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Abstract

In this paper, we prove some strong and weak convergence theorems using a modified iterative process for nonself
asymptotically nonexpansive mappings in a uniformly convex Banach space. This will improve and generalize the corresponding
results in the existing literature. Finally, we will state that our theorems can be generalized to the case of finitely many mappings.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Let E be a real Banach space and C a nonempty subset of E. Let S : C — C be a self-mapping. Throughout
this paper, we will denote the set of all positive integers. S is called asymptotically nonexpansive if there exists a
sequence {k,} C [1, oo0) with lim,,_, k;, = 1 such that ||S"x — S"y|| < k,|lx — y| forall x,y € C and n € N.
S is called uniformly k-Lipschitzian if for some k > 0, ||S"x — S"y|| < k|lx — y|| foralln € Nand all x,y € C.
S is called nonexpansive if ||Sx — Sy|| < [[x — y| for all x, y € C. Asymptotically nonexpansive self-mappings
using the Ishikawa iterative (a two-step iterative) and the Mann iterative (a one-step) processes have been studied by
various authors. For example, see [1-3]. Glowinski and Le Tallec [4] applied a three-step iterative process for finding
the approximate solution of the elastoviscoplasticity problem, eigenvalue problem and liquid crystal theory.

Very recently, Suantai [5] introduced the following iterative process and used it for the weak and strong convergence
of fixed points of self-mappings in a uniformly convex Banach space.

x1=x¢€C,

Zn = anT"xp + (1 — ap)xp,

Yo =buT" 20 + cnT" x5 + (1 = by — ¢p) X,

Xng1 = T"yp 4+ BuT" 20 + (1 —ay — Bp) Xu, n €N,

(1.1)
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where {a,}, {b,}, {cn}, {@yn} and {B,} in [0,1] satisfy certain conditions. It reduces to the Xu and Noor iterative
process [6] for ¢, = B, = 0:

x1=x¢€C,
in = anTnxn + (1 —ap)xy, (1.2)
YVlzbnTnZn‘l‘(l — by) xp, :
Xng1 = pT"yp + (1 — o) x,, n el
The Ishikawa iterative process [7] is obtained for a, = ¢, = B, = 0:
x1=x€C,
Yn = baT"xp + (1 = by) xn, (1.3)
Xpal =y Ty + (1 —ay) x,, neN,
We get the Mann iterative process [8] fora, = b, = ¢, = 8, = O:
x1=x¢€C,
{xn+l =a,T"x, + (1 —ay)x,, nelN (14

Recall that a subset C of E is called a retract of E if there exists a continuous map P : E — C such that Px = x
for all x € C. Every closed convex subset of a uniformly convex Banach space is a retract. Amap P : E — E is
said to be a retraction if P? = P. It follows that if P is a retraction then Py = y for all y in the range of P.Chidume
et al. [9] defined nonself asymptotically nonexpansive mapping as follows.

Let P : E — C be a nonexpansive retraction of E into C. A nonself mapping 7 : C — E is called asymptotically
nonexpansive if for a sequence {k,} C [1,00) with lim,—ock, = 1, we have |T(PT)" 'x — T(PT)" y|| <
knllx — y|| for all x,y € C and n € N. Also T is called uniformly k-Lipschitzian if for some k > 0,
IT(PT)*'x —T(PT)""'y| <k|x —y|foralln € Nandall x, y € C.

They studied the Mann iterative process for the case of nonself asymptotically nonexpansive mappings:

x1=xe€C,
n—1 (1.5)
Xpt1 = P (otnT(PT) X, + (1 — a,,)xn> , neN.
Inspired by (1.1) and (1.5), we give the following nonself version of (1.1):
x1=x€C,
n =P (anT(PT)n_lxn + 1 - an)xn) s
s = P (baT(PTY'™ 20+ euT(PTY' ™y 4 (1 = by = ) 30 ) (1.6)
Surr = P (anT(PTY" ™y + BT (PTY" 2+ (1 =ty = Bu) )

foralln € N.

Clearly, we can obtain the corresponding nonself versions of (1.2)—(1.4). We shall obtain the strong and weak
convergence theorems using (1.6) for nonself asymptotically nonexpansive mappings in a uniformly convex Banach
space. As remarked earlier, Suantai [5] has established weak and strong convergence criteria for asymptotically
nonexpansive self-mappings while Chidume et al. [9] studied the Mann iterative process for the case of nonself
mappings. Our results will thus improve and generalize corresponding results of Suantai [5] and others for nonself
mappings and those of Chidume et al. [9] in the sense that our iterative process contains the one used by them.

2. Preliminaries

Let E be a real Banach space and let C be a nonempty closed convex subset of E. A mapping T : C — E is called
demiclosed at y € E if for each sequence {x,} in C and each x € E, x,, — x (weak convergence to x) and Tx,, — y
imply that x € C and Tx = y. We need the following lemmas.
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Lemma 1 (/9]). Let E be a uniformly convex Banach space and C be a nonempty closed convex subset of E. Let
T : C — E be a nonself asymptotically nonexpansive mapping with a sequence {k,} C [1,00) and k, — 1
as n — oo. Then I — T is demiclosed at zero.

Lemma 2 ([10]). Let {r,,}, {s,} and {t,,} be nonnegative sequences satisfying
Fntl < (1 +sp)r + 1y

foralln € N. If ZZOZI Sy < 00 and ZZOZI th < 00, then lim,_, 1, exists. Moreover, if liminf,, . r, = 0, then
lim, o0 1, = 0.

The following characterization of a uniformly convex Banach space proved by Xu [11] will be used.

Lemma 3. Let p > 1 and r > 0 be two fixed real numbers. Then a Banach space E is uniformly convex if and only
if there is a continuous strictly increasing convex function g : [0, 0o) — [0, 0o) with g(0) = 0 such that

x4+ (1 =)ylI” < Alx 1?4+ (1= DIy IP —wp)gix — yID 2.1
forallx,y € U and 0 < A < 1 where U is a unit ball of radius r centered at 0 and

wp(A) =271 = 1) +1(1 —1)P.
In particular, for p = 2, (2.1) becomes

IAx 4 (1 = D)yl2 < Allx]? 4+ (1 =) IylI* = 20 = eglx — yl). (2.2)

Lemma 4 ([12]). Let E be a uniformly convex Banach space and B, = {x € E : ||x|| < r},r > 0. Then there exists
a continuous strictly increasing convex function g : [0, 0c0) — [0, co) with g(0) = 0 such that

IAx + By + yzlI? < Alxl? 4+ BlIyI> + vlzI? — ABg(llx — yI) (2.3)
orallx,y,z € Byandall A, p,y € |0, 1]withA+p +y =1.
for all B, and all ., B [0, 1] with > + B 1

3. Convergence theorems

Lemma 5. Let E be a uniformly convex Banach space and let C be its closed and convex subset. Let T : C — E
be a nonself asymptotically nonexpansive mapping with a sequence {k,} C [1,00) and Y oo (k, —1) < oo.
Suppose further that the set F(T) of fixed points of T is nonempty. Define a sequence {x,} in C as in (1.6) where
{an}, {bn}, {cn}, {on} and {By} in [0, 1] are such that b, + ¢, and oy, + B, remain in [0, 1]. Then we have the following:

(D) If w e F(T), then lim,_, « || X, — w]|| exists.
(2) If 0 < liminf, o0 by, < limsup,,_, o, (by +¢,) < 1 and 0 < liminf, o o, < limsup,,_, o, (ot + Bn) < 1, then
lim;,— 00 [lxn — Txu || = 0.

Proof. Let g be a fixed point of 7. Then by (1.6) and Lemma 3, we have
2
Iz = gl = | P@T(PTY"5, + (1 = anw) - Py

2
anT(PT)n71x11 + (I —ap)x, — QH

=
n—1 2
= | P15 = )+ (1 = @) — )|
2
< a [T — g+ (1 =@ I — g2 = o2 @) &1 (|TPTY 1 — ] )
n—1 2 2
< an TP 5 =g+ (1 =) 1% gl
< anky lxn = q11” + (1 = an) |xn — g1

:@—%+%ﬁﬂh—mﬁ
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Now by (1.6) and Lemma 4, we have

by
+
by
+

2
lyn —qll” =
=<
=
=<
Moreover,
2
lxp+1 —qll” =

IA

IA

IA

IA

IA

p (bnT(PT)”_lzn + ch(PT)”_lxn> Py

boT(PT)" 'z, + c, T(PT)" 'x,

b (T(PTY" 120 — ) + e (T(PTY" "3, — )

2

+ (1 = by —cn)xn

2

+ A —=by —cp)xp —q
2

+ (A =by —cp) X —q)

2 2
T(PTY' 'z —g| + e |[T(PTY' 0 — 4

(1= by = o) la = ql* = ba1 = by = c)ga (| TPTY" 20 = 3,
i lzn = g1 + eaky 1w — g2
(U= by = o) i = qI* = ba 1l = by — e (| TPTY' 20 = 3,

)
).

— — 2
‘%(%T@Tflh+ﬂﬁﬂvflh>_Pq

+ 0 —ay — Bn) xn

2 2
[Ty =g+ B TP

+ (= an = B ln =l = o (1= an = B g2 (| TPy =
ok lyn = q 1> + Buky lzn — g I
(1= = ) % = 12 = e (1 = = o) g2 (| TCPTY" 3 = 3,

buky lzn = q 11 + caky I1xa — g7
ok + (1= by = ca) Ixn —ql1?
~ba(1 = by = ez (| TP 2, = x,

)
)

)

+ BukZ llzw — > + (1 =y — Bo) llxn — gl
— Uy (1 — Oy — ﬁn) 82 (HT(PT)nil)’n — X )

Iotw = g1 + (ks + ki (1 = by = ) = @ = ) Iota = g1

o+ (ctnbuk + Buk?) lzn — 1> = aubuk? (1= by — ey g2 (| TPTY' 2, —

—an (1 =ay = o g (| 7PTY 0 = ] )
I = 112+ (@ncnk? (k2 = 1)+ (k2 = 1) = @ak2ba = ) llva —
+ (enbuks, + Buk) (1+ cak = ) 15 = g1
— bk (1= by = e) g2 (| T(PTY 20 = 3] )
—an (1= = ) g2 (| TCPTY 3 =,

onCnk? (k}, - 1) + o (k,% - 1) — opk2by — B

tnbuk + Buk? + (anbnk;‘ + ﬁnkg) o (k,% - 1)

2 — qlI* +

2
e — 4l

)
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= @bk (1 = by = e) g2 (| T(PTY' 20 = )
—an (1= an = B g2 (| 7T y0 = 3] )
, [oncak? (k,% - 1) + o (k,% - 1) + kb, (k2 - 1) )
= % — gl + . AN -
+ B, (k,, - 1) + (anbnkn n ,Bnkn) iy (kn — 1)
—anbik? (L= by = e) g2 (| T(PTY 20 = 3] )
—an (1= an = B0 g (| 7PTY 30— 3] )

2 2

= lw gl + (& — 1) ( s ilzazakﬁfﬂkkf) . ) I — g1
bk (1 = by = ) g2 (| TCPTY' ™20 = x| )
—an (1= an = B g (| 7PTYy0 = 3] )

< o = gl 4 (k2 = 1) M = anba (1 = by = co) g2 (| 7(PTY" 2 = x,

(1= = ) &2 (| TPTY 30 = )

for some M > 0. From the last inequality, we have

)

nss = al < o = ql + (k2 = 1) M, 3.1
@bk (1= by = e) g2 (| TPTY' ™20 = xu) = oo = I = Ivwsn = g2+ (k2 = 1) M (3:2)
and
aubnk (1 = = ) g2 (| TP = 3] ) = v = 912 = s —alP + (8 = 1) M. (3.3)
Now from (3.1) and Lemma 2, it is clear that lim,,_, » ||x, — ¢|| exists and the first part of lemma is over.
Next, we prove that lim,,_,  ||x, — Tx,]| = 0. By the conditions liminf, . &, > 0 and 0 < liminf,_, b, <

limsup,,_, o, (bn + ¢;) < 1, there exist a positive integer ng and 8, 8" € (0, 1) such that 0 < § < &, 0 < § < by, and
b, + ¢, < 8 < 1foralln > ng. Thus from (3.2), we have

8 (1=8) & (|7PTY 20— 2]} = Iovw = g1? = oo — gl + (k2 = 1) M

for all n > ny.
So for m > ng,we can write

m
2 e (|rena s
n=ng

) < 52(1 (Zm) (oo = 12 = 1 = gI17) + M ij (k2 - 1))
= Wl_(g) (Hxno —q|*+M i (k,’f _ 1))

n=ng

Letting m — oo, we have Z,(zo:no o) (HT(PT)”_lzn — X, ”) < 00 so that lim,_, o g2 (”T(PT)”_IZn — xp ”) =
0 which by continuity of g, implies that

lim HT(PT)"*‘Z,, — x| =o. (G4
n—oo

Similarly,
lim ‘T(PT)”_lyn —x,| =o0. 3.5)
n—oo
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To prove lim,,_, || T(PT)"’lxn — Xp || = 0, first consider

HP (bnT(PT)”_lzn +cyT(PT)" 'x, ) _px,

lyn — xnll = (L= by — )
< |bu (TP 2y = 50) + e (TPTY ' = )|
< by |T(PT)" 'z, — x| +cn |T(PT)"'x, — x, (3.6)
Then
[y tss = x| < | 7T s =TT |+ [T = xi
< ko o = yall + | TCPTY" 3 = x,
< kb | TPTY' ™2y = x| + kuca | TPTY ™y = x| 4+ | TPTY" 3y = v,
This yields
(= koen) [ TPTY s = 2| < kb | TPTY 2y = ] + | TCPTY N = 3,
Since 0 < liminf,, o b, <limsup,_, ., (b, 4+ c,) < 1 so there exista y € (0, 1) and a positive integer n¢ such that
|71y n =] < = Tyt -] + = [Tyt -,
for all n > ng. Now with the help of (3.4) and (3.5), we have
Tim_ HT(PT)”_lxn — x| =o0. (3.7)
A joint effect of (3.4) and (3.7) on (3.6) provides
m{ly, —xpll = 0. (3.8)

Also note that

n—1 n—1
T Hp(amPT) Yo+ BT (PT)" "'z, )_Px”

+ (1 —oay _,Bn)xn
T(PT)" 'y, — x,

IA

o, T(PT)Y" 'z, — xp

+ Bn

— 0asn — o©

so that

lxn+1 — yull < Mxne1r — x0ll + lyn — xall
— Qasn — o0. 3.9

Furthermore, from

Xni1 — T(PT)" 1y, Xy — T(PT)" 1y,

< Nxpg1 = xall +

3

we find that

Xni1 — T(PT)" 'y, | =0. (3.10)

lim
n—oo

Finally, we make use of the fact that every asymptotically nonexpansive mapping is uniformly L-Lipschitzian which
when combined with (3.7), (3.9) and (3.10) gives

Iy — Txpll < {x0 — T(PT)" ',

+ [Ty e = 7Ty |+ | TPTY T ey — T,

< |x, —T(PT)" 'x,

5 = St L | TCPTY" 2yt =
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so that

lim |Jx, — Tx|| =0. O 3.11)
n—oo

We are now in a position to prove our first strong convergence theorem as follows.

Theorem 1. Let E, C, T and {x,} be as in Lemma 5. If, in addition, T is either completely continuous or demicompact
and F(T) # ¢, then {x,}, {yn} and {z,} converge strongly to a fixed point of T.

Proof. Since T is completely continuous and {x,} € C, there exists a subsequence {Txnk} of {Tx,} such that
limg o0 Txp, = q* (say). Therefore by (3.11), x,, — ¢* as k — oo. By continuity of T, Tq* = g*. Moreover, as
lim,,—, o0 ||x, — g™|| exists for all g* € F(T), therefore {x,} converges strongly to ¢*. That is,

lim ||x, —¢*| = 0. (3.12)
n—oo
Hence

lyn = a* | < llyw = xall + 20 — ¢*|

implies with the help of (3.8) and (3.12) that {y, } converges strongly to a fixed point g* of T. Another simple argument
proves that {z,} converges strongly to a fixed point ¢* of T.

Next, assume that 7 is demicompact. Since {x,} is bounded and lim,_  [|x, — Tx,|| = O, there exists
a subsequence {x, } of {x,} such that limi_x,, = ¢’ (say). By Lemma 1, ¢ = Tgq'. Moreover, as
lim, o0 |x, — g*| exists for all g* € F(T), therefore {x,} converges strongly to g’. That is,
lim ||x,, — q’” =0.
n—oo

An argument similar to the above case proves that {y,} and {z,} also converge strongly to a fixed point ¢’ of 7. This
completes the proof. [

Theorem 2. Let E be a uniformly convex Banach space and let C be its closed and convex subset. Let T : C — E
be a nonself asymptotically nonexpansive mapping with a sequence {k,} C [1,00) and Y ;> (k, — 1) < oco. Let
{an}, {bn} and {a,} be in [0, 1] such that 0 < liminf, .o b, < limsup,_,. b, < 1 and 0 < liminf, 0, <
limsup,,_, o, o < 1. Define a sequence {x,} in C as

x1=x€C,
2= P (@ (PTY"™ 0+ (1= @) )
y = P (baT(PTY™ 20+ (1= b 32 )
supr = P (TP yy + (=) x,). nel.
If T is completely continuous and F(T) # ¢, then {x,}, {yn} and {z,} converge strongly to a fixed point of T.

Proof. Put ¢, = B, = 0 in Theorem 1 to get the result. O

Remark 1. If 7 is a self-mapping then Theorem 1 generalizes Theorem 2.3 of Suantai [5]. Also note that we have not
imposed the condition of boundedness on C as opposed to [5]. By the same argument, Theorem 2 is a generalization
of Theorem 2.4 of Suantai [5] and Theorem 2.1 of Xu and Noor [6].

The following theorem generalizes Theorem 2.5 of Suantai [5] and Theorem 3 of Rhoades [13].

Theorem 3. Let E be a uniformly convex Banach space and let C be its closed and convex subset. Let T : C — E
be a nonself asymptotically nonexpansive mapping with a sequence {k,} C [1,00) and Y - (ky — 1) < oo. Let
{bn} and {an} be in [0, 1] be such that 0 < liminf, b, < limsup, ,, b, < 1l and 0 < liminf,, o, <
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limsup,_, ., an < 1. Define a sequence {x,} in C as
x1=x¢€eC,
yo = P (baT(PTY ™ x4+ (1 = b))

Xpp1 = P (a,,T(PT)”’lyn +(— otn)x,,) , neN.
If T is completely continuous and F(T) # ¢, then {x,} and {y,} converge strongly to a fixed point of T.
Proof. The choice a, = ¢, = 8, = 0 in Theorem 1 leads to the conclusion. [

Theorem 2.2 of Schu [3], Theorem 2.6 of Suantai [5], Theorem 2 of Rhoades [13] and Theorem 1.5 of Schu [14]
have been generalized as in the following:

Theorem 4. Let E be a uniformly convex Banach space and let C be its closed and convex subset. Let T : C — E be
a nonself asymptotically nonexpansive mapping with a sequence {k,} C [1,00) and > v | (ky — 1) < oo. Let {aty}
in [0, 1] be such that 0 < liminf,_, o o, < limsup,,_, o, &, < 1. Define a sequence {x,} in C as

x1=x¢€eC,
susr = P (TP + (1 =) ), neN.

