عرض بسيط للتسجيلة

المؤلفAbujaber, Ahmad
المؤلفYaseen, Said
المؤلفImam, Yahia
المؤلفNashwan, Abdulqadir
المؤلفAkhtar, Naveed
تاريخ الإتاحة2025-04-22T05:01:36Z
تاريخ النشر2024
اسم المنشورOxford open neuroscience
المعرّفhttp://dx.doi.org/10.1093/oons/kvae011
الاقتباسAbujaber A, Yaseen S, Imam Y, Nashwan A, Akhtar N. Machine learning-based prediction of one-year mortality in ischemic stroke patients. Oxf Open Neurosci. 2024 Nov 14;3:kvae011. doi: 10.1093/oons/kvae011.
معرّف المصادر الموحدhttp://hdl.handle.net/10576/64364
الملخصAccurate prediction of mortality following an ischemic stroke is essential for tailoring personalized treatment strategies. This study evaluates the effectiveness of machine learning models in predicting one-year mortality after an ischemic stroke. Five machine learning models were trained using data from a national stroke registry, with logistic regression demonstrating the highest performance. The SHapley Additive exPlanations (SHAP) analysis explained the model's outcomes and defined the influential predictive factors. Analyzing 8183 ischemic stroke patients, logistic regression achieved 83% accuracy, 0.89 AUC, and an F1 score of 0.83. Significant predictors included stroke severity, pre-stroke functional status, age, hospital-acquired pneumonia, ischemic stroke subtype, tobacco use, and co-existing diabetes mellitus (DM). The model highlights the importance of predicting mortality in enhancing personalized stroke care. Apart from pneumonia, all predictors can serve the early prediction of mortality risk which supports the initiation of early preventive measures and in setting realistic expectations of disease outcomes for all stakeholders. The identified tobacco paradox warrants further investigation. This study offers a promising tool for early prediction of stroke mortality and for advancing personalized stroke care. It emphasizes the need for prospective studies to validate these findings in diverse clinical settings.
راعي المشروعThe study was funded by the Medical Research Center at Hamad Medical Corporation (Grant: MRC-01-22-594).
اللغةen
الناشرOxford University Press
الموضوعearly prediction
ischemic stroke
machine learning
mortality
personalized medicine
العنوانMachine learning-based prediction of one-year mortality in ischemic stroke patients.
النوعArticle
الصفحات1-9
رقم العدد1
رقم المجلد3
ESSN2753-149X
dc.accessType Open Access


الملفات في هذه التسجيلة

Icon

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة