• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An individual adaptive evolution and regional collaboration based evolutionary algorithm for large-scale constrained multiobjective optimization problems

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2210650225000835-main.pdf (2.078Mb)
    Date
    2025-04-13
    Author
    Kunjie, Yu
    Yang, Zhenyu
    Liang, Jing
    Qiao, Kangjia
    Qu, Boyang
    Suganthan, Ponnuthurai Nagaratnam
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Large-scale constrained multiobjective optimization problems (LSCMOPs) refer to constrained multiobjective optimization problems (CMOPs) with large-scale decision variables. When using evolutionary algorithms to solve LSCMOPs, the main challenge lies in balancing feasibility, convergence, and diversity in the high-dimensional search space. However, only a few studies focus on LSCMOPs and most existing related algorithms fail to achieve satisfactory performance. This paper proposes two novel mechanisms (the individual adaptive evolution strategy and the regional collaboration mechanism) to tackle these challenges. The individual adaptive evolution mechanism introduces a dynamic approach to optimize convergence-related and diversity-related variables by allocating computational resources to individuals based on their evolution states. This method effectively balances convergence and diversity in the high-dimensional search space. The regional collaboration mechanism, on the other hand, employs an auxiliary population to explore multiple sub-regions to maintain diversity, guiding the main population towards the constrained Pareto front. By combining these two mechanisms within a two-stage algorithm framework, a new algorithm IAERCEA is proposed. IAERCEA and nine other state-of-the-art algorithms are evaluated on several benchmark suites and three dynamic economic emissions dispatch problems. The results show that IAERCEA has better or competitive performance.
    URI
    https://www.sciencedirect.com/science/article/pii/S2210650225000835
    DOI/handle
    http://dx.doi.org/10.1016/j.swevo.2025.101925
    http://hdl.handle.net/10576/64845
    Collections
    • Interdisciplinary & Smart Design [‎32‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video