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ABSTRACT 

In this paper the numercial solution for the bending of a plate is considered. The method used is called the Boundary Element 
Method (BEM). The BEMis a numerical method based on the boundary integral equation formulation of a partial differential 

equation using its fundamental solution. 
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I. A Boundary Integral equation Formulation for a plate 
Equation with Prescribed Boundary Displacement and Rotation 
Data. 

In this paper the numerical solution for the bending of a plate 
is considered. The plate is modelled by a biharmonic equation 
with no loading and with boundary displacement and rotation 
data given, as shown below. 

6 21\1 (X) = 0 

6'G (x, X)= o (x, X) X, XE IR'-

where o is the Dirac delta distribution. 

Set 

F(x, X) = 6 G (x, X) 

Then (1.2) becomes 

6F (x, X) = o (x, X) 

(1.2) 

\f!(X) x e an (1.1) Thus F(x, X) is the fundamental solution of the harmonic 
equation 

= f2(X) 
an 

where 6 
2 a' 
I--X 

1 = 1 ax i 

an boundary of n 

n = Unit outward normal on a n 

The method used is called the Boundary Element Method 
(BEM). The BEMis a numerical method based on the boundary 
integral equation formulation of a partial differential equation 
using its fundamental solution. This method has gained rapid 
popularity in recent years. Let us sketch its usage here for our 
problem. 

Let G(x, X) denote the fundamental solution of the biharmo­
nic equation satisfying 

8 

61\1 (X) = 0 

So we get 

F(x. X) 

or 

6G (x, X) 

_ ___:__ Inix-Xj 
2n 

- 1- In lx-Xj 
2n 

(1.3) 

Assume that X = 0, r = lxl. Then (1.3) can be written as 

_1_ _a_ ( r aG ) = _1_ lnr 
r ar ar 2n 

Solving the above differential equation we obtain 
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1 1 ' G(x X) = -- (r2 lnr) =--I x-X I' In lx-XI 
' 8n 8n 

(I.4) 

Our work here is based on the following integral representa­
tion of the solution 1)1: 

ljl(X) = J [ a (x) G(x, X) + 13 (x) Bzx G(x, X)] dux (1.5) 
an 

(dux = infinitesmial boundary measure with respect to the 
variable x), where B2x is a boundary integral operator corres­
ponding to the bending moment of the plate defined by 

(1.6) 

u = The poisson ratio. 

In (1.5), a(x) and l3(x) are unknown displacement and 
moment density functions on an to be determined. (1.5) is called 
the integral equation formulation for (1.1). A regorous justifica­
tion of (1.5) is rather lengthy and will appear elsewhere. 

Therepresentation (1.5)is valid lfor X E an. Now let X~ X E an. 
As the kernels G(x, X) and B2X G(x, X) !ire absolutely integrable 
functions with respect to x even for x; an, we obtain 

I)J(X)= Jra(x)G(x,\X)+ B(x) B2, E(x,X))duxforXE an. (1.7) 

an 

If 13 E L'(an). Nevertheless, the above continuity property 

does not carry over to the normal derivative ~~ (i.e., 

rotation). In fact, from a boundary layer property of singular 
integrals, we have 

al)l (X) J [ a - a -~ -- = a(x) - E(x, X)+ 13(x)1- B2xG(x, X) dux-an anx anx 
an 

1 
2 13,(X) (1.8) 

provided that an is smooth at x. If an is not smooth at x then a 
different weighting factor (other than V2) of 13(X) on the right 
hand side of (1.8) must be properly adjusted according to the 
angle 9 formed by the tangents to an at X. 

a 
On the right hand side of (1.8), as the kernel -a B2x G(x,X) 

nx 
now contains a singularity when x - X, the boundary integral 
must be interpreted as Cauchy principal value (singular integ­
ral): 

Jl3(x)-a- B2xG(x,X)du x= iim J13(x)-a_ B2xG(x, X) dux anx s-. 0 anx 
m m-~ 

where, Be is an e-ball centered at X: 

Be = { y E IR' I I y - X > , e } 

Substituting the boundary conditions in (1.1) into (I. 7) and 
(1.8), we get 

9 

J [a(X)G(x, X)+ 13(X) B2xG(x, X)] dux= f1(X), XEan (1.9) 

an 

J[ a - a -] , 
a(x) -a - G(x, X) + 13(x) -a - B2xG(x, X) dux- 2 an nx nx 

where the right hand sides are known. The above becomes a 
system of Fredholm boundary integral equations of mixed first 
and second kinds for the displacement density data a(x) and 
bending moment density data l3(x) on an. If a(x) and l3(x) are 
solved everywhere on an, then we can use (1.5) to obtain the 
values of ljl(X) for any X E n. 

II. The Numercial Alogarithm 

One can solve (1.9) and (1.10) for a(x) and l3(x), for example; 
by dividing the boundary an into narcs, A,, A2, ... An. Each arc 
Ai is further approximated by a line segment Li, as shown in 
Figure 1. 

Figure 1 

Then one assumes that a(x) and l3(x) are piecewise constant 
on the line segments. (1. 9) and (1.10) becomes a system of 2n 
linear equations. TThis system can be solved by standad 
Gaussian elimination procedures for a(x) and l3(x). As a(x) and 
l3(x) are solved, one can use (I.5) to approximate ljl(X) for X En. 

In this paper, the problem is considered for a special case 
where n is a disk with radius R = 0.5. We take advantage of the 
geometry of the domain n where a polar coordinate system (r,9) 
can be setup. We divide the boundary an into narcs, A~> A2, .... 
An, using the angular variable e. The arc Ai is represented by the 

subinterval [ 2n 2ni J 
-n (i- 1),1-n 

The smoothness of the boundary has been preserved, so higher 
order or spline approximations of a(e) and 13(e) are made 
possible. 

Numerically we solve (1.9) and (1.10) for a(X) and 13(X) on an 
as follows. 

Let x = re;o, X = pe10
, so (1.9) and (1.10) can be written as 

2x 

J [a(9) G (9,<J>)+I3(<l>)B2xG(e,<j>)) Rae= f, (<l>) (II.l) 
0 
2X 

Jra(9) .2.1a(e,<j>)+l3(9) -B2xG(e,<j>~Rd9- f13(<l>)=fz(<l>) 
o ~ ap (II.2) 



A numerical solution for the bending of a plate ......... . 

we divide the boundary into narcs A 1, A2 , .••...• , A 0 , as shown 
below in Figure 2. 

Figure 2 

Denote the mid-point of each arc A; by X;. Each point 'X; is 
called a node. 

We approximate a(X) and (3(X) on an by piecewise constant 
functions i.e. piecewise constant boundary elements. On each 
Ai, l::=::j::=::n, we assume that a(6) and (3(6) are constants. 

a(6) 

(3(6) 

where 

.!!. (2j-i) . 
R e n , J = 1, 2, ... , n 

(If necessary, higher order or spline approximations can be used 
for a(6) and (3(6)). 

Consequently, (ILl) and 11.2) can be discretized as 

n n 

I a(6j) I G(6,<!>;) R d6 f- I (3(6;) I B2xG(6,<I>;) R d6 = f1 ( <!>;) 

j=l A; j-1 A; (Il.3) 

n n 

.I a (6i) I :P G(6,<l>;) R d6 +I (3(6i) I aap B2,G(6,<!>;) R d6 
J=l A; j-1 A; 

fori 1,2, ... ,n 

Set 

A;i = f Bzx G (6,<!>;) Rd6 
A; 

Ai,n+i = f /Bzx G (6,<!>;) Rd 6 
A; 

(11.4) 

10 

Zn-i = (3(6;) 

D; = f; (<!>;) 

Dn-i = fz ( <!>;) 

0 if i=j 

! if i=j 

~then (11.3). and (11.4) can be written as a matrix equation 

A12 ,; A12n 
Azz ,,, Azzn 

Azni Aznz -· · Azn,2n 

Or, briefly 

Zzn (11.5) 

AZ = D 

The above is a system of 2n linear equations. It can be solved 
by standard Gaussian elimination procedures if all elements Aii, 
1 ::=:: i, j ::=:: 2n are obtained. 

The method for obtaining A;i ; is as follows 

Setting x = re'0 , X = pe'0 , we have 

1 
G(x,X) =- [r2+p'-2rp cos (6-<l>)] In [r'+p'-2rp cos (6-<l>)], 

lOn (11.6) 

a'G B2xG(x,X) = vL.G + (1 - v) ~ 

= _l_ { (1 + v) In [ r + lp' - 2rp cos (6 - <!>)] + 4p I 
. 8n 

+ (l _ v) [ 1 + _2_[p_-_r _c_os---'-(6_-_<1>_)]_' J } 
r'p' - 2rp cos (6 - <I>) 

On an, p=r=R, we have 

(11.7) 

R' 
G(6, <!>)=-- [1- cos (6- <!>)]In [2R'{1- cos ( 6- <I>)}] 

8n (11.8) 

aG( 6 - <I> ) R { 
anx = 8n [1 - cos ( 6 - <I>)] 

[In {2R'[1 -cos ( 6 -<I>)]} + 1]} (II.9) 

B2xG ( 6- <I>)= 8~/{ (l+p) In [2R' {1 -cos (6-cjJ) }] + 4p 

+(1- p) [2- cos (6-<l>)] (11.10) 

a 1 
BzxG(6,<I>) = 

8
n ;[2v - (l-v) cos (6-<l>)] 

anx 
(11.11) 

In the above we can see that except for B2x(6,<!>), all kernels 
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G(6,<j>), G(6,<J>) and B2xG(6,<J>) do not contain any 

singularity. So we can estimate terms Aii, An-j.j and An-i•n-i by 
a Gaussian quadrature 

. . m . I g(x) dx = B ~ 1 I, w(1) g [ (B - A) 2S(1)+B+AJ 

A j=1 

where w(1)'s and S(1)s arc, respectively, the coefficients and the 
roots in the Gaussian quadrature. 

For 

Ai.n-j -= f Bzxg(6,<J>;) R d6, 
Aj 

when i#j, B2xG(6,<J>;) does not contain any singularity for 6 E Ai, 
so we can approximate A;,n-j again by using a Gaussian 
quadrature, when i = j, B2xG(6,<J>;) contains a singularity ate = 
<J>I. We treat it as follows: 

Rewrite 

In {2R'[1 - cos (6-<J>;)]} 

ln2R'+ln[1 - cos (6-<J>;)] 

In 2R' - In [1 +cos (6-<l>;)] + 2ln [ sin (6-<l>;)] 

It follows that 

Ai,n+i = I BzxG(6,<J>;) Rd6 
Ai 

2x . 
-I 
n 

= ~ I {(l+u)[ln2R'-In[l+cos(6-<J>)J]+4u 

~(i-1} 
n 

+(1-u) [-cos(6-<J>;)]}d6 

2x . 
-I 
n 

2R(1+u) I 
+ (2n) In [sin(6-<l>;)] d6 

2x . -n (i-1) 

In the above, the first integrand is smooth so we use a 
Gaussian quadrature to approximate the integral. For the second 
integral, the integrand has a singularity at 6=<J>;. We can 
approximate it to as high degree of accuracy as desirable by 

Ol 

I In [sin X] dx 
0 

a In a-a-
18 900 19045 

Hence all entries Ai.i of the matrix, A can be obtained. We 
then solve (11.3) and (11.4) for a(6) and 13(6) on an, and use (1.5) 
to solve alllji(X) for X E !1. In (1.5), G(x,X) and B2x G(x,X) are 
given by (11.6) and 11.7) rather than (II.8) and (11.10). 

III. Numerical Examples 

In our first numerical example we use the fundamental 
solution of the biharmonic equation to construct a solution, and 

11 

use it as a benchmark to test our algorithm and to check the 
accuracy. 

Example 1: 

Let 

ljJ (X) =-
1
- {100jX-X1j'InjX-X1j+40jX-Xzi'IniX-Xi 

8n 

+30jX-X3j'InjX-X3j +20jX-X4j'InjX- X4i} 

where 

( -1.5, 1.5), X2 

(3.0, -3.0), x4 
(2.0, 2.0), 

( -2.5, -2.5) 

which all lie on the outside of !1, so lji(X) is a solution of the 
biharmonic equation. Therefore we can use lji(X) together with ljJ 

and J!i. on an to test our algorithm. Table 1 shows the accuracy 
an 

of ouralgorithm. 

Table 1 
[N=10, X;=(l,6;)] 

Numerical solutions 

I 6; (u=O.Ol) (u=0.06) Exact sol. 

1 0.0000 71.6540 73.3192 71.4053 

2 0.5236 70.9516 72.6101 70.7080 

3 1.0472 70.6752 72.3307 70.4318 

4 1.5708 70.9193 72.5770 70.6739 

5 2.0944 71.5304 73.1943 71.2830 

6 2.6180 72.2201 73.8906 71.9695 

7 3.1416 72.7990 74.4749 72.5443 

8 3.6652 73.2363 74.9163 72.9798 

9 4.1888 73.5136 75.1966 73.2561 

10 4.7124 73.5335 75.2169 73.2758 

11 5.2360 73.1931 74.8730 72.9359 

12 5.7596 72.5037 74.1770 72.2495 

From the above, we can see that using smaller u (the Poisson 
ratio) will yield a higher accuracy in the example. When XED but 
very close to an, especially when X is very close to one of the 
end points of those arcs partitioned on an, the error in the 
computation of lji(X) becomes comparatively larger. As we 
observe in (II. 7) we believe that this 'is due to the log term and 
the last term in (11.7). This is related to the boundary layer 
effect. To overcome this difficulty we use a quadratic interpola­
tion. Note that lji(X), X E an, is given when X is very close to an, 
lji(X) is also very close to lji(X) from some X E an. Let X E n be 
the point very close to an, at which we try to evaluate lji(X). Let 
Arg(X) be the argument of X. Then the point X0 = (R, Arg(X)) 
is on the boundary and 

IX-Xol = distance (X, an) 

As lji(X), X E an, is given, we know lji(Xo) exactly. Then for XI 
= (R-6R, Arg(X)) and X2 = (R-26R,Arg(X)), we compute 
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lji(X1) and lji(X2) through (1.5) since X1 and X2 are not close to 
an. \jl(X1) and \jl(X2) are comparatively accurate. In our 
numerical examples, we take LR = 0.01. Now we can see that 

1 

all these four points ~h X, X1 andX2 have the same argument 
Arg(X), so they are on the same ray. Along this ray, through 
(Xo,lji(Xo)), (XJ.Iji(X1)) and (X2,\jl(X2)), we use quadratic 
interpolation: 

to approximate lji(X). Table 2, Fig. 3 and Fig. 4 illustrate the 
improvement by interpolation. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Table 2 
N 10, XI = (0.499,ej), u 0.01 

6i Numerical Solution thru Exact 
solution interpolation solution 

0.000 73.1948 73.2178 73.2176 

9.5236 70.2769 72.1016 72.0167 

1.0472 69.3203 71.6355 71.5960 

1.5708 69.3975 72.0201 72.0198 

2.0944 70.7693 73.0889 73.0496 

2.6180 72.2664 74.1288 74.0884 

3.1416 74.8129 74.8417 74.8416 

3.6652 73.5625 75.4677 75.4216 

4.1888 73.5453 75.9338 75.8933 

4.7124 73.2659 76.0394 76.0394 

5.2360 73.2659 75.6569 75.6162 

5.7596 72.7042 74.6170 74.5774 

SOLUTION ERROR COMPARISION 
FIG-3 
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SOLUTION ERROR COMPARISION 
FIG-4 
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Fig. 5 is the graph of the exact solution and Fig. 6 is that of the 
numerical solution. By comparing then we have a visual display 
of the accuracy of our algorithm. 

THE NUMERICAL SOLUTION 

FIG.6 THE EXACT SOLUTION 

30,0 

77.5 

75.0 

7 2.5 
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Example 2: 
As the second numercial example. we solve the following 

bihormonic equation 

6'tjJ(X) = () X E n. 
t!J(X) = I 0 sin2!J X E an. X=(R.!J) 
iJtjJ(X) 
-- = 10cos2!J X E an. 

an 

which does not have any known exact solution. 

Table 3 shows certain numerical values of the solution. 
Graphical representation is given in Fig. 7. 

Table 3 
N 10. X; [:',,!l;]. u=O.Ol 

fl; Numerical 
solution 

I (). 0000 -0.5916 
2 0.5236 5.6260 
3 1.0472 6.2457 
4 1.5708 0.6002 
5 2.0944 -5.6564 
6 2.6180 -2287 
7 3.1416 -0.5915 
8 3.6652 5.62{)0 
9 4.1888 6.2457 
10 4.7124 0.6002 
11 5.2360 -5.6564 
12 5.7596 -6.2287 

FIG-7 THE NUMERICAL SOLUTION 

-10 

R.o.s F1 • ~OSI:"f(~CT) 

Example 3 

We solve 

6'tjJ(X) = 0, x En. 
tjJ(X) = 10 sin!J x E an. X (R.!J) 

atjJ(X) 
= 10 cos 3!J 

i:ln 

13 

Table 4 gives certain numerical values of the solution. 

Table 4 
N 10, X; = [Ul;]. u 0.01 

fl; Numerical 
solution 

0.0000 -0.1535 
2 0.3927 3.11916 
3 0. 7854 2.4284 
4 1. 1781 -1.4241 
5 1.5708 -3.6167 
6 1.9635 -1.3065 
7 2.3562 2.6455 
8 2.7489 3.4754 
9 3.1416 0.1535 
10 3.5343 -3.1916 
11 3.9270 -2.4284 
12 4.3197 1.4241 
13 4.7124 3.6167 
14 5.1051 1.3065 
15 5.4978 -2.6455 
16 5.8905 -3.4754 

A graphical representation is shown in Fig. 8. One can clearly 
see the periodicity of tjJ in the figure. 

FIG-8 NUMERICAL SOLUTION 
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