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Introduction

In the theory of spectral analysis of positive-definite kernels, there exist well-developed
methods based on the ideas of Krein connected with the construction of a Hilbert space
by means of a kernel [1,11]. In the main, our formulation deals with translation-invariant
positive-definite generalized kernels.

Consider the rigged Hilbert spaces H. 2 Hy 2 H, [1] with the involution w —>&
defined in H_ and also in H, and H,. Let K € H_ ® H_ be a generalized kemel. If
(X, u@ ) Ho ®Ho = =0, then K is sald to be positive-definite (p.d.).

Now, let ¢ be a topological space of functions on X, ¢’ be its adjoint, Kep’ (x) ¢'
a generalized kernel and G a commutative group in X.

The kernel K € ¢' ® ¢’ is said to be G quasi-invariant if there exists a function p(x, a),
xeX, aeG which for each aeG is a multiplier in ¢ such that

Ky@t)p(,a®u@t)p(a)=K,vEiH),u,vep; 2eG (0.1)

Now, let H, be the Hilbert space constructed from the quasi-scalar product (u,v)y =
(K,v @ u) by means of completion and factorlzatlon Let B be the contmuous operator
in ¢ which commutes with involution, and let B be its adjoint in ¢'. We say that B is
K symmetric if

B"®DK = (®BHK (0.2)
which is equivalent to the symmetry of B in Hy : (Bu, v}, = (u, Bv)..

The formula (T u) (x} = u(a+x)p (x,a) makes sense for the representatlon of Gin
¢, for which the generahzed kernel K is translation-invariant, i.e. (T ® Ta) K = K,and
thus T, is unitary in Hy.

In what follows, we apply the proceding theory to obtain an integral representation of

p.d. translation-invariant kernels on spaces of R3 and of the type Sg®S and og® og
(RGC R is the space of finite sequences), where

SgRY) = 0O (m | Sg' (R™), and
SPR™) = {u(t) = k°§° . w e K ulz = k;:: o kP (1 + k)< }
Also, " -
og(R)= {u(t) = 2o % ek 2, = o Iukl’mlk|<°°},
and
04(R?) = i@l | g(®), where o (R = ‘FE oM (RY),

s

(see [7,12]).




1. The case of K ¢ Sé@Sé

Consider the kernel K € Sé ® Sé which satisfies the following conditions:
a) pd.,ie. (K,u®u)>0, ueSg(R”).
b) R quasi-invariant with density

p (x,a) = exp{- inéal) (2aixi+ai2)}, xeR”, a(ay,...,a,) €RY (1.1)

As in [8], we can show that the density p(x,a) which takes the form (1.1) is a multi-
plier in Sg(R”). In fact, consider the Fourier-Venar transform [10] of the function

uel, (R",dg) in the form

n n
R : TN/ i T ax
u(A) = lim ( M roel el up(xg, ..., xp).
m= J2r RP
n
- 213 xZ/2
e dxy ... dx,, (1.2)

where un(x1 seees xn) is the corresponding cylindrical function generated by
ueLz(R”, dg). In finite-dimensional cases, the Fourier-Venar transform F w s the
unitary image of the Fourier transform F in transforming from

L, (R"dx) to L, (R%dg), ie.,

,xz

u i Ly (R", dx) D¢ 7 nf4 1 ¢eL, (R, dg) (1.3)

—NMs

So,F,, = unF un"l - And so, the Fourier-Venar transform exists as a unitary operator in

A
Ly(R"dg). In addition, by simply checking the relation ha(A) = ila lha(k) ; lal =
@) * ...+ o, this transformation is a unitary operator in each of the Hilbert spaces

ng and og ™ Thus, for an arbitrary ueSg(R"), we have

iXA
a()p (., =8 e Kk
iZ)\kak

But e is a multiplier function in Sg (R™), so we have the required.




Using the preceding Fourier-Venar transform, we have the following theorem:

Theorem 1
Every translation-invariant p.d. kernel KeS O S! admits the representation
Ky ®@u) = fRu(uV)(R)dp(K) (1.4)

k
2
where dp (A)=c (A) do (\) is a finite measure on R"and c (\)<cexp (1/2Z_%
n;m-f

and do () is a finite measure defined on a o-algebra of sets from R™. Conversely, every
measure dp (A) in the given form generates a translation-invariant p.d. generalized kernel.

Proof: First we construct the Hilbert space Hy as the completion of the space Sg(R°')
w.r.t. the quasiscalar product (u,v} = (Ku®u). By B" we denote the corresponding
adjoint of the operator B: Sy > Sg in S The p.d. kernel K will be called B-translation-
invariant if (B'(X)B")K =K.

The formula (Tau) (x) = u(a+x)p (x,2) makes sense for the representation of the

group G from R™ in S (R™), for which the kernel K is translation-invariant and thus T, is

unitary in Hy , (see [6]) Therefore, the corresponding infinitesimal operators of the rep-
resentation w1ll be K-symmemc i.e., if B is an infinitesimal operator of the representation

T,, then, @t DK = (I@ B") K. Moreover, these operators generate a commuting
system of self-adjoint operators in Hy (see [3]).

Henceforth, we shall consider Bk as an infinitesimal operator of the representation T,
with k variables, k = 1, 2,.

Since KeS, ® S' we can find £ = (%)= such that KeS-’Z ® S_Q It is clear that

Hk 2 Sg’ moreover, the inclusion is continuous, Therefore, from the nuclearity of S (R)

we find m = (m;)7-; such that H 2 Sm(R ) and the inclusion is quasi-nuclear (H1lbert-
Schmidt operato 5
Thus, we have the chain

H_p x 2H 257 R 25, (RY) (1.5)

inwhich H_ | k is the dual space of Sgl w.r.t. Hy and Sg(R") is the extension of the
equipment. The operators (Bk)’“’k=1 form a system of commuting self-adjoint operators

in Hy and define a differential expression By in the form

By = iP-l(xk)ai @ (y)) (1.6)
Xk
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2

where p (t) = \%7 € = is the density of a Gaussian measure.

Moreover, for every k, D(Bk) D Sg(R"’) where D(Bk) is the domain of definition of the
operators By .

Now, applying theorem ‘2’ from [2] to the system of operators (Bk)l:=l we have the
Parseval equality in the form

1=/ p(A)do(d) 1.7
Reo
Here, do(}) is a non-negative finite measure defined on a g-algebra of cylindrical sets from

R”, p() defines do(A) almost everywhere for each A and the operator valued function of
which gives a non-negative quasi-nuclear operator, operates from sgl to H_ X for which

the Hilbert norm Ip(A)I< 1. The integral (1.7) converges in the sense of the Hilbert norm.
So, there exists a set ACR™ with total measure do(X) such that R(p(\) ¥, for AeA, con-
sists of the generalized eigenvectors of the operators By with eigenvalues A
<p(M)u,By v> = N <p(\)u,v> (ues’gn(R“),vesg(R“) ) (1.8)

Now, we consider the chain

Sg™ x 8™ D Ly(R™ x R™, dg(x) x dg(y)) oSt x sy (1.9)

With the help of the procedure in [4, 5], the set of operators p(\) defines the family
of elementary kernels _
QM)eSg™ x S5™ where nsz()\)usém . s;m<°<°°'

The connection between p(A) and Q(A\) is given by the equality
<pMu,v> = (AN, X %) (u,vesg‘(R“)) (1.10)

From the positive-definiteness of p(A) and with the help of (1.10) and the inclusion
Sm;)Sg, it follows that Q(\) is p.d.,

g .
M), u@W=>0 (uesg(R'”) ) (1.11)
Hence, from (1.8) and the form of By it follows that () satisfies the relations
@O0, 107 050 22 @IV (I86) - Ny (RIIE) =0 (1.12)
k
(Q(A),v(x)ip‘l(yk)g%( PEIVE) - AVEEH)) = 0 (1.13)

From (1.7) and (1.10), K has the integral representation
K= fr=82(N)do(d) (1.14)

- . -m -m
which converges in the sense of the space Sg ® Sg .
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Now, we seek the solution of the system of equations (1.12) and (1.13) in the sense
or generalized functions. Namely, Q(A) = lim £,(A) where Q,()) is the corresponding
nre

cylindrical kernel which is obtained from the representation of the kernel ()) in the
form of a series excluding the terms which contain variables with large number n and
its convergence takes place in S;™ ® S m,

If u, 7T yp)andv (x1 ye s xn) are cylindrical functions from S (R") then for
u, ves (R we have

@MY@ = @My, @ T

Therefore, we have the following system of equations:

(NeVE (xk) (P(Xk)V(xk))®U(Y) KkV(X)u(Y)) =0

k=1,2,.
and an analogous equation for u.
Now, if
2,0 = (Un,)@Un,y)QnO\): ¥n = Upvn;én = Unup (1.15)

where Uj, = p(x1) ... p(xg), we have
A .9 —
Q). (i— ¥ - MW
(2, ( 3% n) X On- Ak n®¢n)L2(Rann’ dg(x) x dg(y))
=0,k=1,2,... (1.16)

and a similar equation is obtained for L. Applying to (1.16) the generalized solution for
a system of differential equations, we fmd that () is an ordinary function with 2n
variables and has the form

Qn(hs xla ey xn; }'1, LR yn)

n n
? y2k iZ N (xpyg)
1 A
= [ e ]e Q,A,0,...,0).

n n n
2.2 29 iZN, (% -yy)
. _ 1%k 1YA kTR Tk
ie. Q) = e e 2, (A9,..., 0%
or
n 2 n 2 ) n
? xk IE yk A l?)\k (xk _yk)
Qn()\, X,y) = e e Qn()\, 0,...,0)e

(1.17)




Namely, (2,00, 1@1) = (@), 1®1)

% 2 %)\ %xf(
Xk AKXk -n/2 _
=({{n el el (2;) 2 3 dxj ... dxp)
.n ..3/2% 2
Zyk 1ZNYk o -nja r Yk
({{n el e (.23’1) e dyq ... dyp2,0\,0, ..,0)

4} n
__(em {- ? )\lz(}nn()\, 0,...0).

But (@), 1®1) = c(\)=> 0. Then evidently,

n
2

n/3)" . ?"k

Q A0,....0 = ¢V G

So, we have obtained the general form for Qn()\);

n o, n ) n, n
L H L BR, e
= Tl __y\n T 1)
G = (F00 e (e o N ce
(1.18)
Considering (1.18) we can write (1.14) in the form
n n o, n )
fxﬁ ?Yk i ‘12 A (xgmyy)
1 1 :
K = lim (—)" e —) e ne
s o) 2Ty Ir
n 2
pY
1 X 2 o
e (\/—3—) cM)do Q) (1.19)




Now, using the Fournier-Venar transform and from (1.19) we have
A A )
Ky@w = xllggo fRn u, (N7, Me(Ndo(N)

- {(,G(A)%(x)dp(x) (120

Finally, we have to obtain the form of the measure do(A). For this purpose we use
12\ lo-m -m Sc<eo,
Sg @ Sg

According to (1.18) it is sufficient to see the norm in the elements of S;m with

n n
1 2>\ka Exk
1
e e =w, (N
Then,
n »
ZA
(ﬂ_)n : : ) e, 12
Qi = lim — c(N)e w
Vsresm w3 "

According to [9], we can expand w (M) in the form of a series by{ha(x) }a

w,® = Zeg™ by

(1.21)
where
(n) h (x)d
2
n i X X -X
=0 [ e kkhoz(xk)e k—l—e kdxk
k=1R' k NE
n in X -x2[2
k*k 1 k
= I fR' e h, (x)—e dxy
k=1 k NXi¢
— ( )l’l i |Ol| ha(}\(n))
J2r
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and )\(n) =(Ays .-+ 5 A, 0,0, . . .). Therefore, by using the definition of the space S_™ we
1 g

obtain

2
ey | e e
“q-m -m m, n
Sy ®S, a @)™ (3m) (1.22)
. s ’ L
Evidently, c(\) <c; 18y 2 gm , where 8y = 2 h, h,(.) is a 8-function from Sg(R ).
One can show that for 5 | _ . we have the inequality
Sg
o A\}/2 o A /2
a (m) exp 2 X II<S>\II2 <l§,I? _  exp 2 K/
my Sg Sg 1 n(my) ’ (1.23)

m

where n(my ) > <> as my > s, Now,let m = (mk)‘i;:l be chosen so large that 15 , ll;_ <oo
and this is usually possible by preserving the construction of (1.23) and hence g

c) <cexp 2 k/
1 n(my) | (1.24)

Formula (1.24) gives the expression of the measure dp(p), correspondmg to translation-
invariant p.d. generalized kernel, given by the set
A 2

{AGRI

<=}

n(mk)

Then, .
K,v®@u) =/, @YNde (V)

Ry (1.25)

Conversely, every kernel in the (1.25) is a translation-invariant p.d. kernel on S, (%) S|
(see [1]). It can be shown that the measure do(A) = c(A)do()) generates a kerngl
KeS, @S

2. TheCaseofKeo'g®oé

Let us consider the kernel K € ag ® 0 and then following the preceding subsection we
obtain

1
1/2 =22 /mk
I - -m = c(\)e k
™) agm®ogm 1




and therefore,
o0 32
-3 N2
C(>\)<C el my (2'1)
and hence we can prove the following theorem:

Theorem 2
Every translation-invariant p.d. kernel Keo'g ® o'g admits the representation

A
K, 0@ =L TO)TA)dp (V)
Ry (2.2)
where dp(A) = c(A) do(N), c()) satisfies (2.1)
From Theorem 1 and Theorem 2 we have:

Theorem 3
. . . ! I3 - . . ! '
Every Translation-invariant p.d. kernel keo g® o'y is contained in Sg @ Sg
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