• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust multi-label surgical tool classification in noisy endoscopic videos

    Thumbnail
    View/Open
    s41598-024-82351-5.pdf (3.369Mb)
    Date
    2025
    Author
    Qayyum, Adnan
    Ali, Hassan
    Caputo, Massimo
    Vohra, Hunaid
    Akinosho, Taofeek
    Abioye, Sofiat
    Berrou, Ilhem
    Capik, Paweł
    Qadir, Junaid
    Bilal, Muhammad
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Over the past few years, surgical data science has attracted substantial interest from the machine learning (ML) community. Various studies have demonstrated the efficacy of emerging ML techniques in analysing surgical data, particularly recordings of procedures, for digitising clinical and non-clinical functions like preoperative planning, context-aware decision-making, and operating skill assessment. However, this field is still in its infancy and lacks representative, well-annotated datasets for training robust models in intermediate ML tasks. Also, existing datasets suffer from inaccurate labels, hindering the development of reliable models. In this paper, we propose a systematic methodology for developing robust models for surgical tool classification using noisy endoscopic videos. Our methodology introduces two key innovations: (1) an intelligent active learning strategy for minimal dataset identification and label correction by human experts through collective intelligence; and (2) an assembling strategy for a student-teacher model-based self-training framework to achieve the robust classification of 14 surgical tools in a semi-supervised fashion. Furthermore, we employ strategies such as weighted data loaders and label smoothing to enable the models to learn difficult samples and address class imbalance issues. The proposed methodology achieves an average F1-score of 85.88% for the ensemble model-based self-training with class weights, and 80.88% without class weights for noisy tool labels. Also, our proposed method significantly outperforms existing approaches, which effectively demonstrates its effectiveness.
    DOI/handle
    http://dx.doi.org/10.1038/s41598-024-82351-5
    http://hdl.handle.net/10576/66087
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video