• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bio-oil from microalgae: Materials, production, technique, and future

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484723013070-main.pdf (2.259Mb)
    Date
    2023-11-30
    Author
    Ahmed, Shams Forruque
    Rafa, Sabiha Jannat
    Mehjabin, Aanushka
    Tasannum, Nuzaba
    Ahmed, Samiya
    Mofijur, M.
    Lichtfouse, Eric
    Almomani, Fares
    Badruddin, Irfan Anjum
    Kamangar, Sarfaraz
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Because of its low environmental impact and high production, microalgae bio-oil has quickly become a popular renewable fuel option. The process utilizes microalgae which are readily available in nature to produce an alternative to fossil fuel. Although microalgal bio-oil production mechanisms have been previously reviewed in recent studies, comparatively few of them emphasize the significance of algal bio-oil production through all available bio-oil conversion mechanisms from microalgae. Here we review the available and common bio-oil conversion processes from microalgae, bio-oil upgrading, and the commercial aspects of its utilization. The most efficient route to bio-oil production can be identified by analysing both the biomass feedstock and the final product. For example, pyrolysis can produce high-energy bio-oil, but it also produces large amounts of char and gas. Although hydrothermal liquefaction and gasification are more complex and costly, they have the potential to produce bio-oil with greater consistency. However, the expense of using bio-oil in a commercial context is a major concern. The cost of producing bio-oil from microalgae is typically higher than that of producing conventional fossil fuels. Several factors, including cost, availability, and necessary infrastructure, contribute to the uncertainty of bio-oil’s commercial feasibility. With the constant improvements in technology and government support, however, bio-oil has the potential to emerge as a viable alternative to conventional fossil fuels.
    URI
    https://www.sciencedirect.com/science/article/pii/S2352484723013070
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2023.09.068
    http://hdl.handle.net/10576/65719
    Collections
    • Chemical Engineering [‎1272‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video