• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Recent advances in biogas purifying technologies: Process design and economic considerations

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0360544222030493-main.pdf (1.918Mb)
    Date
    2023-02-15
    Author
    Yusuf, Noor
    Almomani, Fares
    Metadata
    Show full item record
    Abstract
    Biogas is a promising renewable energy source that is produced from biowaste and can potentially replace conventional energy resources. The economic value of biogas, which is primarily comprised of CH4, CO2, and other impurities (e.g. H2S, and N2) can be increased by upgrading and purification. This study presents the techno-economic feasibility of the cryogenic biogas upgrading process (CBioUP) based on product purities, biomethane selling prices and different refrigeration systems over 25 years of lifetime. The proposed CBioUPs is comprised of compression, refrigeration, and separation sections. Compressed biogas was liquefied in two refrigeration systems (propane pre-cooled mixed refrigerants and optimized cascade technologies) followed by a distillation separation unit. CBioUP proved its flexibility in terms of the number of distillation columns to produce low-grade CH4 (≈94.58 mol%), high-grade CH4 (≈97.13 mol%), and liquid CO2 by-product. The process's robustness to varying biogas feed composition revealed higher CO2 content would necessitate additional duty and/or equipment to enhance separation efficiency, whereas a CH4 content of ≥70% generated biomethane with a purity >99.6 mol% even in a single distillation column. CBioUP demonstrated its suitability for producing different grades of CH4 with a promising net present value (NPV) of $28.3 and $30.9 billion for low/high-grade biomethane.
    URI
    https://www.sciencedirect.com/science/article/pii/S0360544222030493
    DOI/handle
    http://dx.doi.org/10.1016/j.energy.2022.126163
    http://hdl.handle.net/10576/65721
    Collections
    • Chemical Engineering [‎1268‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video