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ABSTRACT

In this paper, the spectral relations of the Fredholm integral equation of the first kind for the mixed problems with singular kernel

are obtained.

INTRODUCTION

In the displacement problems (in the theory of elasticity)
of the anti-plane deformation of an infinite rigid strip with
width 2a, putting on an elastic layer of thickness h; or (in
hydro-dynamic) immersed in a viscous fluid layer of deep h,
we obtain the integral equation

a
- [t(&)In|th E%ldé‘ -G (L.1)

a

where G is the displacement magnitude, T ({) and is the
unknown displacement stress. In the mixed problem G is a
variable function, and we have the integral equation

a

[k(lx-y1) ¢ (y)dy = f(x)

-a

(1.2)

which represents the Fredholm integral equation of the first
kind with singular kernel at x = y.

In paper [1] the different methods, Fourier transformation
method, Chebeshev polynomials, Potential methods, singular
method (Cauchy method) and Krein's method, for solving
(1.2) are given. Also the authers proved that Krein's method is
the best and has a large field of applications in the theory of
elasticity and visco-dynamic problems.

In this paper Krein's method is used for obtaining the
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spectral relation of the Fredholm integral equation of the first
kind under certain boundary conditicns.

FORMULATION OF THE PROBLEM

Consider the integral equation

?k(%)l’(y) dy = nf(x) (A = —Z-e(o, w), |x| € a) (2.1)
under the conditions
T i 7 ths ist
(1) JP(y)dy = P < o k() = . —eas (2.2)

—c0

where A is a parameter, P is a constant, f (x) (displacement
magnitude) is a known function belongs to the class of
continuous function C [-a, a] with continuous first derivatives
in [-a, a], while P (x) (displacement stress) is unknown
function. When A is very large (i.e. A — ) the second
condition of (2.2) takes the form

; 42
EDy=—in)y-x| +d,d=1In"= (23)
A y/

which has a singularity aty = X

As the same way of [1], we can establish the general
solution of (2.1) under (2.2) and (2.3), using Krein's method




Krein's method in the singular mixed problems

in the form

d

P+( ) J(d) 1 2 du d_‘
u

V= 7r[1n;'2+d] Va? - 32 _"7;,‘[\/“2 -2

[u d 'J [+ ()dy

du o i Z )7
and

a

24 _ude L Q) | (2.5)
= T dx£ u2—x2£ u2—y2
where

_ ol fan dy 2 d 5 f(dy 2
J(u) = 2 £—-———-————m + uIn(u+d) ™ £———m (2.6)
fix) = fo(x) + f(x) , P(x) = P(x) + P(x)
(Ji(=x) = 2 fe(x)  , Py(=x) = 2Pi(x),x € (-a, a)).

Now, we are going to obtain the spectral relations of (2.1)
using (2.4) and (2.5) when the known function takes the form
of Chebeshev polynomials.

METHOD OF SOLUTION

The solution of the problem can be derived in the
following theorem.

Theorem 1.

The spectral relations for the Fredholm integral equation of
the first type with the kernel defined by (2.3) take the form

Zr.x, n=1,2,3...
2n

n(in2+d)" , 3.0

n=0

‘ Tou(s)
—Inlx-s|+d]| AL ds =
_fl[ Jx- sf+d] Ji-s
when Ty, (x) are Chebeshev polynomials of order n. the proof
of (3.1) depends on the following way:

For all positive integers n, the values of J (u) have the
form

J,u) = 2nBP,§”'°)(zu2 -D+nu?In (§+d). PloD (22 —1)] 3.2)
where Pp (<, B) (x) are Jacobi polynomials of order n (n >, o;
Py (= B) > 0).

To prove (3.2), let f4 (y) = T2n (Y) in (2.6), where it may
take the form

2 d
J () = 2 |:I,,(u) + uln (-u—+d) ;1-4- In(u)] y (33)
where
YTy (s) ds
1, = Sl 3
;[ u? —s? @4
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Using the famaus relations [2] between Chebyshev
polynomials, Legender polynomials and Jacobe polynomials,

1
}(2.4) J -2 Y% T,(0-yydt = er-[P,,(I—y)+P _U=-»}
-1

2P,(-1,0) (x) = P,(x)~ P,_;(x)e (3.5)

where Pp (x) Legender polynomials of order n. Using the
substitution s = ut together with the relation Tpp (x) = Ty

(2x2 - 1), the formula (3.4) takes the form

1
oLy
Ly, = o d=1%) 7 T (2 -1y dr (3.6)

In the veid of (3.5) the previous formula and its first
derivative take the form

In ) = gpn(—l’o) (2“2 =1).

(3.7)
and
dln ,
du T Pn-l(()’l)(z" ~D(n=12..) (3.8)

The required result of (3.2) is obtained, after introducing (3.7)
and (3.8) in (3.3).

Putu =1 in (3.2), we have

I (-
I = 271'[5}”(1 LYYy 4 nin2+ ), Pr(l"_’lj) (1)], (3.9}

Using the famous relation [3]

Lin+a+l)

nIrd+a) (3.10)

(a, By, _
Pn 0 =
equation (3.9) takes the form

Jn(l) = 2nin(2+d). (n=12...) (3.11)

where I (x) is the Gamma function.

Corollary:
d

dIn
o (=)

The second derivative of 7 («) (1,([2) (u) =
du

can be obtained in the form

2
12wy = 2nnu[P,(2‘f’f)(2u2_1) + (ne 12 pb2) (Zu2—1)] (.12

Now, we are in a position to evaluate the integral

i

du d

22 du

d

“r, (s)ds
An(x) = | u | 2n i
du oVu? _ 2

X

(4.1)
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Introducing (3.12) in (4.1), we have

Ly ploD) 2,2 -
A(x) = 2nm f#

X V/;2 -x

1u3 P(]’g)(Zuz - Bdu
> du + (n+]) [—Bee

x

e

NI,
(4.2)

Assuming 2u2-1 =y, 2x2-1 = t; we can write (4.2) in the form

1 ,
Am= fP’("o“ﬂ? @ nlnt Dy Iy p Y (v ay
U2, Ayt Wz Wy

+n(n+1)1‘P,(lI:§)(y)dy
2T, At

Putting y = 1 - (1-t) 7, then (4.3) becomes

7(4.3)

mn

An(t) = NG

3
It J(1-5) 2P0 1 (1) <lar +
o

rn(n+1)
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1 1/
NI § (17 72 PP ny 1Y dre
Q

1 )
n(n+1) (-n3'? | (I~r)/2P’(1];22)[1‘(1‘[)T]dT

P . (44)

Using the famous formulae [2]

N ple B (1 myan =

:F(a+n+1)F(JL)F(§ ),Fz(-n,n+(x+B+1;l,Ol+1,/l+§,'l)
nIC(I+o)l(A+ ) ° 2

(ReA > 0; Re& > 0) (4.5)

and

p,('“'ﬂ)(y) = L"*"‘]F(~n,n+a+ﬁ+1;a+1; i_z—y), (4.6)

“where 3F2 (o<1, o2, *«3; B1, B2; 2z) is the generalized

hypergeometric series, and F (e, B; T, z) is the
hypergeometric Gauss function, the first term of (4.4) can be
written in the form

NE (= D! o

Tep_ytplodrg_cy_ = )
[fa-nPelli-(-nrHr = oy () (4.7)
By using the same way, it is easy to prove that

Jo (1- /AP (1= Tt =

_ =Nrlr(=1D) iz L

T2y ! (1-2t)+ 2% - 1) (48)
and

I (1-0)* PP - (U= tyThiT =

e LAGRDL PAB (1)+ (4.9)

T Tx ).+ D=1 it I)l-1)
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Introducing the last three formulae (4.7), (4.8), and (4.9) in
(4.4), after some algebra, we obtain

3/2
' 4n! 1 I-y (4.4
A = . P 2:/2)
"= - T (]—y)[Zn—] nei -
— N2nm
L+ PP ) 0= 27 -Ln=12,...) (4.10)

For writing (4.10) in Chebyshev polynomials form, we must
use the famous formulae [2,3] relations:

PUATA (252 ]y = Lin+ 2)(4) %’(;/211})’1) ch ), (5.1)
PAAEY (257 1y = ——————\/I;;;'(;/Zji (i)z) C (), (5.2)
and

i PG @ = 2T, () (n=12,..) (5.3)
Substituting these formulae in (4.10) we have

A = LT s (5.4)

1-x°

Introducing (5.4) and (3.11) in (2.4) then the theorem may be
proved.

By using the same way we can try to prove the following
theorem.

Theorem 2.
The spectral relation. for the Fredholm integral equation

with the kernel defined by (2.2) and the known function is
odd is given by

i
T
j] [—In!x - s[+d]T2,,_,(s) ds = T_]TZ,,_,()C).

(n=12 ...

REFERENCES

Mkhitariap, S. M. and M. A. Abdou, 1989. On
different methods for solving the integral equations of
the first type. Dakl. Akad. Nauk Armenia.

(1]

Gradchtein, I. C. and 1. M. Reguk, 1971. Integrals
Tabels, Summation, Series and Derivative, Nauk
Moscow.

[2]

Bateman G. and A. Ergelyi, 1974. Higher

Transcendental functions T. 2 Nauk Moscow.

(3]






