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ABSTRACT 

This paper is concerned with a trinary transformation of river flow. The transformed flow is modeled as a three-states 
Markov chain and both upcrossing and downcrossing problems are studied simultaneously. The stationary distributions of some 
related variables are derived. An application to Jokulsa Eystri nver flow is presented. 
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INTRODUCTION 

A class of properties which have special significance in 
hydrology deals with the instants of which observations 
from a time series are greater or less than specified values. 
For flow series those aspects will be of interest in relation to 
the regulation and abstraction of river flows by reservoir 
storage. However, as Lawrance and Kottegoda [1] observed, 
the theory of crossing properties has not found great use in 
hydrology, perhaps because of the discrete and non­
Gaussian nature of most hydrologic series. Battaglia [2] 
considered a binary transformation of a time series and 
studied upcrossing problems by means of well-known 
methods developed for Markov chains. Our main interest in 
this paper will be in a more general case. We shall consider 
a trinary transformation that will denote river flow by three 

states; namely; state -1 (downcrossing), state 0 (steady 
state) and state l ( upcrossing). 

Let {X1} be a strictly stationary time series observed at 
regular time intervals. For example, X1 is the daily flow of a 
river and u, w are some critical levels of flow. The behavior 
around u and w may be analysed by defining a trinary 
transformation of {Xt} of the form 

{ 

-l;if xt <w 

Jt = o; ~ w :::; xt :::; u 

1;ifX1 >u 

The process { J1} whose dependence upon the past is 
limited to a finite number of preceding values. Such process 
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is, a Markov chain with three states corresponding to the 
events E1 = {X1; Xt < w}, E2 = {Xt; w s X1 s u} and E3 = 
{Xt; Xr > u}. 

Letting 

a= P (Jt= 0/Jt-1 = -1) 
b = p (Jt= -1/Jt-1 = 0) 
c = p (Jt= l/Jt-1 = 0) 
d=P(Jt=O/Jt-1= 1) 

obviously a, b, c and d are constants independent of time 
because the process is stationary. These constants are 
supposed to be strictly positive. The transition matrix P of 
{Jt} has the following form: 

states~ -1 0 1 

' u-a a 

~~ 
-] 

P= 0 b 1-b-c 
1 0 d 

Stationary distribution 

It is well-known that if the chain is ergodic then it has a 
unique stationary distribution (see Cox and Miller [3], p. 
108). To check the ergodicity of the chain, we need to show 
that the transition matrix P is irreduciable and has one of 
the eigenvalues equal to one and exceed all other 
eigenvalues in modulus. It is easily shown that P is 

irreducible. Now by solving the system I P- .AI I = 0 we have 

where 

A1 = (a+b+c+d) -3 
A2 = 3-2 (a+b+c+d) + (ac+ad+bd) 
A3 = (a+b+c+d)- (l+ac+ad+bd) 

Then 

A1 = 1 
A2 = 0.5 [{2- (a+b+c+d)} + {(a+b+c+di--4 (ac+ad+bd)} 1121 
A3 = 0.5 [2- (a+b+c+d)- {(a+b+c+d)2 -4 (ac+ad+bd)} 1121 

since 0 < a, b, c, d <1, then I A-2 I and I ~ I are less than 

one. Hence, the system is ergodic. Therefore, there is a 
unique stationary distribution which can be obtained from 
the solution of the system (I- P)' X= 0, where X is column 
vector and I is the identity matrix. The solution of this 
system gives the stationary probabilities of states which are 
n_1 = bd/ A, no = ad/ A and n1 = ac/ A where A = bd+ad+ac 
and n; = P (state i); i = -1, 0, 1. 
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Distribution of crossing 

Crossing occurs when there is a transition from state 0 to 
state 1 (upcrossing) or when there is a transition from state 
0 to state -1 (downcrossing). 

Let Q; and R; denote the case of upcrossing and 
downcrossing in state i; respectively, i.e.: 

1;ifwsXt-l suandX1 >u 
0; otherwise 

1;ifwsXt_1 suandXt <w 
0; otherwise 

Let Y; denotes the case of crossing (up and down) at the 
ith step, then Y; = Q; + R;. 

Let Nu (0, t), Nu(O, t) denote the number of upcrossing 
and downcrossing in the interval (0, t); respectively. Let Ny 
(0, t) denotes the number of crossing (up and down) in the 
interval (0, t). The distribution of Y; depends on the 
previously occupied state or on the state that will be 
occupied next or on both. Now, let F;,i (8) (i, j = -1, 0, 1) be 
the moment generating function (m.g.f.) of the variable 
"transition from state i to state j in one step." Let P (8) 
denote the matrix with typical elements P~i F;,J, with P~J 

being the transition probabilities from state i to state j. The 
m.g.f. ofNyO, t) is given by (see Cox and Miller [3)). 

in our case 

F.J, -I (8) = F.J, o (8) = F.J, 1 (8) = l, 

Fo. -I (8) = F 0, I (8) = e8 Fo. 0 (8)= 1 and 
Fl,-l(8)=F1,0 (8) Fl,l(8)= l. 

Hence 

a 
1-b-c 

d 

The eigenvalues A1 (8), A2(8) of P(8) are the solution of 
the characteristic equation I P (B)- A.( B) I I = 0, i.e. 

B1 = (a+b+c+d) -3, 

B2 = 3-2 (a+b+c+d) + (ab+ac+ad+bd+cd)- (ab+cd) e8 and 

B3 = (a+b+c+d) - (ab+ac+ad+bd+cd) + (ab+cd) e8 

- (acd+abd) e8 (acd+abd) -1 
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The solution of this characteristic equation gives the 
following eigenvalues 

A.1 (8)=-~(2p sinr +B1 ) 

~ (8) = - ~ cJ3 p cosr- p sinr + ~ ) 

A-3 (0)=-!cJ3 p cosr+psinr-B1 ) 
3 

where 

We note that A, (0) ~A;, i = 1, 2, 3 in particular A1 (0) = 1. 
Now since the matrix P(8) is regular and one of its 
eigenvalues exceeds all others in absolute value, we can use 
the method of diagonal representation to write { <1>(8)} 1 in 
the following form (see [3] page 139). 

0 

~ (8) 

0 

where the columns q; (8) of Q(8) are solutions of the 
equations P(8) q; (8) = A; (8) q; (8), (i = 1, 2, 3). The mean 
of Ny (0, t) may be obtained by using decomposition Y; = Q; 
+ R;. Now Y; is the number of transitions to state -1 or state 
1 at step i, so that 

E {Nv(O, t)} = E {Nu(O,t)} + E {Nn(O.t)} 
= E (Q1+Q2+ ... +Qt)+E(R1 +R2+ ... + Rt) 

= t (n1 + n.1) 
= t (bd+aclbd+ad+ac). 

And also, since the eigenvalue A1 (8) (A1 (0) = 1) of P(8) 
will exceed in absolute value all other eigenvalues in a 
neighbourhood of 8 = 0. Hence, as mentioned by (Cox & 
Miller [3] p. 139) asymptotically. 

Thus a symptotically Yt behaves like a sum of 
independent random variables. 

Some interesting related variables 

We define now some interesting variables related to the 
crossing problem. Let D; denotes the number of times the 
process remains in state i. To find the probability 
distribution of Di we observe that 
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p (D_I = k) = p (Xj <w, 1 < j :-::; k, xk+l ~ w I Xo ~ w, XI <w) 

by using the Markovian property: 

p (D.1 = k) =a (1-a)k-l ; k = 1, 2 ... 
P (Do= k) = (b+c) (1-b-c))k-l; k = 1, 2 ... 
p (Dl = k) = d (1-dl-l; k = 1, 2 ... 

(1) 

Consider now the variable T; to be time between two 
consecutive crossing (up or down), (i = -1, 1). i.e. Let T1 
denote the time between two upcrossing and T.1 denote the 
time between two consecutive downcrossing; T1 and T.1 now 
are equal to the first return to state 1 or to state -1, 
respectively. Now p(T1 = k) = p (Nu(1, t)) = 0, 

Nu(t, t + 1) = 1/Nu(O, 1) = 1, and also 
p (T1 = k) = p (Nn(l, t) = 0, 
Nn(t, t +1) = 1/Nn(O, 1) = 1, t = 2, 3, ... 

given a first crossing at step 1, a second one at time (t + 1) 
may occur only if the process assume once in (2, t) a value 
between u and w. Let j denote the step at which this 
happens; then 

t 

p (TI = t) = L p (Xj >u for i<j, w :-::; xk :-::; u for j :-::; k :-::; t. 
j=2 

X!+ I > u I w :-::; Xo :-::; u, XI > u) 
t 

2: p(J2= 1, ... , Jj-1 = 1, 1i "#- 1, Jj+l "#- 1, ... , lt# 1, 1t+l = 
j=2 

1/Jo#- 1, J1 = 1) 
t 

= L p(Jo# 1, J1 = 1, ... , Ji-1 = 1, Ji "#- 1, Jj+l "#- 1, ... , ]1#- 1, 
J=2 

Jt+l = 1)1p(Jo# 1, J1 = 1) 
t 

= 2: [p(Jt+l = ll1t#-1){p( lt# wt-1 "#- l)}t-j p(Jj# wj.J 
}=2 

= [(acd)l{ d(a+b)- ac][{ (a+b-ac)l(a+b) }1
-
1

- (1-d)1
-
1 ], 

t = 1, 2, 3, . . . (2a) 

Similarly for downcrossing 

t 

p(T.I = t) = L p(Xj <w for i< j, w :-::; xk :-::; u for j :-::; k :-::; t, 
;=2 

Xt+1 < w I w :-::; Xo :-::; u, X1 < w) 

= [(abd) {a(d+c)- bd}][{(d+c-bd}l(d+c)}1
-
1- (1-at11, 

t = 1, 2, 3, . . . (2b) 

Consider now the waiting time for crossings (up or 
down). Let Wu and Wn denote the waiting times for 
upcrossing and downcrossing respectively. Their probability 
distribution may be derived as follows: 
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and also 

p(WD=k)=p(h :t:-l,J3 :t:-1, ... , Jk += -1, Jk+l = 1/Jo = -1, J1 +=-
1). 

Then 

p(Wu = k) = ac/(ab)[{a(1-c)+b}/(a+b)]k-1 , k = 1, 2, ... 
p(WD=k)=bdl(c+d)[{d(1-b)+c}/(c+d)t1, k = 1, 2, ... (3). 

The following table (1) summarizes the probability mass 
function (p.m.f.), the mean and the variance of each of the 
previous variables 

Table (1) 

Variable p.m.f. 

D_l a(l-a)k-1,k=1,2, ... 

Do (b+c) (1-b-ct1, 

b+c<1, k=l, 2, ... 

Dl d(l-d)k-l,k=1,2, ... 

[(acd)/{d(a+b)-

ac }][ { (a+b-ac)1
-
1 

Tl 
- (1-dt'(a+bt' 
} /(a+bt1], 
t=1, 2, ... 

[(abd)/{a(d+c)-

-bd}][{(d+c-bd)1
-
1 

T_1 
-(l-at1(d+c)1

-
1 

}/(d+c)t-1 ], 
t=1, 2, ... 

(ac)/(a+b)[a(1-c) 

Wu a(l-c)+b}/(a+b)t-1, 
k=l, 2, ... 

(bd)/(c+d)[ { 

WD d(1-b)+c }/(c+d)]k-1, 
k=l, 2, ... 

APPLICATION 

An application of the present method to Jokulsa river 
flow data for the period from January 1, 1972 to December 
31, 1974 is considered. We choose the critical levels u = 27, 
which is approximately equal to the overall mean flow of 
cold seasons, and w = 53, which is the mean flow of non­
cold seasons. Then the estimated transition matrix is 

States~ -1 0 1 

~ 
-1 r:·2 0.018 0~~ 0 019 0.949 

0 0.032 0.978 

Mean Variance 

1/a (1-a)/a2 

(b+cr1 (1-b-c )/(b+c )2 

1/d (l-d)/d2 

[d(a+b) + ac] /acd (a+bi[d(a+b)-

-ac(d+1)]/aV 
[d(a+b)- ac] + [d 
(a+b) + ac(d-1)]/ 
d2 [d(a+b)- ac] 

[a(d+c)+bd] /abd (d+c)2[a(d+c)- bd 

(a+ 1)]/b2d2[a(d+c) 
-bd]+[a(d+c) + 
bd(a-1)]/a2[a(d+ c) 
-bd] 

(a+b)/ab [(a+b)(a+b-2ac) 
/a2c2] 

(c+d)/bd [(c+d)(c+d-2bd) 
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/b2d2] 

So that the estimated stationary probabilities are 1r_1 = 
0.3279, rc0 = 0.3279 and rc1 = 0.3442. The mean number of 
crossings in this period is E(Ny(O, t)) = t (0.6721) = 735.9. 

Consider now the duration of an excursion over level u = 
53 and below the level w = 27 given that the initial state is 
J0 . Note that from equation (1) 

p(D_1 = k) = 0.0183 (0.98172)k-1, k = 1, 2, .. . 

p(D0 = k) = 0.0512 (0.9488)k-1, k = 1, 2, 3, .. . 
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p(Jl = k) = 0.0320 (0.9680)k-l, k = 1, 2, 3, ... 
and the probability mass function of the time between two 
consecutive crossings (up or down) can be obtained from 
equation (2) to be 

p(T1 = k) = 0.0305 [(0.9844t1, - (0.96880)k-l], k = 1, 2, 

p(T-1 = k) = 0.0202 [(0.9904l-1,- (0.9817)k-l, k = 1, 2] 

The following table (2) summarizes the mean and 
the variance of each of the previous variables: 

Table (2) 

Variables Mean Variance 

D_l 54.7045 2938.4 

Do 19.5388 362.2 

D1 31.2598 945.9 

T1 95.3636 2941.27 

T_l 195.2232 7580.1619 

Wu 64.0841 400 

Wn 104.2359 13383 
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Finally the probability mass functions of the waiting 

times are provided from equation (3) and are given by 

p(Wu= k) = 0.0156(0.9844t1, k= 1, 2, 

p(Wn= k) = 0.0096(0.9904l-l, k= 1, 2, 
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