Prompt Strategies for Sarcastic Meme Detection: A Comparative Analysis
| المؤلف | Abdullakutty, Faseela |
| المؤلف | Al-Maadeed, Somaya |
| المؤلف | Naseem, Usman |
| تاريخ الإتاحة | 2025-12-03T05:08:03Z |
| تاريخ النشر | 2025 |
| اسم المنشور | Lecture Notes in Computer Science |
| المصدر | Scopus |
| المعرّف | http://dx.doi.org/10.1007/978-981-96-1483-7_25 |
| الاقتباس | Abdullakutty, F., Al-Maadeed, S., Naseem, U. (2025). Prompt Strategies for Sarcastic Meme Detection: A Comparative Analysis. In: Barhamgi, M., et al. Web Information Systems Engineering - WISE 2024 PhD Symposium, Demos and Workshops. WISE 2024. Lecture Notes in Computer Science, vol 15463. Springer, Singapore. https://doi.org/10.1007/978-981-96-1483-7_25 |
| الترقيم الدولي الموحد للكتاب | 978-981961482-0 |
| الرقم المعياري الدولي للكتاب | 3029743 |
| الملخص | Memes, often characterized by subtle humour and irony, have become a prominent digital communication medium. Detecting sarcasm in memes presents a significant challenge due to its context-dependent nature, negatively impacting user experiences on social media platforms. To improve the ability of social media systems to recognize and manage sarcastic content, this study investigates the effectiveness of Large Language Models (LLMs) for sarcasm detection in memes. Specifically, we evaluate three prompting techniques: Standard Prompt, Chain of Thought (CoT), and Concise Chain of Thought (CCoT) to determine their impact on the classification of sarcastic memes. Using the GOAT dataset as a benchmark, the study employs four pre-trained LLMs: Flan-T5-XXL, Llama-2, Mistral 7B, and GPT-2. The research identifies the most effective prompting strategies for sarcasm detection through a comparative analysis. The results demonstrate that CoT and CCoT significantly enhance performance over the Standard Prompt, with CCoT achieving the highest accuracy, particularly with advanced models like Mistral 7B. However, the choice of prompting technique depends on both the model and task requirements, emphasizing the need for tailored approaches in sarcastic meme analysis. |
| اللغة | en |
| الناشر | Springer Science and Business Media Deutschland GmbH |
| الموضوع | LLMs Meme detection Prompting |
| النوع | Conference |
| الصفحات | 285-298 |
| رقم المجلد | 15463 LNCS |
الملفات في هذه التسجيلة
| الملفات | الحجم | الصيغة | العرض |
|---|---|---|---|
|
لا توجد ملفات لها صلة بهذه التسجيلة. |
|||
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2520 items ]

