Show simple item record

AuthorKatebi, S. D.
Available date2009-11-25T13:03:03Z
Publication Date1994
Publication NameEngineering Journal of Qatar University
CitationEngineering Journal of Qatar University, 1994, Vol. 7, Pages 37-51.
URIhttp://hdl.handle.net/10576/7816
AbstractHamming Neural networks are employed for cursive text character separation and recognition. The digitized image of the scanned text is first enhanced by applying simple contrast stretching algorithm. Image registration is then performed to eliminate the white margins. Lines are separated by rows of white pixels and the morphological components identified. The projection method in conjunction with histogram analysis is used to estimate the width of each character in a word. The word is approximately decomposed into its constituent characters. The Hamming net is used to identify thus separated characters, while supposing the included portions of the adjacent characters as noise. The property of the trained Hamming net, i.e., the associative feature for detecting the best matched patterns from the prototype in a mean square sense, is the basis for constructing the recognition algorithm. Illustrative examples are presented and it is shown that the proposed approach is fast and efficient to provide an on-line separation and classification system for cursive texts such as Persian (Farsi), Arabic, Urdu and English script.
Languageen
PublisherQatar University
SubjectEngineering: Research & Technology
TitleRecognition Of Cursive Texts Using Hamming Neural Nets
TypeArticle
Pagination37-51
Volume Number7
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record