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ABSTRACT

In this paper we present a family of biorthonormal wavelets generated by a MRA orthonormal
wavelet, which possesses two arbitrary parameters. Then we discuss new expressions of
reproducing kernel as well as the corresponding Mallat's reconstruction and decomposition
algorithm with respect to the family of biorthonormal wavelets.
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1 Introduction

o~

All over this paper, we denote the Fourier transform of f(¢) by f(w), 3 = _§ , and

n oo

Frn(t) :=2% F(2™ —n), m,n € Z.

LP(R) (p > 1) denotes the family of functions f(t) satisfying 70 |f(t)|Pdt < oo.
In L?(R), the inner product and the norm are defined by

N

(f,9)= [ 103, 1 £ 11- (/ |f<t>|2dt) ,

—00

and the Parseval identity [1]

(f(),9®) = (Fw),§w)), f.9 € L*(R)

holds. L2 denotes the family of functions f(¢) satisfying

nw
/|f(t)|2dt< oo and f(t+27) = f(1).
-7
In the recent ten years, wavelet analysis has drawn attention widely from both mathemati-
cians and engineers. Wavelet analysis presents a kind of new bases for representing functions
(signals). Y. Meyer [2] constructed the first orthonormal wavelet whose dyadic dilations and
integer translations constitute an orthonormal basis for L2(R). Later on, in 1989, S. Mallat
[3] introduced the important concept of multiresolution analysis (for simplicity, MRA) of L*(R)
which is the best approach for constructing the orthonormal wavelets. Here we introduce briefly
the theory of MRA [3,4,5] which will be used heavily in this paper.

Definition. Let {V,,}.cz be a sequence of the closed subspaces of L?(R) satisfying the fol-
lowing:

(1) Vi C Vi1, m € Z; —U—Vm = Lz(R)v N V= {0}

mez meZz
(11) f(t) < Vm A f(2t) € Vm-l—l: meZ.

(iii) There exists a function ¢(t) € Vg such that {¢(t — n)},ez is an orthonormal basis of V.
Then {V,,} is called a multiresolution analysis (MRA), and ¢(¢) is called an orthogonal scaling
function.

It is clear by this concept that there exists a sequence {a} : T |am|* < oo, such that

59(2) = X anplt —n) (L(R). | )

Equation (1) is called the bi-scaling equation and the coefficient {a,} is called the impulse
response. Taking Fourier transform of (1), it follows that

P(2w) = m(w)@(w), (2)
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where m(w) is called the transfer function

m(w) =D ane™™ (L3,), (3)

and m(w) satisfies the identity

| m(w) 2+ | mw+7)|?°=1, ae. wER. (4)

Theorem A. Let the function () satisfy the condition

~ e W W _

p(w) =e2m(5 +7) ?(5)- (5)
Then {%mn(t) }mnez is an orthonormal basis for L?(R).

The function 9(t) is called a MRA orthonormal wavelet. The formula (5) is a basic formula for
finding an orthonormal wavelet.

From this, one obtains the orthogonal decomposition for L?(R) as follows.

Let Wy, = 3pan{¢mn(t), n € Z} (where ”span” is a closure of linear combination). Then
{¥mn(t)}nez is an orthonormal basis of W,,,, and {W,, },nez possesses the following properties:

Wm_‘_Wm+1, f(t) < Wm g f(2t) < Wm+1,

and
Vi @ Wi = Viny1 (€ denotes orthogonal sum), L*(R) = P W (6)

m

However, for decomposition and reconstruction of the functions (signals), the orthogonality of
bases is not very important, so one turn to discuss the bi-orthonormal wavelets [4].

Let {gn(t)} be a sequence of L?(R) and V = span{g,(t),n € Z}. If there is a pair of positive
constants A, B such that

A len P<I X cngn(®) IP< B [ |?

for all 3 | ¢, |2< o0, then {g,(¢)} is called a Riesz basis of the subspace V of L?(R)P!

All Riesz bases can be obtained as the images of the orthonormal bases under the bounded
linear operators. Riesz bases are the next best bases to the orthonormal bases.

Let g(t) € L*(R), gn(t) = g(t — n) and V = 3pan{g(t — n),n € Z}. It is well known [5]
that the sufficient and necessary condition for the fact that {g(¢t — n)}ncz is a Riesz basis

of the subspace V of L?(R) is that there exists a pair of positive constants A, B such that
ALY | gw+2n7) >’< B, ae. w€ R.
n

Theorem B. Let {g,(¢t)} and {h,(t)} be two Riesz bases of a subspace U C L*(R), and
(9ms n) = S Then £(2) = 5(f, gu)n(t) = A, n)in(?) for amy f € U.

3
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Definition. Let ¢ ((¢), @ (t) € L*(R). If both {¢{), (1)} and {{Z,(t)} are Riesz bases of
I2(R), and

(1/}’%7 ( ) wfr?)n/( )) - 6m,m’ n,n’ (m,m/,n,nl € Z),
then {¥M(2), 9@ (t)} is called a biorthonormal wavelet Plof L2(R).

In addition, it is well known*®! that the sufficient and necessary condltlon for the fact that the
{f(t— n)}ne z is an orthonormal system of L?(R) is that

S| flw+2nm) = ;;, a.e.w € R. (7)

For a given MRA, we have known that there exists always an MRA orthonormal wavelet 9(t). In
this paper, based on (t), we construct a family of bi-orthonormal wavelets {T®47)(¢), W4 (1)}
with two chosen arbitrarily parameters [,r. Further, with help of them we give new expresses
of reproducing kernel for orthogonal complementary space W,,, and discuss the corresponding
Mallat’ algorithm with respect to them.

2 Main Results

In this paper, first we give the following two theorems.

Theorem 1. Let {V,,,} be a MRA of L2(R), ¢(t) the corresponding orthogonal scaling function
and 1(t) the MRA orthonormal wavelet based on ¢(t). For I € Z,| r |< £ (r € R), set

WOUE) = Y1) + (e +1) — bt~ D), W) = D S ()4l - 2), (8)

n=0 k=0

where C)" = W’_n), Then {TME0 (1), W21 (¢)} is a family of biorthonormal wavelets of
L*(R).
Next, we give new expressions of reproducing kernel and new reproducing formulas of W,,.
Let . .

rO®) (2, 1) = 27§ (2ma, 2m8), G Ak (5, k =1,2),

m 0
where r§™ (z, ) = 5 Pl (t — n)WELr) (x — n).

Theorem 2. Under the assumptions of Theorem 1, suppose further that
(i) The MRA orthonormal wavelets 4(t) = O((1+ | ¢ |)~**9) (e > 0).

(i) (P(w))® e L'(R) (i =0,1,2,3).

Then, for any h(t) € W,,, the following two equalities hold

o0

h(t) = /h(w)r,ﬂ{’k)(x,t)dx, 4k (G k=12).

—C0

The above two equalities are new reproducing formulas of W,,, and r9*)(z,t) are new expres-
sions of reproducing kernel.

Then, we discuss the corresponding Mallat’s reconstruction and decomposition algorithm.




Mu Lehua

In order to prove Theorem 1 , we need two Lemmas.

Lemma 1. Let W\ = span{ W@t (t), n € Z} (j = 1,2). Then {TYLD ()} nez is a Riesz
basis of the space W) (j =1,2) and W) c V,, (j = 1,2).

Proof. First we prove that {\If%’,i{)}ne 7z is a Riesz basis of the space W{J).

Since WL (¢) = 2% WL (2™ — p), their Fourier transforms are

{I\j(jvlvr) (w) —_ 2—%(1}(j,l,?") (_

For the case j = 1, we consider a sum ¥ | ‘i@%lﬁ”) (w+ 2vm) |2.

On the one hand, by (9), we have

r 9-m = 11n,W T 2vT
DTG (W +2vm) P= 27 3 | I () P

e
v y 2

Taking v = 2"k, 2"k + 1, 2™k 4+ 2, ...,2™k + 2™ — 1, k € Z we can split the integers v € Z
into 2™ groups , corresponding to this, the sum on right-hand side of the above equality can
be split into 2™ sum , that is, it can be rewritten by rearrangement of the terms in the form

3 Proof of Theorem 1
l

N 2
S UG (w + 2um) |P= 27 m{zw“” + 2km) |2+Z|\If<1”>(“’;r T 2km) [P+

(27

’ +Z@<1,z,r>(w+2 . —Um +2kr) °}. (10)

On the other hand , taking Fourier transform in the first formula of (8), we have

T () = (W) (1 + 2ir sin(lw)). (11)
Again, by (5),

T () = e m (2 +7m)P (2 (1 + 2irsin(lw)), (12)

and so
Si(w) =) | GO (4 4 2km) [P=| 1 + 2irsin(lw) |2 51(w), (13)

k

where

Zlm + kr + )@ (2—|—k7r)| : (14)

Splitting the odd and even terms of the sum on the right-hand side of (14) and noticing that
‘ m(w) is a periodic function with 2r—period, we have

+2ur — ) ?

W
Zlm —|—2V7T+7r)g5(2+2mr |2—+—Z|m +2V7r)cp(—2—
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=|m +7T lzzlso +21/7T)|2+|m 122|<P S twr—m) 2.

Since ¢(t) is an orthogonal scaling function , by its definition and (7) we see that

leo + ) = 217T, leo

From this and (4),

2 1
wT 7T—|—2V7T):—,a.e.wER.
27

s1{w) = gy Qe W E R.

Again, by (13), we get for almost everywhere w € R,
Si(w) = 3 | T (0 + 2km) P= §5|1 + 2ir sin(lw)[2.
T

Combining this with (10), we obtain for almost everywhere w € R,

27

~ 2-m
S TE (w + 2um)? = 77;{|1 + 2i7"sin(l2£ﬂ;)12 + |1+ 2irsin(lw Ll )2+
o w+202™ = D
+|1 4 2irsin(l o )*}.
Again, in view of 1 — 2 | r | <| 1+ 2érsin(ly) [< 1+ 2| r |, we obtain
(1=2r]? - 14+2]r])?
(—# <> \I/%lﬁr)(w + 2um) |°< g—t#—,a.e.w €R

According to the sufficient and necessary condition for the fact that it is a Riesz basis , we
know that {¥{Lr)(¢)} ez is a Riesz basis of the space Wb.

Similarly, taklng Fourier transform in the second formula of (8), and using the binomial formula

(a+b)" = Z Cra*b"* and the summation formula of geometrical series 1= = Z 2" we get
k=0
by (5)
{1}(2,l,r)(w) = 3 '@(w) Y Ck(retlw)r—hk(—pe-ilo)k
n=0 k=0
= ¢(w)(1 — 2irsin(lw))? (15)

= e "sm(¥ + 1) §(£)(1 — 2irsin(lw)) .

Again, replacing (12) by (15), and then going along the above derived line , we can also prove
that {47 (t)}nez is a Riesz basis of the space W?.

Next, we prove that W) C V41, j =1,2.

Set
mM(w) = e “m(w + ) (1 + 2irsin(2lw)), (16)

m®(w) = e “m(w + 1) (1 — 24rsin(20w)) ™, (17)

where m(w) is stated in (3).
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Since m(w) € L3, it is clear that m@(w) € L2, j = 1,2. So we can expand them as follows:
mP(w) =3 6Pe™ (L3,), j=1,2.
From this and (16), (17), we see by (12) and (15) that

T (W) = Y B0 3(2) (LA(R)), j=1,2

2

Taking inverse Fourier transform of the above formula , we have

Pl 225(” (2t+n) (LXR)), j=1,2. (18)

Further,

m+2

VR0 = 280002t =) = S ) p(2mH — k)

= SV kpmini(t) (IA(R) (ne 2),5=1.2,

Because 0r,114(t) € Viny1 (k € Z), the above equalities show that
VI(t) € Vimy (n€ Z),5=1,2.

By the definition of W,(nj), we know that WO c V.4, j =1,2.
So the proof of Lemma 1 is completed.

Lemma 2. W) = W, (j = 1,2).

Proof. For the case j =1, let

mD(w) + mM(w + )
1+ 2irsin(2w)

m(w) + m(w + )

() = _
W) 1+ 2irsin(2lw)

h? (W) =

1 1 _
1O (w) = oV (w) - ”_L( Mw+ . B () = _gwtUw) —m(w 7).
1 + 2ir sin(2iw) 1 + 2irsin(2lw)

By (4) and (16), we get
m(w)mD(w + 7) — m(w + mImP (W) = —e (1 + 2irsin(2w)) #0, ae. w€ R

and so .
m(w)hP (W) + mD ()P (w) = e™*,

m(w)h® (W) + mO(W)AD (W) =1, ae. we R (19)

On the other hand, noticing that both m(w) and m™® (w) are periodic functions with 2r—period
and [ € Z, it is clear that A (w) (j = 1,...,4) are periodic functions with 7—period, and so we
can expand them into Fourier series as follows:

h(]) Z,Y(J) 2inw ] — 1 4)
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From this and (19),

27(1) 2ime (@) (w )Evéi)emw —e ™, ae w€R,

n

27(3) 2inw 4, (1) (w) nyéi)e%"“’ =1, ae w€R.

n

Replacing w by 5= in the above two equalities , and then multiplying by

~y W ik
@(2m+1)e i (k€ 2),

we obtain by (2) for almost everywhere w € R

1) — my, w L, W 2) —i(k—m)2 "w
2m 27() ik=n)2” +m(1)(2m+1)¢(2m+1)27§n)6 (k=n)2

W —ilkaLyo-m

90(2m+1)e (htg)27"e,
o~ w 3 _ m w —~ w 4 —i(k— —m, o~ w —iko—m
Plm) 2 stk “+m(1)(W)¢(W);7§J6 (b2 = P )

But, by (12) and (15-17), we know that
VO W) =mP(3) B(5), 5 =12 (20)
So, for almost everywhere w € R, we have

2 27 p—ilk—n)2 " \Tl(l’l’r)(Qi) 2752)6—1'%—71)2—"@ _ (2W+l)e—i(k+§)2‘mw
m m mn m ’

n

)

—i( My ST ry W 4) —i(k—n)2""w ~ W —tk2™"w
B T B2 s

Again, taking inverse Fourier transform of the above two equalities , we obtain for k € Z,

Z%k 2n(pmn +Z’sz QnKIJﬁrlzilr ) \/_80m+1 2k+1(t)

Z 752)—2n90m n + Z 72]@ 2n\Ij£r}a f’lT ) = \/_2_30771-1-1,2]0 (t)
n

Since {@m+1.4tnez is an orthonormal basis of Vi1, the above two equalities mean that

Vine1 C Vip + WD, (21)

By the definition of MRA , we see that V;, C V1. Again, by Lemma 1 we see that W c
Vm+17 50
Vi + WO C Vi1

From this and (21) ,

Vi1 = Vi + W (22)
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Similar to the derivation process of (22), we can also obtain
Vinsr = Vi + W (23)

Below, we shall prove that V,, LW (5 = 1,2).
Using the Parseval identity and the definition of inner product,we get

j L, CAGRRS ~ lr
(V) Pmal®) = (F95(w) , B / GO ()P () do
Again, by (9) and $mn(w) = 272 §(52 )e 27 we get
(\Il(j” (t), omn(t))=2"" / GOLT (9™ ) B2 mw) =R Wy,

But, by (2) and (20), the last term of the above formula (24) equals

W) GO ()t =Ry =: G, (24)

S = I mOGmE)|a(g) e
(2v+2)m ) .
= =T MO W | B(5) P e Hede

27
= [P (wdw, k,ne€ Z,
0

where

Zm(’ +V7T (

Replacing | m(% +vr+7) |* by m@ (% +vm)m(2 + vr) in (14) and passing a direct calculation
which is similar to s;(w), we can obtain by (16) and (17) that s(w) = 0. Combining this with
(24), we get

(L), malt)) =0, kineZ, j=1,2.

m,k

Since {\I/glkr) (t)}rez is a Riesz basis of W9 and {@mn(t)}nez is an orthonormal basis of V.
The above formulas show that W) 1V,,, j=1,2.

Again, by (22) and (23) we know that

m+1 =Vn @Wr(rfa ]:112

Finally, by (6), we obtain
WY =w,, j=1,2

This completes the proof of Lemma 2.
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Proof of Theorem 1.By Lemmas 1 and 2, and L*(R) = & Wi, of (6 (6), we can conclude using

the definition of Riesz basis that {¥UL) ()} ez (7 = 1,2) are two different Riesz bases of
L*(R). .

In order to prove that {T(A)(¢) WEEN(4)} is a family of biorthonormal wavelets of L*(R),
by the definition, we need only to prove that the equality (¥{L4™ \Iffi,l,:,)) = Op,m'On s holds.

Case 1: m =m/. By (11), (15) and (5), we have
GO (@) TE(w) =] ) (29)

Using the Parseval identity and the definition of inner product, we obtain by (9) and (25)

m,n -

(W (E), WD (1) = (B @), B @) = [ [9) [P e do = 85 (26)

By the definition of the subspace Wy, we know that {¢(t — n)}necz is an orthonormal basis of
W, so we get by (7)

> P(w + 2vm) 2=

and the integral Ss in (26) is calculated as follows:

2(v+1)m
=Y [ 19 P = /Z | B+ 20m) P e
v 2vn )
27 -~
1 - 7
- _2—7? ‘O/e—Z(n—n * dw = 5n,n’-

Combining this with (26), we get

(TEEO (L), C2D (1)) = b

m,n

Case 2: m #m/. In view of W,,,LW,/, noticing that
VA @) e WD =W, VED 1) e WD =Wy, non' € 2,

m/,

it is clear that (W{AN(¢), g (t)) = 0, and hence the proof of Theorem 1 is completed.

m' n'

4 Proof of Theorem 2

To prove Theorem 2, we need the following two lemmas.

Lemma 3. Under the condition of Theorem 2, then

OL (¢t — )T (2 —n) = O((1+ |z —t N3+ |z —n)72), j#k(,k=1,2).

10
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Proof. On the one hand, by the condition (ii) and noticing that the functions

1
—leZz
, lrl<2,

and their derivatives are all bounded with respect to w, we know by (11) and (15) that

(@(j,l,r)(w))(i) c LY(R) (1=0,1,2,3).

1+ 2irsin(2lw), (1 — 2irsin(20w))~*

)
On the other hand, by the condition (i), we know that v(t) € L'(R) and t*y(t) € L'(R).
Further, (/(w))" is continuous on R. So we obtain from (11) and (15) that (UGA7)(w))" is
continuous on R.

Combining the above two results, using the property of differentiability of Fourier transform
[1], we get that the Fourier transform of (DGAD)” jg  equal to (7t)® multiplied by the Fourier
transform of W47 (w). But the Fourier transform of WG " (w) is just equal to WOL)(—¢), and
so the Fourier transform of (UU1)” is equal to (it)3W 040 (—¢).

Since (TGLD (W)Y € L'(R), by Riemman-Lebesgue Lemma [1], Fourier transform of (047 ()"
tends to zero when |t| — oo. Again because it is continuous on R, the Fourier transform of
(UL (w))" is bounded on the whole real axis R.

From this, we know that
VO = O((1+ | £ )P, =12
Again, using the inequality
A+ la)A+1b]) 21+ a~b],
we obtain the conclusion of Lemma 3 immediately.

By Lemma, 3, the following lemma is clearly true.

Lemma 4. Under the conditions of Theorem 2, let

. N -
K}(\Jf k) (1) = Z‘I’(] L) (t—n)OED(z —n), j#k(,k=12). (27)
-N
Then
) K§(2,t) = O((1+ [z — £ )7#)
(i) the series
r(]’ Z\I/(Jlr) \I/(klr)(l'—n) ]#k (]7k= 172) (28)

converges uniformly on every bounded closed interval in R for fixed ¢ € R with respect to z.

Proof of Theorem 2. Let h(t) € W,,. By the property of {W,,}, h(t) := h(z%) € Wo. Again
by Lemma 1 and Lemma 2, we know that {UU:b7)(t —n)},j = 1,2 are two Riesz bases of W,
and (WA (t — m), \11(2“")( —n)) = dmn. By Theorem B we find

h(t) = 3O — ) (L(R)), 5 # K (5,k=1,2),

11
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where

0 = [ BT - myds, k=12 (29)

N .
Let SU° () = 5 dBOWE A (t — n). By (29), we can rewrite them in the form
iy

400 = [ hKEY @ ndr £k G =12),

where Ky @ )(x, t) s given by (27). Consider the deviations:

Sg() ~ 771(x)réj’k)($>t)dx = 7h< HER P (@,8) = 1§ P (2, ) }da.

Because (1 + y)_% — 0 (y — o0), for given n > 0, there exists My such that (1 + Mo)_% <.
So, fixing My, we split the integral on the right-hand side of the above formula into two parts

SO (8) — 7%(@ G0 (2 )dz = I, (t) + Ly(t), (30)

where
he = [ M@K @)~ 0)de,

|1) t|SMO
Iy(t) = / R(@){ K (@,t) — 1§ ™ (2, ) }da.
|CL‘ t|>M0

First, we estimate I(t).

By Lemma 4 and (28), we know easily that r§P (@) = O((14 | 2 — ¢t )=2). Using Cauchy’s
integral inequality, we get

I(t) = O((1+ Mo) ){ [ | h(a) | do- /(1+ | o —t |)"2dz}b.
and hence ~
L(t) = O((1+ My) #)V2 || A . | (31)

Next, we estimate I (t).

By Lemma 4, we know that for fixed ¢, Ky () (z,t) converges uniformly to r(] )(a:, t)on |z —t| <
M. So, for given n > 0,

\KSH (2,8) —r§ P, ) <m, |z —t] < M,

19
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when N is large enough. Using Cauchy’s inequality, we get

n@i<n{ [ d /rh|2dx}2<m/2Mo||hn

|sc t|<M()
From this and (30-31), we obtain S¢™" (t) — f h(z)rd ™ (z,t)dz, N — oo.

On the other hand, since S$*(¢) — h(t) (L3(R)), by Riesz’Theorem, we know that there
exists a subsequence {N;} such that S “)( t) — h(2).

Thus, by the uniqueness of limits, we obtain 7L( t) = f h( ) (:c tydz, j #k (j,k =1,2).
Again, by the definition h(t) = h(55), they are rewritten in the form

oo} 0

h(é%) = [ hm 19w, e = [ h(e)2mr§ @n, t)dn

— 00 —o0

Replacing zim by ¢, and using (28) we obtain

h(t) = / h(z)2m§P (27, 274 dx = / h(z)r@®) (2, t)dx,

where 70 (z,t) = 2mr(()j’k)(2m:1:,2mt), J # k (j,k = 1,2), and so we complete the proof of
Theorem 2. '

5 Algorithm

In this section, we give the corresponding Mallat’s reconstruction and decomposition algorithm
with respect to the family of biorthogonal wavelets {¥(47)(¢), WZLr)(2)} based on the MRA
orthonormal wavelet (t).

5.1 Reconstruction Algorithm

Since {@m+1.(t) }nez is an orthogonal basis of V1, for each f(t) € Vi1,
f t) = Z C?—Hspm—l-l,n(t)’

where ¢ = (f(t), omi1a(t)),n € Z.

By the concept of MRA, we see {@m.(f)}nez is an orthonormal basis of V,,. By Lemmas
1 and 2, we see that {UU")(t)},ez, j = 1,2 are two Riesz bases of W,,. Again, because

Vint1 = Vi @ Wi, we know that {p,,,(¢), \I/(J” () }nmez, 7 =1,2 are two bases of the space
Vint1- So, for f(t) € V41, we have ,

= A Omn(t) +Zd’“m>\11<ﬂ”> ®), k#j, kj=12
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where ¢ = (f(t), omn(t)), di™ = (f(£), ¥GR0(1) k=1,2.

Hence

Z m+1‘70m+1n = Zczwmn ‘|' Zd(k m)\I/(JlT) )7 k 7[‘_ J (k7j = 172) (32)

n

But by (1) and (18), we know that

§0m,n(t) - Zpu—QnSDm—i-l,V(t) (pn = \/ian)- (33)
VI = 3 6 onpmira(t) (6 = V269) (G =1,2). (34)

Combining (33) and (34) with (32), and then interchanging the order of the summations, we
have

Zc Yomiin () = 3 S (Ppyan + ™D s omir (1), Kk #5(k,§=1,2).

So by equating the coefficients, we obtain by (33) and (34) that the corresponding Mallat’s
reconstruction algorithm is as follows:

= \/_Zc Qg +d*™BI N kA (kG =1,2),
where ¢ = (f(t), Pma(t)), d®™ = (f(t), TELD(1)), and a,, BY) are given by (1) and (18).

5.2 Decomposition Algorithm

Multiplying both sides of (32) by the factors %7 (¢) (k = 1,2) and ©m.n () respectively, and

m,n’

then integrating both sides over (—oo, o), by the definition of inner product, we obtain the
following two equalities for j # k (j,k = 1,2)

> I (o1 a(), TEED (1)) Z (P (t), T (1)) + 37 dEm (L0 (), WELD (1)) (35)
Z C?.*—l (Pm+1(t), Prm,n! Z Cr (Pmm(t), Pmm (t)) + Z d(k m)(\p(] lr)( t), Pmar(t)). (36)

Since {TE7)(¢), WA (£)} is a biorthonomal wavelet of L?(R), by the definition we know that

(OO (@), WEED (1)) = 6,y 5 # k(G k= 1,2).

Again, since {¢n, n(t) }nez is an orthonormal basis of V,,, we see that

(‘Pm,n(t)v P! (t)) = bnmr- (37)

Since @mn(t) € Vi, \If,(flff ) (t) € W,, and V,,, LW,,, we have

(T (0, () = 0 (j = 1,2).
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Combining these results, we can rewrite (35) and (36) in the form

d™ = = 2 (Pmiin vy (k= 1,2). (38)
km m
( ) = Z ¢, +1 (pm+1 ns Pm,n’ ) (39)

However, by (33) and (34) as well as the properties of inner product we get by (37)

N k
(SOWH-L"? Ennr) un 2n’ §0m+1 ny Pm+1 u) q7(;_)2n' (k =1, 2)-

(Som+1,n7 (pm,n’) = Zpu—Qn’ ((Pm—i—l,n; §0m+1,1/) = Pn—-2n’-

From this and (38-39), we obtain that the corresponding Mallat’s decomposition algorithm is
as follows:
dm = /2 Zc’”“ﬂé’:) n (k=1,2).
= \/52 CZL—HO[”_QV,

where ¢ = (£(t), @ma(t)), d&™ = (£(£), UEL (1)), and an, A9 are given by (1) and (18).
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