstrated a 7.2% relative improvement in accuracy over the baseline for 16-class classification, with superior class-specific balanced accuracy and AUC scores. Additionally, the GAIN model enhanced lesion localization and improved the alignment between attention maps and ground truth. The proposed models also exhibited greater robustness against dataset bias, as shown in ablation studies.
    DOI/handle
    http://dx.doi.org/10.1038/s41598-024-81724-0
    http://hdl.handle.net/10576/63410
    Collections
    • Dental Medicine Research [‎424‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video