• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AI-based techniques on edge devices to optimize energy efficiency in m-Health applications

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    B978-0-12-819045-6.00001-7.pdf (2.527Mb)
    Date
    2020
    Author
    Al-Marridi, Abeer
    Mohamed, Amr
    Erbad, Aiman
    Metadata
    Show full item record
    Abstract
    The fast increase in the number of patients who need continuous monitoring by caregivers and the inequality between the number of patients compared with the number of doctors cause a burden for both doctors and patients. This one-to-one relationship poses a real scalability challenge in the healthcare systems. Resolving the problem by exploiting the fast developments in the fields of sensors, mobile phones, and wireless technologies to improve health systems is a critical approach. M-Health system accommodates the use of an edge device to send medical data over the wireless network toward the m-Health center to diagnose and control the case of the patient as fast as possible. However, the delivery of the substantial medical data is constrained by two factors, the wireless bandwidth provisioned from the network, as well as the energy consumption since edge devices limited to energy sources. As a result, implementing artificial intelligence (0) techniques at the edge devices before transmitting will enhance the overall energy efficiency of the m-Health system. Deep learning can be used on medical data to facilitate data exchange and summarization. This chapter will introduce mobile and smart health, edge computing, and different smart preprocessing techniques using AI and specifically deep neural networks to facilitate the transmission of the huge medical data from the edge devices while ensuring the optimization of energy efficiency.
    DOI/handle
    http://dx.doi.org/10.1016/B978-0-12-819045-6.00001-7
    http://hdl.handle.net/10576/63828
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video