عرض بسيط للتسجيلة

المؤلفAl-Ali, Afnan
المؤلفHamdi, Ali
المؤلفElshrif, Mohamed
المؤلفIsufaj, Keivin
المؤلفShaban, Khaled
المؤلفChauvin, Peter
المؤلفMadathil, Sreenath
المؤلفDaer, Ammar
المؤلفTamimi, Faleh
المؤلفBa-Hattab, Raidan
تاريخ الإتاحة2025-09-03T07:33:54Z
تاريخ النشر2025-07-02
اسم المنشورScientific Reports
المعرّفhttp://dx.doi.org/10.1038/s41598-025-03268-1
الاقتباسAl-Ali, A., Hamdi, A., Elshrif, M., Isufaj, K., Shaban, K., Chauvin, P., ... & Ba-Hattab, R. (2025). CLASEG: advanced multiclassification and segmentation for differential diagnosis of oral lesions using deep learning. Scientific Reports, 15(1), 23016.
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105010063633&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/66988
الملخصOral cancer has a high mortality rate primarily due to delayed diagnoses, highlighting the need for early detection of oral lesions. This study presents a novel deep learning framework for multi-class classification-based segmentation, enabling accurate differential diagnosis of 14 common oral lesions—benign, pre-malignant, and malignant—across various mouth locations using photographic images. A dataset of 2,072 clinical images was used to train and validate the model. The proposed framework integrates EfficientNet-B3 for classification and ResNet-101-based Mask R-CNN for segmentation, achieving a classification accuracy of 74.49% and segmentation performance with an average precision (AP50) of 72.18. The gradient-weighted class activation map technique was applied to the model outputs to enable visualization of the specific areas that were most influential for predictive decisions made by the model. This significantly improves upon the state-of-the-art, where previous models achieved lower segmentation accuracy (AP50 < 50%). The framework not only classifies the lesion type but also delineates the lesion boundaries with high precision, which is critical for early detection and differential diagnosis in clinical practice.
راعي المشروعThis publication was supported by Qatar University Internal Grant No. IRCC-2021–009.
اللغةen
الناشرNature Portfolio
الموضوعClassification
Deep learning
Early detection
Oral cancer
Oral lesion
Segmentation
العنوانCLASEG: advanced multiclassification and segmentation for differential diagnosis of oral lesions using deep learning
النوعArticle
رقم العدد1
رقم المجلد15
ESSN2045-2322
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة