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A NUMERICAL SOLUTION FOR THE BENDING OF A PLATE USING THE
BOUNDARY ELEMENT METHOD
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ABSTRACT

In this paper the numercial solution for the bending of a plate is considered. The method used is called the Boundary Element
Method (BEM). The BEM is a numerical method based on the boundary integral equation formulation of a partial differential

equation using its fundamental solution.
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I. A Boundary Integral equation Formulation for a plate
Equation with Prescribed Boundary Displacement and Rotation
Data.

In this paper the numerical solution for the bending of a plate
is considered. The plate is modelled by a biharmonic equation
with no loading and with boundary displacement and rotation
data given, as shown below.

AW (X) =0 X e
¥(X) = fu(X) XeaQ (1.1)
2 X XedQ
on 2 €
2 P
where A = 2 X=_(X1, X)) e Q CR

9 Q = boundary of
n = Unit outward normal on 9

The method used is called the Boundary Element Method
(BEM). The BEM is a numerical method based on the boundary
integral equation formulation of a partial differential equation
using its fundamental solution. This method has gained rapid
popularity in recent years. Let us sketch its usage here for our
problem.

Let G(x, X) denote the fundamental solution of the biharmo-
nic equation satisfying

AG (x,X) =38 (x, X) x, X e IR* 1.2)
where 8 is the Dirac delta distribution.

Set

Fx, X) = A G (x, X)

Then (I.2) becomes

AF (x, X) = 3 (x, X)

Thus F(x, X) is the fundamental solution of the harmonic
equation

A (X) =0
So we get
F(x. X) = — In[x-X]
2n
or
AG (x, X) = —L 1In [xX] (1.3)
2n

Assume that X = 0, r = |x|. Then (1.3) can be written as

L _a_< ﬁ)le
r ar or o T

Solving the above differential equation we obtain
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G(x,X) =

(f*lnr) =

}_[ [ x-X [1n |x-X] (1.4)

Our work here is based on the following integral representa-
tion of the solution s

J [« ® Gx, X) + B (x) Bxx G(x, X)]dox (L)
a€)

U(X) =

(dox = infinitesmial boundary measure with respect to the
variable x), where B,x is a boundary integral operator corres-
ponding to the bending moment of the plate defined by

o’ & &
B, =vA+(1—- [n2 —— 4+ N’ —+ ____] .
5 =V (1-v) | n% % 2 5% 2nim, 3%, 9% (L.6)

= The poisson ratio.

In (L.5), a(x) and B(x) are unknown dlsplacement and
moment density functions on 3} to be determined. (1.5) is called
the integral equation formulation for (I.1). A regorous justifica-
tion of (I.5) is rather lengthy and will appear elsewhere.

Therepresentation(1.5)is valid ffor X e 002. Now let X— X e a0
As the kernels G(x, X) and B,X G(x, X) arcabsolutely integrable
functions with respect to x even for X € 4§}, we obtain

q,(X);:J'ru (X) G(x,X) + B(x) By, E (x,X) dox forX e aQ2. (1.7)

1))
If B € L¥(3Q). Nevertheless, the above continuity property
does not carry over to the normal derivative grd: (i.e.,

rotation). In fact, from a boundary layer property of singular
integrals, we have

0!11 (X)

_J‘[ @t 2= B ) + B(x), ~ BoxG(x, X)]dox -

provided that 88} is smooth at X. If 3Q is not smooth at X then a
different weighting factor (other than %2) of B(X) on the right
hand side of (I.8) must be properly adjusted according to the
angle 6 formed by the tangents to a{) at X

. . a
On the right hand side of (1.8), as the kernel S B,x G(x,X)
X

now contains a singularity when x — X, the boundary integral
must be interpreted as Cauchy principal value (singular integ-
ral):

Jows2
a0

~BGlx, X) do x= nm f B(X)— ByxG(x, X) do x

an B,

where, B, is an e-ball centered at X:

B. = {yelR

y-X >e}

Substituting the boundary conditions in (I.1) into (I.7) and
(1.8), we get

f[a(X)G(x,i) + B(X) BoxG(x, >_</)] dox = f;(X), Xea2  (1.9)
a0

a{z [a(x)% G(x, X) + B(x) FE;BZXG(X, X)] doyx — 3‘-

B(X) = £(X), Xe aQ

where the right hand sides are known. The above becomes a
system of Fredholm boundary integral equations of mixed first
and second kinds for the displacement density data a(x) and
bending moment density data B(x) on a€). If a(x) and B(x) are
solved everywhere on 9(), then we can use (1.5) to obtain the
values of y(X) for any X € .

