• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Machine Learning Framework for Detection of Sleeping Cells in LTE Network

    Icon
    View/Open
    2014-MLDLS_Doha-MachineLearningFrameworkforDetectionofSleepingCellsinLTENetwork-N3.pdf (1.020Mb)
    Date
    2014
    Author
    Zoha, Ahmed
    Imran, Ali
    Saeed, Arsalan
    Abu-Dayya, Adnan
    Metadata
    Show full item record
    Abstract
    The rapid advancements in telecommunication systems leads to growing data volume and high customer expectations in terms of cost and quality of service. The changing dynamics of radio network usage poses challenges for the operators in terms of optimizing and maximizing network efficiency while reducing maintenance and operational expenditure. Automatic detection of sleeping cell (SC) (i.e. a cell which is not providing normal services to the users) in the network is one way of lowering maintenance cost and improving network performance. This paper presents an intelligent machine learning framework that make use of minimize drive testing (MDT) functionality to gather key performance indicators (KPI's) of the LTE network. These measurements are further projected to a low-dimensional embedding space and are used in conjunction with state of the art learning models to automate the SC detection process.
    DOI/handle
    http://hdl.handle.net/10576/68029
    Collections
    • QMIC Research [‎307‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video