عرض بسيط للتسجيلة

المؤلفLiu, Fubin
المؤلفGao, Kaizhou
المؤلفSlowik, Adam
المؤلفSuganthan, Ponnuthurai Nagaratnam
تاريخ الإتاحة2025-11-25T11:34:13Z
تاريخ النشر2025-04-17
اسم المنشورComplex System Modeling and Simulation
المعرّفhttp://dx.doi.org/10.23919/CSMS.2024.0040
الاقتباسLiu, F., Gao, K., Słowik, A., & Suganthan, P. N. (2025). Ensemble artificial bee colony algorithm and Q-learning for multi-objective distributed heterogeneous flowshop scheduling problems with sequence-dependent setup time. Complex System Modeling and Simulation.
الرقم المعياري الدولي للكتاب2096-9929
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105014436464&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68808
الملخصAs the global economy develops and people's awareness of environmental protection increases, the efficient scheduling of production lines in workshops has received more and more attention. However, there is very little research focusing on distributed scheduling for heterogeneous factories. This study addresses a multi-objective distributed heterogeneous permutation flow shop scheduling problem with sequence-dependent setup times (DHPFSP-SDST). The objective is to optimize the trade-off between the maximum completion time (Makespan) and total energy consumption. First, to describe the concerned problems, we establish a mathematical model. Second, we use the artificial bee colony (ABC) algorithm to optimize the two objectives, incorporating five local search strategies tailored to the problem characteristics to enhance the algorithm's performance. Third, to improve the convergence speed of the algorithm, a Q-learning based strategy is designed to select the appropriated local search operator during iterations. Finally, based on experiments conducted on 72 instances, statistical analysis and discussions show that the Q-learning based ABC algorithm can effectively solve the problems better than its peers.
راعي المشروعThis work was partially supported by the Science and Technology Development Fund (FDCT), Macau SAR (No. 0019/2021/A), National Natural Science Foundation of China (No. 62173356), Zhuhai IndustryUniversity-Research Project with Hongkong and Macao (No. ZH22017002210014PWC), Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515011531), and Key Technologies for Scheduling and Optimization of Complex Distributed Manufacturing Systems (No. 22JR10KA007).
اللغةen
الناشرInstitute of Electrical and Electronics Engineers (IEEE)
الموضوعartificial bee colony algorithm
flowshop scheduling
Q-learning
sequence-dependent setup time
العنوانEnsemble Artificial Bee Colony Algorithm and Q-Learning for Multi-Objective Distributed Heterogeneous Flowshop Scheduling Problems with Sequence-Dependent Setup Time
النوعArticle
رقم العدد3
رقم المجلد5
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة