Machine learning-based prediction of one-year mortality in ischemic stroke patients.
المؤلف | Abujaber, Ahmad |
المؤلف | Yaseen, Said |
المؤلف | Imam, Yahia |
المؤلف | Nashwan, Abdulqadir |
المؤلف | Akhtar, Naveed |
تاريخ الإتاحة | 2025-04-22T05:01:36Z |
تاريخ النشر | 2024 |
اسم المنشور | Oxford open neuroscience |
المعرّف | http://dx.doi.org/10.1093/oons/kvae011 |
الاقتباس | Abujaber A, Yaseen S, Imam Y, Nashwan A, Akhtar N. Machine learning-based prediction of one-year mortality in ischemic stroke patients. Oxf Open Neurosci. 2024 Nov 14;3:kvae011. doi: 10.1093/oons/kvae011. |
الملخص | Accurate prediction of mortality following an ischemic stroke is essential for tailoring personalized treatment strategies. This study evaluates the effectiveness of machine learning models in predicting one-year mortality after an ischemic stroke. Five machine learning models were trained using data from a national stroke registry, with logistic regression demonstrating the highest performance. The SHapley Additive exPlanations (SHAP) analysis explained the model's outcomes and defined the influential predictive factors. Analyzing 8183 ischemic stroke patients, logistic regression achieved 83% accuracy, 0.89 AUC, and an F1 score of 0.83. Significant predictors included stroke severity, pre-stroke functional status, age, hospital-acquired pneumonia, ischemic stroke subtype, tobacco use, and co-existing diabetes mellitus (DM). The model highlights the importance of predicting mortality in enhancing personalized stroke care. Apart from pneumonia, all predictors can serve the early prediction of mortality risk which supports the initiation of early preventive measures and in setting realistic expectations of disease outcomes for all stakeholders. The identified tobacco paradox warrants further investigation. This study offers a promising tool for early prediction of stroke mortality and for advancing personalized stroke care. It emphasizes the need for prospective studies to validate these findings in diverse clinical settings. |
راعي المشروع | The study was funded by the Medical Research Center at Hamad Medical Corporation (Grant: MRC-01-22-594). |
اللغة | en |
الناشر | Oxford University Press |
الموضوع | early prediction ischemic stroke machine learning mortality personalized medicine |
النوع | Article |
الصفحات | 1-9 |
رقم العدد | 1 |
رقم المجلد | 3 |
ESSN | 2753-149X |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الصحة العامة [472 items ]