عرض بسيط للتسجيلة

المؤلفMuhammad Zaidi, Syed Aun
المؤلفLatif, Siddique
المؤلفQadir, Junaid
تاريخ الإتاحة2025-07-08T03:58:10Z
تاريخ النشر2024
اسم المنشورIEEE Open Journal of the Computer Society
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/OJCS.2024.3486904
الرقم المعياري الدولي للكتاب26441268
معرّف المصادر الموحدhttp://hdl.handle.net/10576/66082
الملخصDespite the recent progress in emotion recognition, state-of-the-art systems are unable to achieve improved performance in cross-language settings. In this article we propose a Multimodal Dual Attention Transformer (MDAT) model to improve cross-language multimodal emotion recognition. Our model utilises pre-trained models for multimodal feature extraction and is equipped with dual attention mechanisms including graph attention and co-attention to capture complex dependencies across different modalities and languages to achieve improved cross-language multimodal emotion recognition. In addition, our model also exploits a transformer encoder layer for high-level feature representation to improve emotion classification accuracy. This novel construct preserves modality-specific emotional information while enhancing cross-modality and cross-language feature generalisation, resulting in improved performance with minimal target language data. We assess our model's performance on four publicly available emotion recognition datasets and establish its superior effectiveness compared to recent approaches and baseline models.
راعي المشروعFunding text 1: This work was supported in part by Qatar University High Impact Internal under Grant QUHI-CENG23/24-127, and in part by Qatar National Library. The statements made herein are solely the responsibility of the authors. Open Access publication supported by Qatar National Library.; Funding text 2: The authors would like to acknowledge support from Qatar University High Impact Internal Grant (QUHI-CENG23/24-127). Open access funding is provided by Qatar National Library. The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرIEEE
الموضوعCo-attention networks
graph attention networks
multi-modal learning
multimodal emotion recognition
العنوانEnhancing Cross-Language Multimodal Emotion Recognition With Dual Attention Transformers
النوعArticle
الصفحات684-693
رقم المجلد5
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة