• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Wind Speed Forecasting Using an Ensemble Deep Random Vector Functional Link Neural Network Based on Parsimonious Channel Mixing

    عرض / فتح
    Wind_Speed_Forecasting_Using_an_Ensemble_Deep_Random_Vector_Functional_Link_Neural_Network_Based_on_Parsimonious_Channel_Mixing.pdf (17.46Mb)
    التاريخ
    2024-07
    المؤلف
    Cheng, Ruke
    Gao, Ruobin
    Hu, Minghui
    Suganthan, Ponnuthurai Nagaratnam
    Yuen, Kum Fai
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The electricity generation through wind energy is rapidly expanding, primarily due to its priorities of lower carbon emissions and sustainability. Precise wind speed forecasting is essential for renewable energy conversions as it mitigates the randomness of wind power, therefore aiding in more effective control and strategic planning for power system dispatch. However, the inherent fluctuation of wind speed challenges accurate and consistent time series forecasting. In this paper, we develop a novel parsimonious channel mixing ensemble deep random vector functional link (pcm-edRVFL) network to anticipate future wind speeds. The ensemble deep random vector functional link network (edRVFL) utilizes deep feature extraction and ensemble learning to improve forecasting performance. We refined the standard edRVFL model by incorporating a parsimonious channel mixing selection approach for input data, focusing on crucial historical observations, and strengthening the representation of each explanatory variable. We conduct extensive evaluations on four wind speed datasets using the proposed model, and the comparative experiment results demonstrate its superiority over other baseline models. Our proposed pcm-edRVFL network provides a practical approach for precise and efficient wind speed forecasting, proving to be an instrumental resource in wind energy design and operation systems.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85204972646&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IJCNN60899.2024.10650817
    http://hdl.handle.net/10576/68800
    المجموعات
    • الابحاث المتعددة التخصصات والتصاميم االذكية [‎45‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video