عرض بسيط للتسجيلة

المؤلفYida, Ning
المؤلفBai, Zhenzu
المؤلفWei, Juhui
المؤلفNagaratnam Suganthan, Ponnuthurai
المؤلفXing, Lining
المؤلفWang, Jiongqi
المؤلفSong, Yanjie
تاريخ الإتاحة2025-05-11T07:34:32Z
تاريخ النشر2025-02
اسم المنشورExpert Systems with Applications
المعرّفhttp://dx.doi.org/10.1016/j.eswa.2024.125555
الاقتباسNing, Y., Bai, Z., Wei, J., Suganthan, P. N., Xing, L., Wang, J., & Song, Y. (2025). A meta-heuristic algorithm combined with deep reinforcement learning for multi-sensor positioning layout problem in complex environment. Expert Systems with Applications, 261, 125555.
الرقم المعياري الدولي للكتاب09574174
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S0957417424024229
معرّف المصادر الموحدhttp://hdl.handle.net/10576/64814
الملخصIn a multi-sensor positioning system (MSPS), the layout of sensors plays a crucial role in determining the system’s performance. Therefore, addressing the sensor layout problem (SLP) within the MSPS is an essential approach to achieve high-precision location information. However, equipment failures and measurement losses in complex working conditions can disrupt the established sensor layout geometry, resulting in significant degradation of positioning accuracy. To address this issue, we introduce robustness as a new objective for sensor layout optimization within MSPS operating in complex environments, transforming it into a constrained multi-objective optimization problem. Consequently, we propose a Constrained Pareto Dominance Evolutionary Algorithm based on Deep Q Network (CDEA-DQN). This algorithm incorporates a state quaternion that characterizes population quality in both objective and decision spaces. It further establishes a mapping model from state to optimal reproduction operators while employing reward and update strategies that provide adaptive preferences for convergence, diversity, and feasibility – enabling dynamic reproduction. Experimental results from 44 benchmark instances along with three proposed SLP scenarios demonstrate the effectiveness of CDEA-DQN compared to existing algorithm.
راعي المشروعThis research was supported by the National Natural Science Foundation of China [Grant number: 62203458]. National Key R&D Program of China (No. 2020YFA0713502).
اللغةen
الناشرElsevier
الموضوعMulti-sensor positioning system
Sensor layout problem
Constrained multi-objective evolutionary algorithm
Deep Q network
Multi-operator reproduction
العنوانA meta-heuristic algorithm combined with deep reinforcement learning for multi-sensor positioning layout problem in complex environment
النوعArticle
رقم المجلد261
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة