• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Medisure: Towards Assuring Machine Learning-Based Medical Image Classifiers Using Mixup Boundary Analysis

    View/Open
    Medisure_Towards_Assuring_Machine_Learning-Based_Medical_Image_Classifiers_Using_Mixup_Boundary_Analysis.pdf (2.283Mb)
    Date
    2024
    Author
    Byfield, Adam
    Poulett, William
    Wallace, Ben
    Jose, Anusha
    Tyagi, Shatakshi
    Shembekar, Smita
    Qayyum, Adnan
    Qadir, Junaid
    Bilal, Muhammad
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Machine learning (ML) models are becoming integral in healthcare technologies, necessitating formal assurance methods to ensure their safety, fairness, robustness, and trustworthiness. However, these models are inherently error-prone, posing risks to patient health and potentially causing irreparable harm when deployed in clinics. Traditional software assurance techniques, designed for fixed code, are not directly applicable to ML models, which adapt and learn from curated datasets during training. Thus, there is an urgent need to adapt established software assurance principles such as boundary testing with synthetic data. To bridge this gap and enable objective assessment of ML models in real-world clinical settings, we propose Mix-Up Boundary Analysis (MUBA), a novel technique facilitating the evaluation of image classifiers in terms of prediction fairness. We evaluated MUBA using brain tumour and breast cancer classification tasks and achieved promising results. This research underscores the importance of adapting traditional assurance principles to assess ML models, ultimately enhancing the safety and reliability of healthcare technologies. Our code is available at https: //github.com/willpoulett/MUBA_pipeline.
    DOI/handle
    http://dx.doi.org/10.1109/ISBI56570.2024.10635870
    http://hdl.handle.net/10576/66054
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Machine Learning for Healthcare Wearable Devices: The Big Picture 

      Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)
      Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ...
    • Deep Reinforcement Learning for Autonomous Navigation on Duckietown Platform: Evaluation of Adversarial Robustness 

      Hosseini, Abdullah; Houti, Saeid; Qadir, Junaid ( IEEE , 2023 , Conference paper)
      Self-driving cars have gained widespread attention in recent years due to their potential to revolutionize the transportation industry. However, their success critically depends on the ability of reinforcement learning ...
    • Thumbnail

      A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks 

      Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video