
Qatar Univ. Sci. J. (1999) 18: 261 - 272

DESIGN AND IMPLEMENTATION OF A SYSTEM
FOR VISUAL PROGRAMMING

By
Saud M. Maghrabi

Department of Mathematical Sciences

Faculty of Applied Sciences

Umm Al-Qura University

P. 0. Box 6648

Makkah, Saudi Arabia.

L$_;.11 ii 4.-~ 44)",.1dl i~\ ~ 4~4)1 i~\ ~

~~~\ ~.rJI ~\ 4 ~ _,5l1 ~ 4 \\iA-4.r.JJ~ 

~..L:.l ~ ~ ~ \.1'" 0 4 4:~1 ~ y-:ll i\J2j ~J r" ~ .a:;~\~\ lh u.r-o J-4: 

lh il1.; ~Jj!, . ~ ~\ JJl>. ~ ~t.;Y,I 04.-r.-~~~ ~ ~L;~\ ~.,t; ~ ~J . ~L.;L~-:-11 

'-?JJrP ~ J"); '-?i vP.) 0J~J 4 ~ ~~~~\~~WI~ i :..! 0 ~ Y. iJ_.;.," l\ ~I 

.!J~ ~J 4 .JI.~ •" .. \ ~ _r!.l;.o 4 _)2.:J.I "-:-'\.1 .. ;~- i...G.:..::...-l ~\ ~ _,ll \h J 4 il12:J\ i~ ~ 

ol5'l>.....o ~J . ci }I~~ .J')l>. ~ J~ Ji y i :..; ~I ~lr.ll Ji ~~\~WI~~~~ 

~ ~l_r!. y ~\Y. ~I~~~ .r ~ly:.ll ~ ~ ~ J~4 ~L;~\ ~.Aj ~ ~ 
JIJ~ 4 "-:-' J.,..a.ll j!.o ;;J.A.J.\ ~I.) I~~ ~I lh il1.; JL::>I { . ~L;~\ ~.,t; ~~~\J ~l:..o 

~)I.A..o ~ { 4~1 lh ~~ ~J. ;Jb '-?i JJ~ ~.P 0_,.....;1) :Jy) ~>J 4~L;~ 4.L..L.., 

~ ~~~ .J ~\ \h il1,; 0i ~JUl.\ oh ~ ~iJ . .J ~l....:..o ~ ~ J.,k C: ~\ ~.,1 0::-! 

. ~~ lh il1.; ~ ~Jl.io u ~~ ~ ~~ ~ ~ ;;~ ..f>:" r 

261 



Design and Implementation of a system for Visual Programming 

ABSTRACT 

The aim of the project of this paper is to design and implement a system for visual programming, based on data flow 

graphs. Data flow is applicative and based on transformations on data flowing through a graph. The system provides a user 

interface from which the graphs can be created in a fairly natural way, without enforcing any unnecessary restrictions on the 

user. The interface is attractive to look at, fairly straightforward to use and there is no restriction on the number of graphs or 

programs that may be created or edited at once. The data flow execution model adopted is a demand driven model, which 

runs directly from the internal representation of the data flow graphs. The system has been tested on several complex 

programs including factorial and Fibonacci sequence functions, and the Newton-Raphson method of approximating the roots 

of a function. A comparison has been made between the system described in this paper and other related systems. It has been 

shown that the system of this paper has many features over the compared systems. 

KEY WORDS : Algorithm on visual programming, visual programming environments, flow-graph languages. 

1 Introduction 

Visual programming is defined as "sets of pictures 

obtained by spatially arranging graphical objects over a 

given vocabulary through composition rules" [1]. With 

visual programming, there ts a need for visual 

programming environment, which provides graphical of 

iconic elements that can be manipulated by the user in an 

interactive way according to some specific spatial grammar 

for program construction. 

Visual programming, like much else in computer 

science, has a relatively short direct history. In 1963, 

Sutherland [2] created the first interactive visual 

programming language. In the early 1970s, researchers at 

Xerox Pare constructed the first visual programming 

environment. Bitmapped graphics and Mice systems can be 

mainly made to this research laboratory. In the 1980s, 

Apple computer and Sun micro-system spread graphic user 

interfaces to researchers and consumers. Recently, the 

creation of working windowing systems for PCs 

(Microsoft) and (X windows) has produced many systems 

based on graphical user interfaces. 

Visual programming has attracted a great deal of recent 

interest. This is mainly due to reduced computer costs, 

affordable software and the growth of people using 

personal computers. The change in the type of people using 

262 

computers has created a demand for software that allows 

non-expert users to perform specific tasks. As traditional 

programming techniques are often time consuming and 

difficult to learn, there is a great interest in providing an 

easier-to-learn solution. Visual programming is one 

attractive alternative to traditional computer languages. The 

motivation behind visual programming languages is based 

on several assumptions: 

* People in general prefer working with pictorial images to 

text. 

* Pictures can convey a more powerful message than text. 

* No specialized language knowledge is necessary to 

understand a picture. 

* Visual programs allow the expression of program 

interconnections and dependencies in a more natural way 

[3]. 

Visual programming allows programs to be constructed 

using visual elements such as icons, graphs, diagrams and 

pictures. Graphs are a popular general model for visual 

programming. There are two main classes; those based on 

control flow, and those based on data flow. The control 

flow paradigm supports procedural programming and relays 

heavily on design notations, especially flowcharts and 

Jackson Structure Program diagrams [4]. Visual 

programming accept two notions of flow of control in 



Saud M. Maghrabi 

program: imperative and declarative. With the imperative 

approach, a visual program constitutes one or more control 

flow which indicate how the thread of control flows 

through the program. With the declarative approach, one 

only needs to concern with the computations that are 

performed, and not how the actual operations are carried 

out. 

The data flow paradigm is based on the data flow 

model. In its simplest form, a data flow program is 

represented by a directed graph. Arcs passing into nodes 

represent input data, the nodes indicate transformations on 

the data, and arcs flowing out of a node carry output data. 

The data flow paradigm is oriented to flow-type operations. 

Objects of data are shown in relationship to procedures. No 

decision logic is shown; the data flow paradigm is used to 

model the flow of data. Because this data flow model 

contains no conditional or iteration constructs, and no order 

of node evaluation is specified, the system of this paper 

uses the data flow paradigm. Therefore, the user of this 

system does not require to keep track of how sequencing of 

operations modifies the state of the program. Moreover, 

features, include functional abstraction and control 

constructs, can be used to augment this simple data flow 

model in visual programming. 

The aim of this research is to design and implement a 

system for visual programming based on data flow graphs. 

A program, written in C, has implemented the system, and 

it uses the X-windows graphical interface package. The 

potential of the approach is demonstrated using several 

complex test programs including factorial and Fibonacci 

sequence functions, and the Newton-Raphson method of 

approximating the roots of a function. 

The paper starts with a description of the internal 

representation, showing the main data structures needed for 

building the system. The main data structures are graph, 

nodes, arcs, and ports. After showing how the main data 

structures are built, the system components are described. 

The system consists of an interface and an execution 

model. They are described through an example, to show the 

steps that a user takes in constructing and executing a 

graph. Next, a comparison between the present system and 

some recent existing systems is given. Finally, a conclusion 

and further research are discussed. 

2 Internal Representation 

A visual graph built by the system's user is represented 

internally using arrays of pointers. The main structures 

(graphs, nodes, arcs, and ports) are collected together when 

they are created, by putting pointers to them into an 

appropriate array (see figure 1). Relationships between 

structures are realized using pointers. 

Graph structures allow a whole graph to be encapsulated 

into one structure, making identification and manipulation 

of specific graphs possible. A graph structure is created 

when the 'new graph' button is clicked on the palette, taking 

its name from the palette text field. It contains arrays of 

pointers to the constituent nodes, ports and arcs. 

There are three kinds of nodes: operators, literal values, 

and calls to other graphs. Each node structure contains a 

pointer to an evaluation function. The different types of 

node are differentiated because they point to different 

evaluation functions. When a palette button is dragged and 

dropped, a call is made to a function to create and place the 

node, passing it a special token according to which kind of 

node is being placed. The function contains a switch 

statement, that controls which shape and label are to be 

drawn and which evaluation function will be associated 

with the new node structure. 

263 

Arcs structures fulfill two main purposes: to manage the 

transfer of data from one node to another, and to support 

graphical drawing of lines when building the graph. The 

ability to route lines is essential for building clear 

meaningful graphs. The arc structure can therefore store 

several straight segments, kept in an array. When an arc 

drawing action is started, the initial coordinates are placed 

in an array. When a line is rubber banded and the button is 



Design and Implementation of a system for Visual Programming 

released, the position of the end determines whether or not 

the user is routing the line. If the end of the line is some 

distance from any port, its coordinates are placed in the 

array and a flag is set so that next time the user starts to 

I I I I 
X-point Pointer 

Array 

Arc 

I I I I 
Arc Pointer 

Array 

Port 

I I I I 
FWlction 

Pointer Array 

Node 

draw a line, it starts from this last position (regardless of 

where the cursor is). Then, the same process is repeated so 

that the arc is made up of segments with their ends stored in 

the array. 

Graph Structures 

Array of Graph Structure Pointers 

Figure 1. Diagram expressing the internal representation of different components of the system. 

The port structure represents the inputs and outputs to a node. It contains a pointer to the node it is attached to. This 

provides a way of reaching the node from the port, necessary in the execution of the graph. It also contains an array of 

pointers to the arcs that connect to this port. A tally of the number of lines connected needs to be kept for evaluation 

purposes. 

264 



Saud M. Maghrabi 

3 System Components 

The system encompasses two main areas: user interface, 

and execution model. 

3.1 User Interface 

The initial view of the system is the palette. The palette 

consists of sliding blocks of operator buttons, grouped 

together in related sets. The operators on the palette are 

grouped under labels, which describe their functions. 

From the palette multiple editing areas can be created, 

each served by the functions on the palette. The user can 

create any number of graphs, with different names. A new 

graph can be created by entering the name of the graph in a 

text-input box, and clicking on a 'new graph' button. When 

a new graph is created a corresponding button, with the 

same name, is created in the 'Graphs' pane of the palette. 

This can be then clicked to pop up an editing area for the 

graph. 

The construction of a graph to recursively calculates the 

factorial of its input is used as an example to see how a 

graph built by the system is used. This will show the steps 

that the programmer takes in constructing a graph, and it 

also explains what happens internally as the graph is built 

and executed. The system initially presents the user with 

the palette. The graph name, factorial, is entered in the text 

field and new graph button is pressed. The user is presented 

with a new button that can be clicked on to open the editing 

area of the factorial graph. At this stage the system will 

appear as in Figure 2. 

The next step is to place the input. The input can be 

named using the palette text field, then dragged and 

dropped into the editing area. As the input box is placed, 

externally the on screen representation is drawn. The input 

box appears as a box containing two components: a number 

corresponding to the input port position when the graph is 

called, and its name. Internally, a general node structure is 

used to represent the input, with a node type-specific 

evaluation function pointed to from within it. Next, any 

ports related to that node are created and drawn. The 

pointers of the newly created port and node are placed into 

the corresponding arrays holding the components of the 

factorial graph. The count of the number of inputs to this 

graph will be incremented to one. 

Figure 2: Palette and Editing Area for factorial's graph. 

265 



Design and Implementation of a system for Visual Programming 

Literal inputs to the graph can now be added. To place 

the literal nodes, enter the value in the text field, click on 

the literal button and drag and drop it as before. Internally 

the node is represented by the same structure as before, but 

with a different evaluation function. The string entered in 

the palette text field is extracted and used to derive a value 

for the literal; this is then stored within the node. The other 

operator nodes can then be clicked on and dragged across 

into the drawing area. The construction of the internal 

representation for these nodes is done in a similar way as 

before. 

To represent the recursive call of the factorial graph to 

itself, the factorial button is dragged and dropped onto its 

own graph. The graph node dropped is rectangular to 

distinguish it from other operators. It has the same number 

of input ports, as there are inputs to the graph, that is, one. 

The graph node is represented by the same structure, but 

with a specific evaluation function attached. The width of 

the rectangle is calculated to fit the graph name. The system 

now looks as in Figure 3. 

To link all the nodes together to represent the flow of 

data around the graph, click at a desired starting port and 

route the line to its destination. As an arc is connected to 

the initial port, internally an arc structure is created; this 

contains information on the drawn line segments and also 

the two ports connected. 

The graph is now complete and it realizes a recursive 

factorial function, as shown in Figure 4. It is now necessary 

to build a graph to test out the function. This graph is 

constructed visually and internally in exactly the same way, 

but in this graph there is no input box as its only purpose is 

to define what literal value will be supplied as input to the 

factorial function 

Figure 3: Nodes placed on factorial's graph. 

266 



Saud M. Maghrabi 

Figure 4 : Complete factorial graph. 

3. 2 Execution Model 

An execution model is needed to define the way in 

which data flow graphs are interpreted. A demand driven 

execution model has been used, in which data flows 

downstream but there is a complementary notion of 

'demands', which flow upstream. A node fires when a 

demand arrives at it from downstream. During its own 

evaluation, the node sends a demand out on an input arc 

when data is required for that input. Execution starts when 

the 'evaluate' button is clicked in a graph-editing window. 

The result box node in that graph is evaluated and the result 

displayed in the text field. 

The system uses a selection mechanism, allowing 

routing of the data flow graph. A selector is a way for 

controlling the path of data in a data flow graph. It has two 

data inputs and a Boolean input; one of the input data 

values is placed on the output arc, depending on the state of 

the Boolean control input (see figure 5). The following 

selector evaluation function evalutSelector is used. 

data evalutSelector(node-ptr n) 

{ 

267 

); 

data result, cond; 

cond = inputvalue(n,O,O); 

if(cond.type!=BOOL) { 

printf( 'wrong type need boolean\n "); 

} 

if(cond.value.b==TRUE) { 

result= inputvalue(n,l,O); 

} 

else { 

result= inputvalue(n,2,0); 

} 

return result; 

It first demands the Boolean control input using a call to 

inputvalue. Once this has been evaluated, one of the inputs 

to the selector will be demanded. The other input will not 

be demanded. This is an example of the major property of 

demand driven execution: it only demands the inputs that 

are required, giving more efficient execution. In this code, 

input 0 is the Boolean control, input 1 is the true input and 

input 2 is the false input; it can be seen from the function 

that inputvalue is called for either the true or false input, but 

not both. 



Design and Implementation of a system for Visual Programming 

Boolean input to the selector - ---....... 
Either one demanded 

T F 

Output 

Figure 5: Diagram showing the architecture of the selector. 

In the factorial example, the selector controls the 

recursive base case. When the input is greater than two the 

recursive calls to factorial are made because the 'false' input 

to the selector is demanded, and this propagates to the 

recursive call. But if not, the 'true' input is demanded and 

this just returns the output value, terminating the graph 

recursion. Literal nodes terminate the recursive execution 

algorithm, since they have no inputs to demand. The graph 

can now be evaluated by clicking on the evaluate button at 

the top of the editing window. Now the execution cycle is 

initiated on the internal graph structures, as shown m 

Figure 6. 

4 Implementation 

The system has been implemented as a C program. The 

program seems to fall naturally into three main areas. These 

areas are the implementation of the interface, the internal 

representation of the graph, and the implementation of the 

execution model. The program uses the X-windows 

graphical interfaces package. The X-window system is a 

user interface environment for engineering workstations 

[5-7]. It consists of three main levels: 

1. Xlib contains a library of over 300 C functions that 

responding to user interface events and drawing 

graphical output to the display. 

2. The Xt Toolkit is a higher level programming interface 

to Xlib and supports the use of user interface 

components called widgets. 

3. Widget sets are implemented with calls to the Xlib and 

Xt Toolkit libraries. 

Figure 6 : Factorial graph and test graph. 

268 



Saud M. Maghrabi 

The program is basically controlled from the interface 

code. Within the interface, it is necessary for some widgets 

to perform some form of action when an event such as a 

mouse click occurred. The following library routines are 

invoked in the presented system: 

XsetWindowBackground(), 

XsetForeground(), 

Xdrawline(), 

XcopyArea(), 

XfillArc(), 

Xsetfont(), 

XtextWidth(), 

Xdrawstring(), 

Xstorecolor(), 

Xcreatepixmap(), 

Xfillrectangle(), 

SetXcolor(), 

Xtaddcall back(), 

Xtwindow(), 

Xtwindowtowidget(), 

Xtgetvalues(), 

Xtdispatchevent(), 

Xtappnextevent(). 

Figure 7 illustrates an example, which has been 

produced by the program to illustrate the usefulness of the 

system to address practical problems. It shows the graph for 

the absolute function with the following features: 

evaluating of the function, finding the root of the 

evaluation, computing new approximation to the function, 

showing converging of the function, accepting testing 

values, giving the first derivative to the function. 

5 Related Systems 

I compare related works with the system described in 

this paper through the lens of a taxonomy of the area given 

by Singh and Chignell [8]. Sigh and Chignell [8] divide 

visual computing into three main categories: visual aids for 

269 

programming, end-user interaction with computer, and 

visualization. This taxonomy is based on the viewpoint of 

the user of the computer. The first kind of the taxonomy is 

important for program designer, and the second is the main 

concern of the user interface. Users, who have to interpret 

and process large amounts of data, are interested in the third 

kind of the taxonomy. The main focus of this paper lies 

within the first category of the taxonomy. The remaining 

two kinds of the taxonomy are ignored in this paper. 

Microsoft's Visual Basic® and Visual C++® could be 

placed within the 'end-user interaction' group of Singh and 

Chignell's categorizing. In these window applications, 

interactive screens are easily generated. This can be done 

by choosi_ng an icon (either a standard icon or a user­

generated icon), placing it in the desired screen position, 

setting the parameters, then programming textually what 

events will occur when that icon is chosen during 

execution. Although these languages greatly simplify the 

task of building window applications, they do not provide a 

facility for algorithm animation. The method described in 

this paper provides this facility. 

The methods described in references [1] and [9] are for 

constructing electric circuits and a condition IF. The 

method of reference [1] generates a data flow graph either 

as a simple argument, or as an operation taking inputs from 

the outputs of two data flow graphs, or as a multiplexer 

taking as inputs the outputs of two data flow graphs and of 

a condition IF [1]. The system of reference [10] constructs 

sets of diagrams from primitive components to visually 

compute logical notations. The system of this paper 

provides a powerful programming tool for solving many 

mathematical problems. It is based on data flow graphs. 

Data flow is based on transformations on data flowing 

through the graph. Five attributes can be established for a 

qualitative comparison between the present method and 

other methods [1] and [9] (see Table 1). 



Design and Implementation of a system for Visual Programming 

Figure 7 : An example showing how the system handles practical problems. 

From table 1, the present method has many features 

over other systems, including functional abstraction, 

control construction. In the method described in this paper, 

functional abstraction allows an entire graph to be 

considered as a function, so that a single node in another 

graph can represent it. Arcs going into the node may then 

be considered arguments to the function. Functional 

abstraction is important if graphs are to represent 

non-trivial programs. It is also necessary to support 

repetition through recursion. Recursion allows data arcs to 

carry sets of elements, and functions themselves, as items 

of data. 

The method of this paper provides a graphical 

environment for the construction of visual program graphs, 

and maintains an internal representation that enables their 

execution. It has the visual features used in the visual 

programming challenge [11-12], such as explicit 

representations, contextual information, and execution 

animation. 

5 Conclusion and future work 

There is a move towards greater exploitation of pictorial 

images as an aid to traditional program understanding and 

construction, as well as great interest in alternative forms of 

program representation. This paper describes a system for 

visual programming, based on data flow graphs. Data flow 

is based on transformations on data flowing through the 

graph. The implementation of the system has been achieved 

by using the C language and X-windows to provide a 

graphical environment. The system has been used to 

construct and execute data flow programs of varying 

complexity. These test programs include factorial and 

Fibonacci functions, and an eight-graph program to find the 

roots of a function using Newton-Raphson's method. 

270 

The system of this paper could be extended by adding a 

selector to the data flow graph to provide "control 

structure" based on lazy evaluation. Before a node is 

evaluated, a check is made in the frame of node values at 



Saud M. Maghrabi 

the position of this node, to see whether a value has already 

been computed. This is done by adding a selector to check 

if the value is still as it was when created. Another way to 

extend the system of this paper is to make it solve more 

general-purpose problems. It would be useful if functions 

could be passed through the graph as values, rather like 

LISP. This could be used to implement more sophisticated 

forms of control, for example, functions could be used to 

iterate over sets of data. 

Table 1 : Comparison of visual language attributes for the system described in this paper and the systems described in 

references [1] and [9]. 

Attribute The system of this paper The system of reference [1] The system of reference [9] 

Support for data Strong Moderate Weak 

encapsulation 

Support for one paradigm Strong Weak Weak 

Multi-paradigm support Data flow combined One only (data flow) One only (data flow) 

with object-oriented 

programming 

Type of graphics Meaningful icons Less meaningful icons Fairly meaningful 

and diagram and diagram icons and diagram 

Functional abstraction Strong None None 

support 

Control construction Strong None None 

support 

Functionality Applicable to Applicable to electric Applicable to electric 

mathematical area circuits and a condition IF circuits and a condition IF 

271 



Design and Implementation of a system for Visual Programming 

REFERENCES 

[1] Costagliola, G.,De Lucia, A., aud Tortora, G., 1997. 

"A Parsing Methodology for the Implementation of 

Visual Systems", IEEE Transaction on Software 

Engineering, Vol. 23, No. 12,777-799. 

[2] Sutherland, I. B., 1963. "SKETCHPAD, A Man -

machine Graphical Communication System", 

Proceedings of the Spring Joint Computer Conference, 

329-346. 

[3] Hils, D. D., 1992. "Visual languages and computing 

survey: Data flow visual programming languages", 

Journal of Visual Languages and Computing, Vol. 2, 

No. 3, 69-101. 

[4] Jackson, M.A., 1975. Principle of Program Design, 

Academic Press. 

[5] Culter, E., Gilly, D., and O'Reilly, T., 1992. The 

X-window System in a Nutshell, O'Reilly & 

Associates, Inc, Second Edition. 

[6] Mikes, S., 1991. X Window Program Design and 

Development, Addison-Wesley Publisher. 

[7] Parlidis, T., 1999. Fundamentals of X programming: 

Graphical User Interface and Beyond (Plenum Series in 

Computer Science), Kluwer Academic Publishers. 

[8] Singh, G. and Chignell, M. H., 1992. "Components 

of the Visual Computer", The Visual Computer, Vol. 9, 

115-142. 

[9] Costagliola, G., Tortora, G., Orefice, S., and De 

Lucia, A., 1995. "Automatic Generation of Visual 

Programming Environments", IEEE Computer, Vol. 

28, No. 3, 56-66. 

[10] Agusti, J., Puigsegur, J., and Robertson, D., 1998. 

"A Visual Syntax for Logic and Logic Programming", 

Journal of Visual Languages and Computing, Vol. 9, 

No.4, 399-427. 

[11] Citrin, W., Ghiasi, S., Zorn, B., 1998. "VIPR and 

the Visual Programming Challenge", Journal of Visual 

Languages and Computing, Vol. 9, No.2, 241-258. 

[12] Heger, N., Cypher, A., and Smith, D., 1998. "Coca 

at the Visual Programming Challenge", Journal of 

Visual Languages and Computing, Vol. 9, No. 2, 

151-169. 

272 


