عرض بسيط للتسجيلة

المؤلفAkbari, Younes
المؤلفAbdullakutty, Faseela
المؤلفAl Maadeed, Somaya
المؤلفBouridane, Ahmed
المؤلفHamoudi, Rifat
تاريخ الإتاحة2025-12-03T05:08:03Z
تاريخ النشر2025
اسم المنشورScientific Reports
المصدرScopus
المعرّفhttp://dx.doi.org/10.1038/s41598-025-05744-0
الاقتباسAkbari, Y., Abdullakutty, F., Al Maadeed, S. et al. Breast cancer detection based on histological images using fusion of diffusion model outputs. Sci Rep 15, 21463 (2025). https://doi.org/10.1038/s41598-025-05744-0
الرقم المعياري الدولي للكتاب20452322
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68978
الملخصThe precise detection of breast cancer in histopathological images remains a critical challenge in computational pathology, where accurate tissue segmentation significantly enhances diagnostic accuracy. This study introduces a novel approach leveraging a Conditional Denoising Diffusion Probabilistic Model (DDPM) to improve breast cancer detection through advanced segmentation and feature fusion. The method employs a conditional channel within the DDPM framework, first trained on a breast cancer histopathology dataset and extended to additional datasets to achieve regional-level segmentation of tumor areas and other tissue regions. These segmented regions, combined with predicted noise from the diffusion model and original images, are processed through an EfficientNet-B0 network to extract enhanced features. A transformer decoder then fuses these features to generate final detection results. Extensive experiments optimizing the network architecture and fusion strategies were conducted, and the proposed method was evaluated across four distinct datasets, achieving a peak accuracy of 92.86% on the BRACS dataset, 100% on the BreCaHAD dataset, 96.66% the ICIAR2018 dataset. This approach represents a significant advancement in computational pathology, offering a robust tool for breast cancer detection with potential applications in broader medical imaging contexts.
راعي المشروعThe research reported in this publication was supported by the Qatar Research Development and Innovation Council [ARG01-0513-230141]. The Qatar National Library provides Open Access funding.
اللغةen
الناشرNature Research
الموضوعBiomedical engineering
Breast cancer
العنوانBreast cancer detection based on histological images using fusion of diffusion model outputs
النوعArticle
رقم العدد1
رقم المجلد15
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة