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ABSTRACT
In this paper,we study the suitability of a symbolic model of syllogistic reasoning and direct inference
principle with the representation and the management of knowledge based on statistical information and
evaluated in a qualitative way.Our ap-proach is founded mainly on a symbolic finite M-valued logic,in
which the graduation scale of M symbolic quantifiers is translated in terms of truth degrees.We propose
an intuitive presentation of some basic notions of this model. We use its main properties to solve some clas-
sical problems expressed in the natural language.We show that the obtained deductions are in a good

accordance with those resulting from common sense reasoning.
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1. Introduction

In our previous papers [8,9], we have studied the management of knowledge containing statisti-cal
information and expressed in the natural lan-guage. The representation of statistical informa-tion is made
with the aid of quantified statements which refer to adverbial expressions (i.e., linguistic quantifiers
here)like “all”, “almost all”,“most”, “few”, etc. It is obvious that a representation model will be interest-
ing if an inference process, like the syllogistic reasoning [24], allows to deduce new quantified assertions.
For example, knowing that “most students are young” and “almost all young students are unmarried”, we
wish to deduce that “most students are young or unmarried”. It is also interesting that another inference
process, like the direct inference principle [2,11,17], allows to deduce,from a set of quantified assertions,
new information about the properties of a particular individual of the domain. For example,we wish to
deduce a new piece of information about the bird “Tweety”’knowing that “most birds fly”. This can be the
statement “it is very probable that Tweety flies”.In other words,the certainty degree “very probable”will
be associated with the state-ment “Tweety flies”.Many approaches of these problems are generally based
on probability theory [1, 2, 3, 4, 5, 11, 15, 17] or fuzzy set theory [5, 6, 21, 22, 24]. In [8, 9], we have
proposed a formal model of syllogistic reasoning based on the substrate of the M-valued predicate logic
intro-duced by Pacholczyk in [16].The resulting model allows us to reason with particular individuals by
using knowledge based on quantified assertions via the direct inference principle.

The main objective of this paper is to propose an informal presentation of the basic concepts of the pre-
vious model,and to study the suitability of this theory with the representation and the management of lin-
guistic knowedge encoded in a qualitative way. In Section 2, we briefly present the model given in our
papers [8, 9] to reresent and manage quantified assertions with the aid of a syllogistic inference process.In
Section 3, we recall the symbolic subjective probabilities proposed by Pacholczyk in [16]. Section 4 deals
with a symbolic formalization of direct inference principle and a choice strategy of the appropriate refer-
ence class allowing us to reason with particular individuals of the basic domain. F inally, in Section 5, we
make a coniparison with other related approaches, mainly the probabilistic works of Bacchus et al. [2,3].
2. Presentation of The Symbolic Proportion

Psychologists consider that the symbolic graduation cannot be reasonably apprehended by human above
ten degrees [12, 13, 18]. So, our graduation scales contains only seven adverbial expressions
(M =17). A first scale £ of degrees of truth enablesus to expresss the graduation of vagueness: “John is
very tall ” is equivalent to say that John satisfies the predicate “all > to the degree “very”. A second scale
Q, of degrees of statistical probability allows us to express the graduation of proportion:given the basic
space €2,“Q, (’s are 4’s”means that an absolute proportion 0, of individuals of Q are in A with respect to
the uniform probability distribution on Q. A third scale U, of degrees of certainty is used to express the
graduation of certainty: “it is very probable that Tweety flies” means that “very-probable” is the certainty

degree of the assertion “Tiweety flies”. The graduations scales are as follows (with M =17):
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- £ =A{T_ | o= 1,7} = {Not-at-all-true, Very-little- true, Little-true, Moderately-true, Very-true, Almost-
true, Totally-true}' ,

-9 ={0,|= 1,7} = {None, Very-few, Few, About-half, Most, Almost-all, All}, and

-U,={u,| = 1,7} = {Not-at-all-probable, Very-little-probable, Little-probable, Moderately-probable,
Very-probable, Almost-certain, Certain}.

As mentioned previously, the semantic model of statistical probabilities used here is built on the sub-
strate of the M-valued predicate logic proposed by Pacholczyk in [16]. Let us briefly recall the ba-sic
notions of interpretation and satisfaction of this M-valued logic. Let M > 2 be an odd integer. Let M be
the integer interval [1, M] totally ordered by the relation <, and let n be the mapping defined by n(o) = M
+1 - o Then, {IM, v, A , n} is a De Morgan lattice with: @ v B =max (a, f) and & A B = min (0, B).
Let £, = {r,0 € M} be a set of M elements totally ordered by the relation < : Ta. < B < o < B. Thus
{£,, <} is a chain in which the least element is 7, and the greatest element is 7,,. We define in £, the fol-

lowing operators: 7,V T, =T o TA T, =71

‘min (e, B)

and ~ 7= 7,,. We can interpret £, as a set of linguis-
tic truth degrees dealing with vague predicates. By choosing M = 7, we can introduce the previous set £,.
We call an interpretation structure % of the M-valued predicate language £, apair <D, I >, where D is the
domain of A and I the interpretation function. We denote by R _the multiset” associated with the predicate
P_. We call a valuation of variables, a sequence denoted by s = <s, ..., 8.}, 8, 8,5 -..»> with s. € ©. The
valuation s(i/a) is defined by the following: s(i/a) =<s,, ..., S,,, @, S5 ---»>-
Definition 1: The relation of partial satisfaction s satisfies a formula @ to a degree 7, in-[ or s 7, -
satisfies @ in-Q , denoted by U =& @, is defined as follows:

-AE: P (z,...,2) & <S,....,8,> € O R,

~UAEs 9= UAE; ¢owithz =" 1,

~Aks ¢Nn¥Yo{UAE; gandu=", Pwith 7, =17, v 1},

~AE; sUPe {Gpanduk’, Pwitht =1V 1},

~YAE: Jz Yo 1 =Max {7/ AL, Pwith T,= 17, > 7},

-AE: Vz Yo 1, =Max {Ty| A I=s(n/a)y ¥, a€ D},

®issaidtobet — true-in-2, if the valuation s T -satisfies @ in-Y

In order to facilitate the presentation of the basic notions of our formal model, all its definitions as well
as its properties will receive more informal but more explicit linguistic translations.Note that the formal
model can be found in our papers [8,9].

Let us now present the apparatus allowing us to handle with the previous statistical information.
Linguistically speaking, our representation process refers to quantified assertions which receive the fol-
lowing form “Q, A’s are B’s”, where A and B denote sets; and Q, is a linguistic quantifier interpreted as a

relative (or conditional) proportion evaluated in a qualitative way (with respect to the uniform probability

&

!Note that “not-at-all-true "and “totally-true” correspond respectively to “false”and “true”.

*In the multiset theory [1], x € A, the membership de-gree to which x belongs to 4, corresponds to it A (x) = a in the fuzzy set theory[23].
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distribution on the universe of discourse ). More precisely, among the elements of Q which belong to A,
a proportion Q, of these elements belong to B. In other words, this definition can be viewed as a symbol-
ic generalization of classical conditional probability: given the basic space Q, Q, is defined by the sym-
bolic division of Q, the symbolic absolute proportion of the intersection ANB by Q, the absolute pro-
portion of A. We have generalized the classical definition of conditional statistical probability’ in a sym-
bolic context, by using a new predicate’ with a “symbolic probabilistic division” operator, denoted by C,
or equivalently a “symbolic probabilistic multiplication” operator, denoted by I. These two operators have
been defined by Pacholczyk in [16]. The operator I verifies the classical properties of the probabilistic
multiplication. The operator C is deduced from I by a unique way as follows:QM €eCQ,Q)e=Q =1
Q. QM). Among the different tables of the operator C (resp. I) we have chosen Table 1 (resp. Table 2) pre-
sented in the Annex section of this paper.

Definition 2 Given a basic space Q:

- Any quantified assertion “Q Q% are As” means that an absolute proportion O of individuals of Q
are in A with respect to the uniform probability distribution on Q.

- Any quantified assertion “Qﬂ A’s are Bs” means that among the elements of the basic space Q which
belong to A, a relative proportion Qu of these elements belong to B, and this with respect to the uniform
probability distribution on Q. It is defined as follows:

if{Q Q5% are As and Q, Q5 are (A N B) 5} then “Q”A’s are BS” with Qu € C(Q_, Q. ).

This propdrtion concept has to satisfy a set of axioms justified at a metalogical level (their formal pre-
sentation can be found in [8,9]).First of all, if A and A N B represent the same significant absolute pro-
portion,that means “almost all A’s are B’s” (axiom P1). Secondly (axiom P2), knowing that “almost-all A’s
are B’s”, then A M B has the absolute proportion of A. Thirdly, A and A have symmetrical absolute pro-
portions (axiom P3). Finally, the absolute proportion of A U B results from the ones of A, B and A N B
(axiom P4). So, we obtain the following axioms’:

Axiom 1: AN B #A, “Q, s are A’s” and “Q s are (A N B)’s” and Qe [Q,,Q] = “Almost-All A’s
are B’s”. (Axiom 1 defines “Almost-all™).

Axiom 2: “Q_Q’s are A’s”, Q [Q, ,Q ] and “Almost-All A’s are B’s” = “Q, Q’s are (A N B)’s”. (Axiom
2 defines also “Almost-all”).

Axiom 3: “Q_€’s are A’s” <:>“Qn(u)Q’s are A’s with n(o) = M +1 — o”. (Axiom 3 defines the dual quanti-
fier).

Axiom 4: “Q_Q’s are A’s”, “Q‘3 Qsare Bs”, AUB#QandANnB=0¢= “Q 2’s are (A U B)’s” with Q
€S(Q, QB) where S is a symbolic addition. (Axiom 4 defines the symbolic proportion of disjoint sets union).

’It appears clearly that we obtain a symbolic generalisa-tion of the classical properties:
Prob (4)=1|4|/| Q| and

Prob (B |A) =Prob (A "B) /Prob (4) = |ANB|/|4|.

“In the formal model, an M-valued predicate denoted by Prop stands for the function prob.

*Axiom 3 and Axiom 4 can be viewed as generalizations of classical results in probability theory.
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The “symbolic sum” denoted by S can be defined by Table 3 (see Annex)and the “symbolic difference”
denoted by D can be deduced from S (see Table 4 in Annex).

Let A and B be subsets of Q. We present some propositions which can be viewed as symbolic general-
ization propositions of classical statistical probabilities. The proofs of these properties can be found in our
paper [9].

Proposition 1 (Properties)
— If“Q_Q’s are A’s” and A B, then “Q{5 Q’s are B’s” with Q_< QB.
— If“Q_ ’s are A’s”, “Q, Q’s are (AN B)’s” and A # Q, then “Q, Q’s are YA\B’S” with QY E D(Q_,Q,)-

At this point,we can present our reasoning process on quantifiers,called by Zadeh [24] syllogistic rea-
soning that can be defined as follows:

Definition 3: a syllogism is an inference rule that consists of deducing a new quantified statement from
quantified statements.

Let R be the set of available quantified asser-tions, then we can deduce from R by using syllogisms a
set R* containing R and new quantified assertions.In our approach we have the following syllogisms:
Proposition 2 (Syllogisms)
— Relative Duality: If R contains “Q  A’s are B’s” then R contains “Q_, A’s are B’s” with Q , = Qi if
Q,# Qi and Q , € [Quuny> Ly .,] otherwise.
— Mixed Transitivity: If R contains “Q,, A’s are B’s”and “All B’s are C’s”then R contains “Q , A’s are
Cs”with Q, <Q,,.
— Intersection /Product Syllogism: If R contains “Q  A’s are B’s”and “Q (A N B)’s are C’s” then R
contains “Q_ A’s are BN Cys”, withQ, =1(Q,, Q)
— Intersection/Quotient Syllogism: If “Q  A’s are B’s”, “Q,,A’s are C’s”and “Q , (AN B)’s are C’s” then
Qu (AN Cysare B’s”, withQue C(Q,,, 1(Q,, Q) ’
_ Contraction: If X contains “Almost-all A’s are B’s”and “Almost-all (A N B)’s are C’s” then R contains
“Almost-all A’s are C’s”.
— Cumulativity: If R contains “Almost-all A’s are B’s”and “Almost-all A’s are C’s”then R contains “Qp
(A N B)’s are C’s”,with Qu € [Most, Almost-all].
_ Union Left: If R contains “Almost-all A’s are C’s”and “Almost-all B’s are C’s”then R contains “Qp
(AU B)’s are C’s”, with Q € [Most, Almost-all].
Example 1: Let us suppose R contains the following: “Almost all students are young”and “Almost all stu-
dents are single”. Then,by using the cumulativity syllogism,we can say that R contains {“Qp Young
Students are Single”with Qu > Q5 } i.e.“At least most young students are single”.
3. Symbolic Presentation of Subjective Probabilities

We can now focus our attention on the second problem, which consists of dealing with particular indi-

viduals. More precisely, knowing that a particular individual “a” belongs to A (or “a is A”), we wish to

deduce from “Qu A’s are B’s” and available knowledge, a symbolic certainty degree to which the partic-
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ular individual a belongs to B (or “a is B”). We introduce a certainty function Cert which is applied to
boolean formulas.Thus, the statement “A(a) is u_ (or v_-probable)” is translated into Cert (A(a)) = u.
Definition 4 Cert: (A(a)) = u_is equivalent to say that “A(a) is v_-probable” is totally true.

This certainty concept has to satisfy a number of postulates, each of them being justified at a metalog-
ical level. First of all (Axioms C2 and C3),if a statement is true (resp.false),its certainty degree is certain
(resp.impossible). If two statements are equivalent, they receive the same certainty degree (Axiom C1).
The certainty degree of the negation is the symmetrical value in the graduation scale of the one of the affir-
mation (Axiom C4). Finally, if the intersection of two statements is false, then the cer-tainty associated
with their union is the “symbolic sum” (Axiom C5)of their uncertainty (defined as T-conorm in
[16]).So,The function Cert satisfies the following axiomatics:

Cl1: A(a) = B(a) = Cert (A(a)) = Cert (B(a))

C2: A(a) is true = Cert (B(a)) = u,.

C3: A(a) is false = Cert (B(a)) = u,.

C4: Cert (A(a)) = u = Cert (TA(a)) =u,__

CS: {Cert (A(a)) = u , Cert(B(a)) = u,, Cert (A(a) N B(a)) = u} = Cert (A(a) U B(a))
=u withu =S (u, ug).

4. Symbolic Direct Inference Principle

The quantified assertion “ot % of individuals of the domain verify a property” can be interpreted as “the
probability that a randomly selected domain individual satisfies the property is equal to o”. This interpre-
tation can be seen as a way of justifying the deduction of uncertain conclusions about particular individu-
als (i.e., subjective probabilities) from statistical knowledge (i.e., statistical probabilities) via the direct
inference [2,19,11,17]. Indeed,the principle of direct inference is based on the idea that a particular indi-
vidual in the domain is considered as a member randomly selected from a population, if no particular infor-
mation distinguishes it from other members of this population. For example, if all we know about Tweety
is that it is a bird,then Tweety can be viewed as a randomly selected member of the population of birds
since we do not have any other information that distinguishes it from other birds. Thus, knowing that
Tweety is a bird, the (subjective) probability that Tweety flies is equal to the (statistical) probability that a
bird randomly selected from the set of birds flies, i.e. the proportion of flying birds among the birds.

We have proposed a symbolic generalization of the direct inference principle allowing us to infer a sym-
bolic subjective probability degree from a symbolic statistical probability degree.

Definition 5: The available knowledge base can be formally represented in the basic domain by the cou-
ple KB = (W, R) where W is the conjunction of formulae representing the available knowledge about the

particular individuals of the basic domain, and R is the set of quantified assertions.

GStrictly speaking, “A(a) is v_-probable” should be totally true in the interpretation U. Moreover, in the M-valued predicate
logic, the m-valued predicate Cert takes into account this uncertainty in the following way:

A= Cert (a(a)), where A (a) denotes the boolena Jormula.
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— By using syllogisms, we can deduce from X a set R containing R and new quantified assertions.

— W(a) will be the conjunction of formulas appearing in W mentioning a.

— W (a/z) is the formula obtained when textually substituting each occurrence of a in the formula W(a)
by the free variable z.

— W(a/z) and B (a/z)denote respectively the sets associated with the formulas W (a/z)and B (a/z).

_ Given a as an individual of the basic domain, a reference class of a given KB for a formula B (2) (in
which we want to generate a certainty degree) is a subset of the basic domain to which belongs the indi-
vidual a.

Intuitively, the substitution W(a/z) denotes a form related to the process of “random selection”. The con-
stant a is considered as a “random member” by replacing it in W(a)by the free variable z. This leads to
suppose that the individual denoted by a is randomly chosen among the individuals sharing all its proper-
ties, i.e. the individuals satisfying W(a/z). Let us now present the basic notions leading to our basic defi-
nition of symbolic direct inference. Given a knowledge base KB, we suppose that a denotes an individual
constant of the basic domain. Given a, we search its cer-tainty degree u_-probable resulting from the avail-
able knowledge base KB = (W,R). It is defined in the following way:

Definition 6 (Direct Inference Principle)

Let us suppose that a denotes an individual con-stant of the domain, z a variable, and KB = (W, R) the
available knowledge base.We say that Cert(B(a)) = u_ results from direct inference principle, if the quan-
tified assertion {Q_W(a/z)’s are B(a/z)’s} belongs to R*.

Example 2: Let us consider the following:

S1: Most native speakers of German are not born in America.

S2: All native speakers of Pennsylvanian Dutch are native speakers of German.

S3: Most native speakers of Pennsylvanian Dutch are born in Pennsylvania.

S4: All people which are born in Pennsylvania are born in America and Hermann is a native speaker of
Pennsylvanian Dutch.

The knowledge base KB is made with KB = (W, R) where:

R={Q, German-speak(z)’s are America(z)’s,

Q, PDutch-speak(z)’s are German-speak(z)’s,

Q, PDutch-speak(z)’s are Pennsylv(z)’s,

Q, Pennsylv(z)’s are America(z)’s},W = P Dutch-speak (Hermann).

There is no syllogism allowing to deduce a quantified assertion from the quantified assertions S1 and
S2. But by applying the syllogism of mixed transitivity, we have {Q, PDutch-speak(z)’s are Pennsylv(z)’s,
Q, Pennsylv(z)’s are America(z)’s} = R contains {Q, PDutch-speak(z)’s are America(z)’s with Q > Q,}.
Then, the direct inference leads to deduce Cert (America (Hermann)) = Q, with Q > Q5. In other words,

“it is at least very-probable that Hermann is born in America”.
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Remark 1: It is important to point out that this direct inference principle is not always applicable espe-
cially when we don’t have any meaningful information for the reference class W(a/z), i.e. we have {Q,,,
W(a/z)’s are B(a/z)’s} (that is a case of total ignorance). Moreover,in some cases we may be confronted
with the existence of conflictual reference classes.

4.1 Choice of a Reference Class

One is often confronted to the existence of conflictual reference classes.We can distinguish three con-

flict types:

— Conflict between less and more specific classes.

— Conflict between classes associated with less and more precise information.

— Conflict between incomparable classes. ‘

To solve the first and the second conflict types, we are going to modify the basic definition of the direct
inference by a symbolic formalization of the specificity rule of Reichenbach [19] and the strength rule of
Kyburg [11]. For the third type, we are going to propose a combination function of symbolic degrees asso-
ciated with incomparable reference classes.The specificity rule of Reichenbach [19] consists of choosing
among reference classes, the smallest (specific) class for which we have meaningful information. We pro-
pose a symbolic formalization of the specificity rule allowing us to infer the certainty symbolic degree in
B(a) from KB, by choosing information associated with the smallest reference class designed by W’ (a/z).
Definition 7: (Specificity Rule)Let us suppose that: KB =(W,R). The specificity rule allows us to infer
“Cert(B(a)) = u,” if the three following conditions are satisfied:

1) We have {QuW (a/z)’s are B(a/z)’s} (i.e. from Q, to Q,: total ignorance),

2) 3 W’ (a/z) such that R* contains {Q, W (a/z)’s are W’ (a/z)’s} and {Q, W’(a/z)’s are B(a/z)’s},

3) # W” (a/z)such that R contains 1Q, W” (a/z)’s are W’ (a/z)’s} and {Q, W”(a/z)’s are B(a/z)’s}.

Intuitively, the three conditions above express respectively the following:

(1) We don’t have any meaningful information for the smallest reference class W(a/z). Otherwise, the cor-
responding definition will be used.

(2) The existence of a reference class W’ (a/z)for which we possess a meaningful information.

(3) There is no smaller reference class W’ (a/z) that W’(a/z) for which we possess a meaningful informa-
tion.

Example 3: Let us suppose that we have the following knowledge base KB = (W, R):

R = {Most elephants are gray: Q; Elephant(z)’s are Gry(z)’s, Few royal elephants are gray: Q,
(Elephant(z) N Royal(z))’s are Elephant(z)’s},

W = Clyde is an African royal elephant i.e.: Elephant (Clyde) m Royal (Clyde) N African (Clyde).

We have two reference classes having meaningful information, for Gray(Clude): Elephant(z) and
Elephant(z) N Royal(z). This last is the smallest class, because we have: (Q, (Elephant(z) N Royal(z))’s
are Elephant(z)’s ) € R. Applying the specificity rule, we obtain: Cert(Gray(Clyde)) = u,, i.e.,“it is little
probable that Clyde is gray”.
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The strength rule of Kyburg [11] is used in the cases where information associated with reference class-
es are intervals.It considers that a class of reference is better than another one,if the associated informa-
tion is more precise than the one associated with the other. In our symbolic context, we introduce the fol-
lowing definitions:

Definition 8: (Strength Rule) Let KB = (W, R). The strength rule,allows us to derive that: Cert(B(a)) =
u_with u e [u_u,], if the following conditions are satisfied:

— R* contains {Q,, W(a/z)’s are B(a/z)’s with Q € 1[Q_Q,]},

— R* contains {Q_, W’(a/z)’s are B (a/z)’s with Q ,€ [Q,Q,], and [Q,,Q,]  [Q,Q,l}

Remark 2: The priority between the two rules is given by the strength rule. Therefore, the specificity rule
can be applied when the strength rule condition is not verified.

The reference classes can be incomparable, i.e., none of these two rules can be used. Like in [3], the cer-
tainty degree results from a combination of certainty degrees associated with the incomparable reference
classes.

A combination function Comb is an application of UZM into U,, possessing the following properties:
[Cb1]: YV, B € [2.M], Comb (u_,u,) = Comb (u,u,), Commutativity.

[Cb2]: YV, B € [2.M], Comb (u,,u) € [Upy 5 Winax e, -
[Cb3]: V_, € [2.M], Comb (u_u,,) = u,, u, is an absorbent element for any o € [2..M].
[Cb4]: V , € [1.M-1], Comb (u_,u)=1u,u, is an
absorbent element for any o € [1.M-1].
[Cb5): V,, € [2.M-1], Comb (u_,u,,) = u,, Conflict related to the ambiguity
[Cb6]: V,, B & € [1.M], Comb (Comb (u,,u,), u) = Comb (u, Comb (u,,u,), Associativity.
[Cb7): V,, B & € [2.M-1], Comb (u,u,) =u, = Comb (u,u, )€ [u,,u,, ,] Monotonicity.
We can choose the function Comb as follows:
V,Be [2.m-1]:

Y el ifa+p<M

comb uﬁ) ) u|-(a+B)/2—| if o +\I3 >M

where | r] (resp[1]) denotes the greatest integer lower than (resp. lowest integer greater than) or equal

to r. We can choose the following table cor-responding to the function Comb.
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If Q is associated with a numerical value (or a numerical interval [a,b]) then in Bacchus’s approach, we
can give the following syllogisms:

— 1 — Mixed Transitivity

QA’s are B’s

1 B’s are C’s (1 is equivalent to 100 % or “All”)

[Q,1 ]A’s are C’s (i.e.Q’A’s are C’s with Q’ > Q).
Our approach gives the same result:

Q, A’s are B’s

All B’s are C’s

sz A’s are C’s with Qu2 > Qul.
-2 -Intersection/Product syllogism
Ql A’s are B’s

Q2 (AN B)’sare C’s

Q1*Q2 A’s are (B n C)’s (where *stands for the multiplication operator).

Our approach gives a similar result since the operator I stands for an operator having in LM the prop-
erties of a multiplication operator [16].

QM1 A’s are B’s

Quz (A NB)’s are C’s

Q, A’s are (B n C)’s, with Q, =I(Qu1,Q“2).

It is clear that they correspond to the same syl-logisms since, for each syllogism, the resulting assertion
is the same and the quantifier is obtained in the same way in the numerical and in the symbolic setting (that
is using the same combination of the operators).

Moreover, the operators C (division), I (product), S (addition), D (difference) are the symbolic coun-
terparts of the four classical operators (see Annex and the previous associated paragraph). The operators
defined for the symbolic setting respect the properties of classical operator such as, depending on the con-
sidered operator, associativity, existence of a neutral element, commutativity, monotony, etc.

The behavior of our syllogistic reasoning when dealing with precise values is then depending on the
symbolic operators used for the syllogism. The question is to verify that they are in accordance with the
classical operators used in a numerical setting.

The problem is that it is not possible to prove that the symbolic operators are in total accordance with
numerical operators. Indeed, there is no isomorphism between the numerical and the symbolic settings. So,
it is not possible to give an interface between numerical and symbolic quantifiers allowing to compare the
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behaviors of the two different systems.

Finally, let us say that, on one hand, Bacchus’ proposal is adapted when the given data are expressed
with precise values but it would not be suitable when the information are symbolic. On the other hand, our
work is useful when there is no precise values but when the information are only expressed in terms of
symbolic values (which is suitable with the initial aim of our work).

5.1. Comparison with Bacchus Direct Inference

As noted before, Bacchus was interested in representing the quantifier “most” (denoting the majority).
In our approach,this quantifier can be represented either by the quantifiers “most”, “almost-all”,or “all
that corresponds to “at least most ”. Then,we obtain similar results like those found in Bacchus [2].In the
set of examples used by Bac-chus, we does not give here the simplest ones but we focused only on the
most important ones.

Let us now take the well-known Nixon Dia-mond: “Most Quakers are pacifist”, “Most republicans are
not pacifist”, “Nixon is a republican Quaker”. Bacchus does not decide whether Nixon is pacifist or not.
In our framework, the same result is obtained (see example by using quantifiers QS5 instead of Q6 in order
to use “Most” instead of “Almost-all”) since we deduce both that “it is moderately probable that Nixon is
pacifist ”and “it is moderately probable that Nixon is not pacifist”.

Another example is the following one:“Most native speakers of German are not born in America”, “All
native speakers of Pennsylvanian Dutch are native speakers of German”, “Most native speakers of
Pennsylvanian Dutch are born in Pennsylvania”, “All people which are born in Pennsylvania are born in
America” and “Hermann is a native speaker of Pennsylvanian Dutch”. In [2], Bacchus deduced that the
probability that Hermann is born in America is > 0.5,that is to say “it is probable that Hermann is
American”. In our framework, we find that “it is very probable that Hermann is born in America”. The two
results are in a good accordance. So, the results found in our framework are in accordance with those found
in Bacchus’direct inference.

The notions of reference classes used in our paper are based on the same strategies used by Bacchus.
Hence,we propose a definition of specificity rule and strength rule that is in accordance with the ones pro-
posed by Bacchus. Moreover, for dealing with incomparable classes, we have introduced a combination
function.

5.2. Comparison with Bacchus etal. s Direct Inference

The comparison with the work proposed recently by Bacchus et al. [3] needs a preliminary clarification.
We have to notice that the notion of direct inference proposed in their paper differs from the one we use
(and from the one proposed by Bacchus [2] in his previous work). Their aim is not the syllogistic reason-
ing but the default reasoning by defining an inference rule verifying postulates of rational inference rela-
tion. Their definition of direct inference is defined on the semantic of random worlds. In their work, they
introduced a new operator to deal with quantifiers of the form “approximately x%”. This allows to repre-

sent the quantifier “Almost-all”, expressing a default rule, by “approximately 1”. Their approach implies
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choice strategies of reference classes and a combination function of information associated with incom-
parable reference classes.Then,it is possible to compare their “numerical” results with the ones obtained
with our approach.

As for the previous section,we only give here the comparison for one example (the one they use to
explain the combination function). For “The Nixon Diamond” problem,our approach leads to “it is mod-
erately probable that Nixon is pacifist”. By putting, the quantifier associated with “Most Quakers are paci-
fists”and approximately equal to 1 and the quantifier associated with “Most republicans are pacifists”
approximately equal to 0, they obtain the value 0.5 (when considering that the rate of exceptions is the
same for each default).The deductions are in good accordance in both frame-works.

6. Conclusion

In this paper, we have informally presented a previous formal modelisation of syllogistic reasoning,di-
rect inference principle and choice of the appropriate reference class. Then, we have studied its suitabili-
ty with the representation and management of statistical knowledge encoded in a qualitative way. The dif-
ferent examples, generally refer to bench-mark problems presented in [20], illustrate the fact that our
model works perfecty and leads to results in good accordance with the common sense reason-ing, i.c.
results which are in good accordance with those classically obtained.So,as far as the comparison between
the different frameworks is possible, we can say that the results we find are in accordance with the results
found previousely by Bacchus [2] and Bacchus et al.[3]. This symbolic theory brings new tools to
Artificial Intelligence and Linguistics for an explicit treatment of the uncertainty resulting from statistical
information,and this is particularly true in instantiated reasoning. Since, in our approach, reasoning on par-
ticular individuals constitutes a non monotonic reasoning process, it will be interesting to verify that the
properties associated with our process fullfil the basic postulates of a non monotonic relation,like the ones
defining the system P [10].
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Annex: Tables of Operators
In the following, Q, , stands for interval [Q,, Q,].

Table 1 : Opertor C

cC Q| q Q | Q| Q| Q| Q
Q | Q,| o 0| 0 0] 010
Q, | {Q} Q,, 0 0 0 0 0
Q |{Q} ] Q, | Q,| 0 0 010
Q | Q}| Q, Q)| Q,| 0 0|0
Q Q)| Q, | {Q}|{Q}| Q, 0] 0
Q | {Q} | {Q} | {Q} [ {Q} {Q}|Q, | 0
Q7 | {Q} | {Q} | {Q} | {Q} | {Q} | {Q}[{Q}
Table 2 : Operator 1
I Q |1 Q Q| Q| Q|Q|Q
Q, Q 1 Q |Q Q| Q]Q|Q
Q, Q|1 Q | Q| Q| Q|Q]|Q
Q, Q | Q | Q Q| Q Q|Q
Q, Q| Q |Q|Q | Q|Q Q
Q, Q| Q |[Q | Q| Q|Q|Q
Q, Q| Q| Q| Q| Q| Q|Q
Q, Q 1 Q | Q|Q | Q|Q!Q

Table 3 : Opertor S

S Q | Q Q | Q | Q Q,
Q Q) [ {Q} | {Q}] {Q) | Q) | {Q}
Q, Q) Q, | Q,1Q,|Q, |{Q}
Q, Q) | Q, | Q,| Q, | {Q
Q, Q) | Q, | Q| Q
Q, Q) | Q, | {Q}
Q, {Q} | {Q}

Table 4 : Opertor D
D Q Q | Q | Q Q, | Q
Q {Q}
Q, Q) | {Q}
Q, Q} | Q, | {Q}
Q, Q} | Q, Q. |{Q}
Q, Q) | Q, | Q, | Q, | {Q}
Q, Q) 1 Q, | Q,|Q, | Q, |{Q}
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