A new megastable nonlinear oscillator with infinite attractors
المؤلف | Leutcho, Gervais Dolvis |
المؤلف | Jafari, Sajad |
المؤلف | Hamarash, Ibrahim Ismael |
المؤلف | Kengne, Jacques |
المؤلف | Tabekoueng Njitacke, Zeric |
المؤلف | Hussain, Iqtadar |
تاريخ الإتاحة | 2025-03-20T08:10:20Z |
تاريخ النشر | 2020 |
اسم المنشور | Chaos, Solitons and Fractals |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1016/j.chaos.2020.109703 |
الرقم المعياري الدولي للكتاب | 9600779 |
الملخص | Dynamical systems with megastable properties are very rare in the literature. In this paper, we introduce a new two-dimensional megastable dynamical system with a line of equilibria, having an infinite number of stable states. By modifying this new system with temporally-periodic forcing term, a new two-dimensional non-autonomous nonlinear oscillator capable to generate an infinite number of coexisting limit cycle attractors, torus attractors and, strange attractors is constructed. The analog implementation of the new megastable oscillator is investigated to further support numerical analyses and henceforth validate the mathematical model. |
راعي المشروع | The authors are grateful to the anonymous reviewers and Dr. Fozin Th�ophile (University of Buea) for their valuable comments, which helped improve the content of the present paper. Authors have contributed equally for this manuscript |
اللغة | en |
الناشر | Elsevier |
الموضوع | Coexisting attractors Forced oscillator Megastability Self-excited attractors |
النوع | Article |
رقم المجلد | 134 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الرياضيات والإحصاء والفيزياء [781 items ]