II. The Numercial Alogarithm

One can solve (1.9) and (1.10) for a(x) and B(x), for example;
by dividing the boundary 8} into n arcs, Ay, As, ... A,. Each arc
A; is further approximated by a line segment L;, as shown in
Figure 1.

Figure 1

Then one assumes that a(x) and B(x) are piecewise constant
on the line segments. (1.9) and (I.10) becomes a system of 2n
linear equations. TThis system can be solved by standad
Gaussian elimination procedures for a(x) and B(x). As a(x) and
B(x) are solved, one can use (I.5) to approximate $(X) for X € (2.

In this paper, the problem is considered for a special case
where Q is a disk with radius R = 0.5. We take advantage of the
geometry of the domain  where a polar coordinate system (r,8)
can be setup. We divide the boundary 3} into n arcs, Ay, As, ....

A, using the angular variable 6. The arc A, is represented by the

subinterval n
o G-

2mi ]
D7

The smoothness of the boundary has been preserved, so higher
order or spline approximations of «(8) and B(8) are made
possible.

Numerically we solve (1.9) and (I.10) for a{X) and B(X) on 9{2
as follows.
Let x = re*, X = pe", so (1.9) and (1.10) can be written as
2x

J [a(8) G (0.6)+ B(&)BxG(0.6)] R0 = £, () (aL1)
0

2X
f[a(ﬂ) aﬁlG(O,d))"' B(6) — Bsz(9>¢)]Rd9 - = B(‘t’) f,(d)
0 P (I1.2)




A numerical solution for the bending of a plate ..........

we divide the boundary into n arcs A;, A,, ....... , Ap, as shown
below in Figure 2.

Figure 2

Denote the mid-point of each arc A; by X;. Each point X; is
called a node.

We approximate o(X) and B(X) on 9Q by piecewise constant
functions i.e. piecewise constant boundary elements. On each
Aj, 1<j=n, we assume that «(8) and B(0) are constants.

a®) = X))
_ for 0 € [ 2“ -1}, an
B(®) = B(X))
where
T s
)_(j=R el = Ren @ l), =1,2, ..,n

(If necessary, higher order or spline approximations can be used
for a(6) and B(0)).

Consequently, (II.1) and I1.2) can be discretized as

a(e)fG(e ¢)Rde+2 B®) [ BaxGO.4) R A8 =1, (4)
a(eJ)f % G(o.b) R do +EB(9)I—BZXG(G ) R do
=1 j-1 A.

J 1

- % B (1) = fa(hy) (IL.4)

fori=1,2, .., n
Set
Aij = f Bzx G (9,¢,~) Rde
i

Aintj = [|B2x G (8,4) Rd 6

J
A.l

Apgij = fa— G(6,4;)) R do

5 0 if i=j
Anpindi = f—anzx G(6,4;) R do —‘{ §if im
z; = a (8)
Z,—i = B(8y)
D; = f; (¢)
Dy =6 ()

“then (IL.3). and (IL.4) can be written as a matrix equation

An A .o Az Z, D,
A21 A22 A22n Zz D2
A2ni A2n2 eee A2n,2n ZZn Dln (IIS)
Or, briefly
AZ =D

The above is a system of 2n linear equations. It can be solved
by standard Gaussian elimination procedures if all elements Ajj,
1 < i, j < 2n are obtained.

The method for obtaining A;; ; is as follows

Setting x = re®, X = pe®, we have

G(x,X) = — [r +p?=2rp cos (6—¢)] In [r*+p>—2rp cos (6—d)],
(1IL.6)

BixG(x,X) = vAG + (1 — v) %G

= ! {(1+v)ln[r+1p2—2rpcos(6~<b)]+4p
.8
(IL.7)
2[p — rcos (0 — d)I
+ (1 - U)[l +r2p2 — 2rp cos (e _ d))] }

On 00, p=r=R, we have

G(8, d)= [1—cos (6~ )] In[2R}{1 —cos (6 — $)}]
(IL.8)

aG(6 —¢) R

—"‘—'—( Fr =‘8‘E'{[l—cos(6—qb)]

[In {2RY1 ~ cos (8 — & )]} +1]} (1L.9)
BixG (60— ¢) = Sin‘{mp) In [2R* {1 — cos (8—b) }] + 4p
+(1 = p)[2 = cos (6—d) ] (I1.10)

a—j; BoxG(0,b) =% [2v ~ (1—v) cos (6—) ] (IL.11)

In the above we can see that except for B,x(8,d), all kernels

10
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G(8,4) and B,xG(0,4) do not contain any

G(6.9),

singularity. So we can estimate terms Ajj, A, and A,_j,n—j by
a Gaussian quadrature

fg(x) dx = B
A i=1

where w(1)’s and S(1)s air<, respectively, the coefficients and the
roots in the Gaussian quadrature.

w(l) g [(B A)25(1)+B+A]

Mia

For
Ainj = [Bog(8,4) R db,
Aj
when i#j, B,xG(0,4d;) does not contain any singularity for 6 e A;,
SO we can approximate A;,n—j again by using a Gaussian

quadrature, when i = j, B,xG(0,4;) contains a singularity at § =
$1. We treat it as follows:

Rewrite

In {2RT1 — cos (8—-d)]}

= In2R>+In[1 — cos (8—dy)]

= In 2R® — In [1+cos (6—dy)] + 2In [ sin (6—d))]

It follows that

fBsz(e,d)i) Rdo

Ai

Ajnsi =
2x .
=
n

R
ey f {(1 +v)[In2R*In[1+cos(8—d)]]+4v
Z -1

+(1—v) [—cos(G—d)i)]}dO

2x,
i

2R(1+v)

0 f In [sin(6—dp)]

T (-1

In the above, the first integrand is smooth so we use a
Gaussian quadrature to approximate the integral. For the second
integral, the integrand has a singularity at 0=d;. We can
approximate it to as high degree of accuracy as desirable by

900 19045

aln a—a—
18

f In sin X] dx
0

Hence all entries A;; of the matrix, A can be obtained. We
then solve (11.3) and (I1.4) for «(6) and B(8) on 442, and use (1.5)
to solve all $(X) for X € Q. In (I.5), G(x,X) and B,x G(x,X) are
given by (I1.6) and 11.7) rather than (I1.8) and (II.10).

III. Numerical Examples

In our first numerical example we use the fundamental
solution of the biharmonic equation to construct a solution, and

11

use it as a benchmark to test our algorithm and to check the
accuracy.

Example 1:

Let

P (X) =8—— {100|X—X1{Zln}X——X1|+4O|X—X2|21n|X—Xl
1

+30|X — X3 /In| X — Xs] +20[X — X4[1In|X—X4[}

where
X, = (1.5, 1.5), X, = (2.0, 2.0),
X; = (3.0, —3.0), X, = (-2.5, =2.5)

which all lie on the outside of Q, so ¥(X) is a solution of the
biharmonic equation. Therefore we can use $(X) together with |

and azi on 3€} to test our algorithm. Table 1 shows the accuracy
n

of oﬁT—algorithm.

Table 1
[N=10, X;=(3,6;)]

Numerical solutions

I 6 (v=0.01) (v=0.06)  Exact sol.
1 0.0000 71.6540 73.3192 71.4053
2 0.5236 70.9516 72.6101 70.7080
3 1.0472 70.6752 72.3307 70.4318
4 1.5708 70.9193 72.5770 70.6739
5 2.0944 71.5304 73.1943 71.2830
6 2.6180 72.2201 73.8906 71.9695
7 3.1416 72.7990 74.4749 72.5443
8 3.6652 73.2363 74.9163 72.9798
9 4.1888 73.5136 75.1966 73.2561
10 4.7124 73.5335 75.2169 73.2758
11 5.2360 73.1931 74.8730 72.9359
12 5.7596 72.5037 74.1770 .. 72.2495

From the above, we can see that using smaller v (the Poisson
ratio) will yield a higher accuracy in the example. When Xe() but
very close to (), especially when X is very close to one of the
end points of those arcs partitioned on 42, the error in the
computation of Y(X) becomes comparatively larger. As we
observe in (I1.7) we believe that this'is due to the log term and
the last term in (I1.7). This is related to the boundary layer
effect. To overcome this difficulty we use a quadratic interpola-
tion. Note that $(X), x € 3, is given when X is very close to 42,
P(X) is also very close to $(X) from some x € 9. Let X € (1 be
the point very close to 8, at which we try to evaluate U(X). Let
Arg(X) be the argument of X. Then the point X, = (R, Arg(X))
is on the boundary and

|X—Xo| = distance (X, 992)

As P(X), x € 90, is given, we know y(Xo) exactly. Then for X,
= (R— AR, Arg(X)) and X, = (R—2AR,Arg(X)), we compute
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¥(X;) and W(X;) through (I.5) since X; and X, are not close to
Q. P(X;) and Y(X,) are comparatively accurate. In our
numerical examples, we take AR = 0.01. Now we can see that
all these four points X, X, X; and X, have the same argument
Arg(X), so they are on the same ray. Along this ray, through
(Xo¥(Xo)), (X1,0(Xy)) and (Xp,¥(Xz)), we use quadratic

interpolation:

i

(X=Xy) (X—-X5)

(X=Xg) (X=X,)
WX)=H(X0) =R Ko=) 2

(X1=Xo) (X1=X3)

+ B(Xy):

(X—Xo (X-Xy)

VX Ry (G-X)

to approximate (X). Table 2, Fig. 3 and Fig. 4 illustrate the
improvement by interpolation.

Table 2
N = 10, X; = (0.499,6;), v = 0.01

I 0; Numerical  Solution thru Exact

solution interpolation solution
1 0.000 73.1948 73.2178 73.2176
2 9.5236 70.2769 72.1016 72.0167
3 1.0472 69.3203 71.6355 71.5960
4 1.5708 69.3975 72.0201 72.0198
5 2.0944 70.7693 73.0889 73.0496
6 2.6180 72.2664 74.1288 74.0884
7 3.1416 74.8129 74.8417 74.8416
8 3.6652 73.5625 75.4677 75.4216
9 4.1888 73.5453 75.9338 75.8933
10 4.7124 73.2659 76.0394 76.0394
1 5.2360 73.2659 75.6569 75.6162
12 5.7596 72.7042 74.6170 74.5774

SOLUTION ERROR COMPARISION
F1G-3

76.5 -
76.0 4
75.5 4
75.0 4
74.5
74.0 4
'
73.5 4
73.0 4
72.5
72.0
71.5 4

71.0

70.5 ~

70.0

T y T

o 1 1 2 2 3 3 4‘ 4 5I 5

Q 5 <] H [ ] & i 5

6 2 5 7 ] i H 3 7 H K H
DOMA IN

CURVE 1= NUMERICAL CURVE 2= EXACT

12

SOLUTION ERROR COMPARISION

¥
76.0
75.5
75.0
74.5
74.0
73.5
73.0
72.5 1
72.0
71.5
71.0
T - T T
3} o 1 1 2 2 3 3 4 4 5
] s @ 5 g & i [ i 7 2 7
o 2 s 7 9 2 4« 7 9 1 % 6 g
DOMAIN

CURYE 1 = INTERPOLATION CURVE 2 = EXACT

Fig. 5 is the graph of the exact solution and Fig. 6 is that of the
numerical solution. By comparing then we have a visual display
of the accuracy of our algorithm. ‘

FIG.5

THE NUMERICAL SOLUTION

FIG-6 THE EXACT SOLUTION
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Example 2: Table 4 gives certain numerical values of the solution.
As the second numercial example. we solve the following

bihormonic equation

AWX) =0 X e (. N =10 x-Tibl[el ;-] v = 0.01
B(X) = 10 sin20 X e a{), X=(R.8) * o AT ’
a(X) ]
a_n = 10co0s26 X € (), I o, Numerical
solution
. . . 1 0.0000 —0.1535
which does not have any known exact solution. 5 0.3927 311916
Table 3 shows certain numerical values of the solution. 3 0.7854 2.4284
Graphical representation is given in Fig. 7. 4 1.1781 —1.4241
5 1.5708 —3.6167
Table 3 6 1.9635 —1.3065
N = 10, X; [4.6;]. v=0.01 7 2.3562 2.6455
8 2.7489 3.4754
- 9 3.1416 0.1535
I b Numerical 10 3.5343 ~3.1916
solution 1 3.9270 —2.4284
1 0).0000 —0.5916 12 4.3197 1.4241
2 0.5236 5.6260) 13 4.7124 3.6167
3 1.0472 6.2457 14 5.1051 1.3065
4 1.5708 0.6002 15 5.4978 —2.6455
5 2.0944 -5.6564 16 5.8905 —3.4754
6 2.6180 —2287
7 3.1416 —0.5915
8 3.6652 5.6260 A graphical representation is shown in Fig. 8. One can clearly
9 4.1888 6.2457 see the periodicity of ¥ in the figure.
10 4.7124 0.6002
11 5.2360 —5.6564
12 5.7596 —6.2287
FIG-8 NUMERICAL SOLUTION
FIG.7 THE NUMERICAL SOLUTION
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