عرض بسيط للتسجيلة

المؤلفSalman, Tara
المؤلفGhubaish, Ali
المؤلفUnal, Devrim
المؤلفJain, Raj
تاريخ الإتاحة2025-03-06T08:50:28Z
تاريخ النشر2020
اسم المنشورIEEE Networking Letters
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/LNET.2020.3016583
الرقم المعياري الدولي للكتاب25763156
معرّف المصادر الموحدhttp://hdl.handle.net/10576/63516
الملخصMachine learning studies have traditionally used accuracy, F1 score, etc. to measure the goodness of models. We show that these conventional metrics do not necessarily represent risks in security applications and may result in models that are not optimal. This letter proposes 'Safety score' as an evaluation metric that incorporates the cost associated with model predictions. The proposed metric is easy to explain to system administrators. We evaluate the new metric for two security applications: general intrusion detection and injection attack detection. Compared to other metrics, Safety score proves its efficiency in indicating the risk in using the model.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعevaluation metrics
intrusion detection
machine learning
risk
Safety score
security applications
العنوانSafety Score as an Evaluation Metric for Machine Learning Models of Security Applications
النوعArticle
الصفحات207-211
رقم العدد4
رقم المجلد2
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة