• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Review of electrocatalytic reduction of CO2 on carbon supported films

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0360319924000247-main.pdf (12.81Mb)
    Date
    2024-01-11
    Author
    Afdhal, Yuda
    Ebrahimi, Parisa
    Selvaraj, Josephine
    Kumar, Anand
    Subramanian, Vaidyanathan (Ravi)
    Metadata
    Show full item record
    Abstract
    Carbon capture and conversion are becoming increasingly important as atmospheric CO2 concentrations rise and their adverse effects become increasingly evident. CO2 conversion/utilization-related research has gained renewed interest on a variety of platforms, including thermal, solar, biological, photochemical, and electrochemical conversions. Electrochemical routes, using suitable catalysts, are potentially suitable for commercial purposes owing to ease of integration with solvent-based carbon capture processes. This paper summarizes and evaluates the studies conducted within the past decade regarding the feasibility of carbon-based supports utilized in electrocatalytic carbon dioxide reduction. CO2 conversion has been reviewed in a number of reports, focusing on specific sections, such as metallic/bimetallic catalysts, CO2 solubility, and the fabrication of electrodes and electrochemical cells. The number of publications addressing various carbon-based electrocatalysts is increasing, but these materials have not yet been reviewed. Herein, we are focused on three types of electrocatalyst materials: metals, metal-oxides, non-oxides, and combinations thereof with carbon. The scope of this study includes the following: i) carbon-based materials and how they are characterized by distinctive properties, ii) electrocatalytic CO2 conversion techniques, and iii) research cases for carbon allotrope-supported composites used in CO2 reduction. The advancement in analytical tools that provide insight into liquid-phase reactions will benefit the development of catalysts and electrodes that will be effective in converting CO2 into the desired products. Such developments will also be applicable to other systems involving liquid electrolytes or solvents for performing reactions on catalyst surfaces.
    URI
    https://www.sciencedirect.com/science/article/pii/S0360319924000247
    DOI/handle
    http://dx.doi.org/10.1016/j.ijhydene.2024.01.022
    http://hdl.handle.net/10576/66700
    Collections
    • Chemical Engineering [‎1272‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video