عرض بسيط للتسجيلة

المؤلفAbdullakutty, Faseela
المؤلفAl-Maadeed, Somaya
المؤلفNaseem, Usman
تاريخ الإتاحة2025-12-03T05:08:03Z
تاريخ النشر2025
اسم المنشورLecture Notes in Computer Science
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/978-981-96-1483-7_25
الاقتباسAbdullakutty, F., Al-Maadeed, S., Naseem, U. (2025). Prompt Strategies for Sarcastic Meme Detection: A Comparative Analysis. In: Barhamgi, M., et al. Web Information Systems Engineering - WISE 2024 PhD Symposium, Demos and Workshops. WISE 2024. Lecture Notes in Computer Science, vol 15463. Springer, Singapore. https://doi.org/10.1007/978-981-96-1483-7_25
الترقيم الدولي الموحد للكتاب 978-981961482-0
الرقم المعياري الدولي للكتاب3029743
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68984
الملخصMemes, often characterized by subtle humour and irony, have become a prominent digital communication medium. Detecting sarcasm in memes presents a significant challenge due to its context-dependent nature, negatively impacting user experiences on social media platforms. To improve the ability of social media systems to recognize and manage sarcastic content, this study investigates the effectiveness of Large Language Models (LLMs) for sarcasm detection in memes. Specifically, we evaluate three prompting techniques: Standard Prompt, Chain of Thought (CoT), and Concise Chain of Thought (CCoT) to determine their impact on the classification of sarcastic memes. Using the GOAT dataset as a benchmark, the study employs four pre-trained LLMs: Flan-T5-XXL, Llama-2, Mistral 7B, and GPT-2. The research identifies the most effective prompting strategies for sarcasm detection through a comparative analysis. The results demonstrate that CoT and CCoT significantly enhance performance over the Standard Prompt, with CCoT achieving the highest accuracy, particularly with advanced models like Mistral 7B. However, the choice of prompting technique depends on both the model and task requirements, emphasizing the need for tailored approaches in sarcastic meme analysis.
اللغةen
الناشرSpringer Science and Business Media Deutschland GmbH
الموضوعLLMs
Meme detection
Prompting
العنوانPrompt Strategies for Sarcastic Meme Detection: A Comparative Analysis
النوعConference
الصفحات285-298
رقم المجلد15463 LNCS
dc.accessType abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة