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Introduction 

In the theory of spectral analysis of positive-definite j<.ernels, there exist well-developed 
methods based on the ideas of Krein connected with the construction of a Hilbert space 
by means of a kernel [ 1, 11]. In the main, our formulation deals with translation-invariant 
positive-definite generalized kernels. 

Consider the rigged Hilbert spaces H_ 2 H0 2 H+ [ 1] with the involution w ~ w 
defined in H_ and also in H0 and H+. Let K e H_ @ H_ be a generalized kernel. If 
(K, u@ il) H f){\ H > 0, then K is said to be positive-definite (p.d.). 

0'6' 0 

Now, let ¢ be a topological space of functions on X, ¢' be its adjoint, Ke¢'@ ¢' 
a generalized kernel and G a commutative group in X. 

The kernel K e ¢'@¢'is said to beG quasi-invariant if there exists a function p(x, a), 
xeX, aeG which for each aeG is a multiplier in ¢ such that 

(K,v (a+ .) p (.,a)@ u (a+ .) p (.,a))- (K, v@ ii), u, ve¢; aeG (0.1) 
Now, let Hk be the Hilbert space constructed from the quasi-scalar product (u,v)k = 

(K, v@ ii) by means of completion and factorization. Let B be the continuous operator 
in ¢ which commutes with involution, and let B+ be its adjoint in ¢'. We say that B is 
K symmetric if 

+ -+ (B @I)K = (I@B )K (0.2) 
which is equivalent to the symmetry of B in Hk : (Bu, v)k = (u, Bv)k' 

The formula (T u) (x) = u (a + x) p (x, a) makes sense for the repres~ntation of Gin 
¢, for which the g:neralized kernel K is translation-invariant, i.e. (Tr@ rr) K = K, and 
thus T a is unitary in Hk· 

In what follows, we apply the proceding theory to obtain an integral representation of 
p.d. translation-invariant kernels on spaces of RQ and of the type S~@ S~ and a~ a~ 
(R; C R~ is the space of finite sequences), where 

Mw, ' 

{ 

00 
. 

00 lkl } cfll(R') = u(t) = ~ u e1kt I llull2 = ~ lu 12 m <oo 
g k=O k m k=O k ' 

and 

ag(R~) 

(see [7,12]). 

ag (R'), where ag (R'} 
00 

= n o~(R'), 
1 
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1. The case of K e S~@ S~ 

Consider the kernel K.!. S~@ S~ which satisfies the following conditions: 

a) p.d.,i.e. (K,u@u)>O, ueSg(R®). 

b) ~ quasi-invariant with density 

_ { n(a) 2 } ® ® 

P (x,a) - exp - i ~ 
1 

(2aixi + ai ) , xeR , a (a1, ... , an) eR0 (1.1) 

As in [8), we can show that the density p(x,a) which takes the form (1.1) is a multi­
plier in Sg(R®). In fact, consider the Fourier-Venar transform [10) of the function 

ueL2 (R®,dg ) in the form 

lip.) 

n 2 
- ~ x-/2 l I 

e dx1 ... dxn, 

where un(x1, ... , xn) is the corresponding cylindrical function generated by 

ueL2(R®, dg). In finite-dimensional cases, the Fourier-Venar transform F w is the 

unitary image of the Fourier transform F in transforming from 

L2 (Rn,dx) to L2 (Rn,dg), i.e., 

(1.2) 

(1.3) 

So, F w = unFun - 1 . And so, the Fourier-Venar transform exists as a unitary operator in 

L2(R®,dg). In addition, by simply checking the relation ha(}l.) = i Ia: ha:(}l.) ; Ia: I = 
a:1 + ... + a:v, this transformation is a unitary operator in each of the Hilbert spaces 

s:m and aim. Thus, for an arbitrary ueSg(R®), we have 

,., i~}\kak 
ll(. )p(. ,a)= u (}l.)e 

i~}l.ka 
But e k is a multiplier function in s

8 
(R .. ), so we have the required. 
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Using the precedihg Fourier-Venar transform, we have the following theorem: 

Theorem 1 
Every translation-invariant p.d. kernel KeS~ @ S~ admits the representation 

"" (K,v @U) = I ( u v)(X) dp(X) (1.4) 
R~ 

k 

where dp (X)= c (X) do (A.) is a finite measure on R~ and c (X)...; c exp (1/2 ~ Af ) 
"ii""(mjJ 

and do (X) is a finite measure defined on a a-algebra of sets from R~. Conversely, every 
measure dp (X) in the given form generates a translation-invariant p.d. generalized kernel. 

Proof: First we construct the Hilbert space Hk as the completion of the space Sg(Rj 
w.r.t. the quasi-scalar product (u,v)k = (K,v@u). By B'" we denote the corresponding 
adjoint of the operator B: Sg ~ Sg in S~. The p.d. kernel K will be called a-translation­
invariant if (B'"@B'")K = K. 

The formula (Tau) (x) = u (a+ x) p (x, a) makes sense for the representation of the 

group G from R~ in Sg (R .. ), for which the kernel K is translation-invariant and thus Ta is 

unitary in Hk, (see [6] ). Therefore, the corresponding infinitesimal operators of the rep­
resentation will be K-symmetric, i.e., if B is an infinitesimal operator of the representation 

Ta, then, (B+ (E) I) K = (I® B*") K. Moreover, these operators generate a commuting 
system of self-adjoint operators in Hk (see [3) ). 

Henceforth, we shall consider Bk as an infinitesimal operator of the representation T a 
with k variables, k = I, 2, ... 

Since KeS~ ® S~, we can find Q = (Qi )i= I such that Kes;Q@ si. It is clear that 

Hk ~ s:, moreover, the inclusion is continuous. Therefore, from the nuclearity of Sg(R) 

we find m =(~)~=I such that Hk ~ S~(R .. ) and the inclusion is quasi-nuclear (Hilbert­
Schmidt operatorJ. 

Thus, we have the chain 

H-m,k ;> Hk ~ S~ (R .. ) 2 Sg (R .. ) (1.5) 

in which H-m,k is the dual space of S~ w.r.t. Hk and Sg(R .. ) is the extension of the 

equipment. The operators (Bk)""k=I form a system of commuting self-adjoint operators 

in Hk and defme a differential expression ~ in the form 

(1.6) 
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where p ( t) = }.tr e- t 
2 

is the density of a Gaussian measure. 

Moreover, for every k, D(Bk) :::> S (Roo) where D(Bk) is the domain of definition of the 
operators Bk. g 

Now, applying theorem '2' from [2] to the system of operators (Bk)_k=l we have the 
Parseval equality in the form 

I = f p(A) da(A) (1.7) 
Roo 

Here, da(A) is a non-negative finite measure defmed on a a-algebra of cylindrical sets from 
Roo, p(A) defines da(A) almost everywhere for each A and the operator valued function of 
which gives a non-negative quasi-nuclear operator, operates from s~ to H-m,k for which 

the Hilbert norm lp(A)I< I. The integral (1.7) converges in the sense of the Hilbert norm. 
So, there exists a set ACRoo with total measure da(A) such that R(p(A)), for AeA, con­
sists of the generalized eigenvectors of the operators Bk with eigenvalues Ak: 

<p(A)u,Bkv> = Ak<p(A)u,v> (ueS~(R00),veSg(Roo)) 

Now, we consider the chain 

(1.8) 

(1.9) 

With the help of the procedure in [4, 5], the set of operators p(A) defines the family 
of elementary kernels 

Q(A)es;m X Sim where llil(A) lls;m X s;m:r;;;;;c<oo. 

The connection between p(A) and Q(A) is given by the equality 

<p(A)u,v> = (il(A),v@u) (u,veS~(Roo)) (1.10) 

From the positive-definiteness of p(A) and with the help of (1.1 0) and the inclusion 

s~ ;:> sg, it follows that Q(A) is p.d., 

(il(A), u @u);;;;.. 0 (ueSgCR .. )) (1.11) 

Hence, from (1.8) and the form of Bk it follows that il(A) satisfies the relations 

(Q( A), ip - 1 (xk) _! (p(xk)v)(x)u(y)- Akv(x)u(y) = 0 (1.12) 
oxk 

(il(A), v(x)ip -l(yk) ~ (p(yk)u)(y) - Akv(x)u(y)) = 0 (1.13) 
oyk 

From (1.7) and (1.1 0), K has the integral representation 

(1.14) 

which converges in the sense of the space s~m ® s~m . 
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Now, we seek the solution of the system of equations (1.12) and (1.13) in the sense 
or generalized functions. Namely, 0().) = lim On().) where On().) is the corresponding 

woo 
cylindrical kernel which is obtained from the representation of the kernel 0().) in the 
form of a series excluding the terms which contain variables with large number n and 
its convergence takes place in s;m ® sgm . 

If un (~, ... , y n> and vn (x1, ... , ~)are cylindrical functions from Sg(Rj then for 
u, veSg(R~) we have 

(On().), v ® ii) = (On().), v n ® f9 
Therefore, we have the following system of eguations: 

(On().), ip- 1(xk) _aa (p(xk) v (xk) )@u(y)- ).kv(x)u(y)) = 0 
xk . 

and an analogous equation for u. 
Now, if ,. 

k= 1, 2, .... 

On().)= (Un,GUn,y)On().), '~'n = Unvn ;t/Jn = Unun 

where Un = p(xJ) ... p(xk), we have 
,.. a - 1'::\A. 

(On().). (i axk '~'n) X tPn- ).k'~'n\YI'n\2(RnxRn,dg(x) X dg(y)) 

= 0, k = 1, 2, ... 

(1.15) 

(1.16) 

and a similar equation is obtained for tPn· Applying to (1.16) the generalized solution for 
a system of differential equations, we find that On().) is an ordinary function with 2n 
variables and has the form 

or 

= e 

n 
~ x2 
1 k 

(1.17) 
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Namely, (ilnQ.), 1@1) = (ilQ.), 1@1) 

- (2rr)n j n 2 l 
- (2rr/3)n exp l- T ~k I .nnQ., 0, ... , 0). 

But (ilQ.), 1@1) = cQ_);o. 0. Then evidently, 

n 

.nn Q-,0, ... ,0) = 
~2 

(2rr/3)n 1 k 
cQ.) (2rr)n e 

So, we have obtained the general form for ilnQ.); 

34 

Considering (1.18) we can write (1.14) in the form 

n 2 

:I: ~k 
1 2rr 2n 

e (J-) cQ.)duQ.) 
3 

c(~)e 

n 
i l::~k(xk -yk) 

1 

(1.18) 

(1.19) 



Now, using the Fournier-Venar transform and from {1.19) we have 

" " = k .. u(X)v(X)dp (X) {1.20) 

Finally, we have to obtain the form of the measure dp(A). For this purpose we use 

II il(X) lls;m@ s;m ~ c < oo. 

According to (1.18) it is sufficient to see the norm in the elements of s;m with 

According to [9], we can expand wn (X) in the form of a series by{ha{x) }a 

w (A) = ~ c (n) h (x) 
n a a a 

where 
(n) 

ca = f n wn(A)hix)dg{x) 
R 

{1.21) 
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and X (n) = (X1, ... , ~· 0,0, ... ). Therefore, by using the definition of the space s~m we 
obtain 

(1.22) 

Evidently, c(X) ~c 1 11llx 11-2_m, where llx = ~ ha(X)hci .) is all-function from S~(R .. ). 
sg a 

One can show that for llllx II -m we have the inequality 
sg 

oo X2 /2 oo X2 /2 
a (m) exp ~ _k_ ~ llllx 112-m~ 115 0 112 -m exp ~ _k_ , 

1 mk Sg Sg 1 n(mk) (1.23) 

where n(mk) + cio as mk + oo. Now, let m = (mk)k=l be chosen so large that llllw ~~~-m <oo 

and this is usually possible by preserving the construction of (1.23) and hence g 

oo X2 /2 
c(A)~cexp ~-k-

1 n(mt) (1.24) 

Formula (1.24) gives the expression of the measure dp(A), corresponding to translation­
invariant p.d. generalized kernel, given by the set 

A A2 
Rk ={ XeR .. I-k-<oo} 

n(mk) 

Then, 

"" (K,v@u) = f .. (uV)(X)dp (X) 
Rk (1.25) 

Conversely, every keinel in the (1.25) is a translation-invariant p.d. kernel on S~@ S~ 
(see [1]). It can be shown that the measure dp(X) = c(X)da(X) generates a kernel 
KeS~@S~. 

2. The Case of K e a~ @a~ 

Let us consider the kernel K e a~ @ a~ and then following the preceding subsection we 
obtain 
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and therefore, 
_ ;;' Ak/2 

c (A)< c e 1 ----ri1k 
and hence we can prove the following theorem: 

Theorem 2 
Every translation-invariant p.d. kernel Kea~@ a~ admits the representation 

1\ 1\ 

(K, v 1'0 U) = d:, u (A)V(A) dp (A) VY R~ 
k 

where dp(A) = c(A) da(A), c(A) satisfies (2.1) 
From Theorem 1 and Theorem 2 we have: 

Theorem 3 

Every Translation-invariant p.d. kernel kea'g@ a'g is contained inS~@ S~ 
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