Show simple item record

AuthorButt, Muhammad Atif
AuthorAli, Hassan
AuthorQayyum, Adnan
AuthorSultani, Waqas
AuthorAl-Fuqaha, Ala
AuthorQadir, Junaid
Available date2025-07-08T03:58:11Z
Publication Date2025
Publication NameInternational Journal of Computer Vision
ResourceScopus
Identifierhttp://dx.doi.org/10.1007/s11263-024-02207-3
ISSN9205691
URIhttp://hdl.handle.net/10576/66088
AbstractSemantic understanding of roadways is a key enabling factor for safe autonomous driving. However, existing autonomous driving datasets provide well-structured urban roads while ignoring unstructured roadways containing distress, potholes, water puddles, and various kinds of road patches i.e., earthen, gravel etc. To this end, we introduce Road Region Segmentation dataset (R2S100K)-a large-scale dataset and benchmark for training and evaluation of road segmentation in aforementioned challenging unstructured roadways. R2S100K comprises 100K images extracted from a large and diverse set of video sequences covering more than 10000 km of roadways. Out of these 100K privacy respecting images, 14,000 images have fine pixel-labeling of road regions, with 86,000 unlabeled images that can be leveraged through semi-supervised learning methods. Alongside, we present an Efficient Data Sampling based self-training framework to improve learning by leveraging unlabeled data. Our experimental results demonstrate that the proposed method significantly improves learning methods in generalizability and reduces the labeling cost for semantic segmentation tasks. Our benchmark will be publicly available to facilitate future research at https://r2s100k.github.io/.
SponsorThis research was made possible by NPRP grant # [13S-0206-200273] from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
Languageen
PublisherSpringer
SubjectAutonomous driving
Semantic segmentation
Semi-supervised learning
TitleR2S100K: Road-Region Segmentation Dataset for Semi-supervised Autonomous Driving in the Wild
TypeArticle
Pagination910-928
Issue Number2
Volume Number133
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record