• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Survey of Deep Representation Learning for Speech Emotion Recognition

    View/Open
    Survey_of_Deep_Representation_Learning_for_Speech_Emotion_Recognition.pdf (1.648Mb)
    Date
    2023
    Author
    Latif, Siddique
    Rana, Rajib
    Khalifa, Sara
    Jurdak, Raja
    Qadir, Junaid
    Schuller, Bjorn
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Traditionally, speech emotion recognition (SER) research has relied on manually handcrafted acoustic features using feature engineering. However, the design of handcrafted features for complex SER tasks requires significant manual effort, which impedes generalisability and slows the pace of innovation. This has motivated the adoption of representation learning techniques that can automatically learn an intermediate representation of the input signal without any manual feature engineering. Representation learning has led to improved SER performance and enabled rapid innovation. Its effectiveness has further increased with advances in deep learning (DL), which has facilitated deep representation learning where hierarchical representations are automatically learned in a data-driven manner. This article presents the first comprehensive survey on the important topic of deep representation learning for SER. We highlight various techniques, related challenges and identify important future areas of research. Our survey bridges the gap in the literature since existing surveys either focus on SER with hand-engineered features or representation learning in the general setting without focusing on SER.
    DOI/handle
    http://dx.doi.org/10.1109/TAFFC.2021.3114365
    http://hdl.handle.net/10576/66063
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video