• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic economic dispatch of multi-area wind-solar-thermal power systems with fractional order comprehensive learning differential evolution

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0360544225018754-main.pdf (30.01Mb)
    Date
    2025-04-21
    Author
    Xiong, Guojiang
    Xu, Shengping
    Suganthan, Ponnuthurai Nagaratnam
    Wang, Yang
    Metadata
    Show full item record
    Abstract
    The significance of multi-area dynamic economic dispatch (MADED) is amplified by the integration of wind and solar energy sources which introduces considerable fluctuations. In this work, a MADED model incorporating wind and solar energy is developed. Weibull and lognormal distributions are employed to characterize their uncertainty, respectively. The over/underestimation technique is then employed to model the uncertainty. To resolve the model, an enhanced variant named FORCL-LSHADE by incorporating refined comprehensive learning (RCL) strategy, fractional order mutation, RCL-based crossover, and RCL-based parameter tuning is presented. FORCL-LSHADE overcomes the premature convergence issues of LSHADE while preserving robust convergence and maintaining population diversity. Comparative results across two MADED systems and a practical system in China, considering scenarios with and without wind and solar, demonstrate that FORCL-LSHADE offers a significant competitive advantage over other algorithms. It achieves cost reductions of 214.64$, 59394.55$, and 2657.10$ in Case (i), and 228.38$, 57045.64$, and 2993.28$ in Case (ii). It also exhibits faster convergence, reaching final solutions at 10 %, 22.5 %, and 70 % of function evaluations in Case (i), and 10 %, 20 %, and 70 % in Case (ii). Its standard deviation is only 4.25 %, 36.87 %, and 44.99 % of LSHADE's in Case (i), and 3.91 %, 34.43 %, and 36.81 % in Case (ii).
    URI
    https://www.sciencedirect.com/science/article/pii/S0360544225018754
    DOI/handle
    http://dx.doi.org/10.1016/j.energy.2025.136233
    http://hdl.handle.net/10576/68431
    Collections
    • Interdisciplinary & Smart Design [‎45‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video