• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solar syngas production via methanothermal reduction of strontium oxide

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0016236120314629-main.pdf (3.316Mb)
    Date
    2020
    Author
    Bhosale, Rahul R.
    Metadata
    Show full item record
    Abstract
    A solar methanothermal reduction of strontium oxide for the co-production of Sr and syngas is thermodynamically explored. The data required for the equilibrium and efficiency analysis is taken from a commercial HSC Chemistry 9.9 software. The efficiency analysis is conducted by investigating a) Sr-Syn open process and b) Sr-Syn semi-open process as a function of the rise in the CH4/SrO ratio from 0.1 to 1. As per the results allied with the equilibrium analysis, a temperature of 2230 K is needed for the complete conversion of SrO into Sr and CH4 into a mixture of H2 and CO (syngas). As expected, a rise in the CH4/SrO ratio is responsible for a higher yield of Sr and syngas. The process efficiency is also enhanced from 24.5% to 38.7% due to the escalation in the CH4/SrO ratio from 0.1 to 1. Application of heat recuperation considerably decreased the requirement of solar energy input, and hence the process efficiency is further amplified. The Sr-Syn open process and Sr-Syn semi-open process can attain process efficiencies equal to 42.5% and 49.8% when 50% heat recuperation is applied.
    DOI/handle
    http://dx.doi.org/10.1016/j.fuel.2020.118466
    http://hdl.handle.net/10576/63540
    Collections
    • Chemical Engineering [‎1202‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video