If T is completely continuous and F(T) # ¢, then {x,} converges strongly to a fixed point of T.
Proof. Puta, = b, =c, = B, =0in Theorem 1. 0O

In the same way, we can prove Lemma 5 under the conditions used by Chidume et al. [9] to get the following:

Theorem 5. Let E be a uniformly convex Banach space and let C be its closed and convex subset. Let T : C — E be
a nonself asymptotically nonexpansive mapping with a sequence {k,} C [1,00) and Y - (k, — 1) < oco. Define a
sequence {x,} in C as in (1.6) where {a,}, {b,}, {cn}, {an}, {Bn}, {bn +cn}, {on + Bn} arein e, 1 — €] foralln > 1
and for some ¢ in (0, 1). If T is completely continuous and F(T) # ¢, then {x,,}, {yn} and {z,,} converges strongly
to a fixed point of T.

This theorem immediately gives the following:

Corollary 1 (/9, Theorem 3.7]). Let E be a uniformly convex Banach space and let C be its closed and convex
subset. Let T : C — E be a nonself asymptotically nonexpansive mapping with a sequence {k,} C [1,00) and
ZZOZI (k, — 1) < oco. Let {ay,} in (0, 1) be such that e < o, < 1 —¢ foralln > 1 and for some ¢ in (0, 1). Define a
sequence {x,} in C as

x1=x€C,
Xpil = P (anT(PT)"*lxn +d —an)xn> . neN.

If T is completely continuous and F(T) # ¢, then {x,} converges strongly to a fixed point of T.

Now we turn our attention towards weak convergence. A Banach space E is said to satisfy Opial’s condition [15]
if for any sequence {x,} in E, x, — x implies that limsup,,_, ., llx, — x|| < limsup,_, o, llx, — y|l forall y € E with
y # x. Actually, if T is not taken to be completely continuous but E satisfies Opial’s condition, then we have the
following:

Theorem 6. Let E be a uniformly convex Banach space satisfying Opial’s condition and let C be its closed and
convex subset. Let T : C — E be a nonself asymptotically nonexpansive mapping with a sequence {k,} C [1, 00)
and ZZOZI (kn — 1) < o0. Let {an}, {bn}, {cn}, {an} and {B,} be in [0, 1] such that b, + c, and a, + B, are in [0, 1].
Define a sequence {x,} in C as in (1.6). If F(T) # ¢, then {x,} converges weakly to a fixed point of T.
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Proof. Let ¢ € F(T). Then as proved in Lemma 5, lim,_, » ||x, — ¢|| exists. Now we prove that {x,} has a unique
weak subsequential limit in F'(7'). To prove this, let z; and z be weak limits of the subsequences {x,, } and {x,,} of
{x,}, respectively. By Lemma 35, lim,_,  ||X, — Tx,|| = O and I — T is demiclosed at zero by Lemma 1, therefore
we obtain 7'z1 = z;. In the same way, we can prove that zo € F(T). Next, we prove the uniqueness. For this suppose
that z1 # z3, then by Opial’s condition
lim [lx, —zill = lim [lxn —z1l
n— 00 n;— 0o
< lim |lx,, — 22|
ni— oo
= lim |[lx, — 2ol
n—od
= lim_|x,; — 2|l
n_/-—>oo

< tim x,; =z
nj—>OO

= lim [lx, —z1]l.
n—od
This is a contradiction. Hence {x,} converges weakly to a pointin F (7). O

Remark 2. The above Theorem contains Theorem 2.8, Corollaries 2.9-2.11 of Suantai [5] as special cases when T
is a self-mapping.

4. Finitely many mappings case

Nothing prevents one from proving the results of the previous section for finitely many mappings case. However,
we just state the case of three mappings. Thus one can easily prove the following.

Theorem 7. Let E be a uniformly convex Banach space and let C be its closed and convex subset. Let T, 15, T3 : C —
E be three nonself asymptotically nonexpansive mappings with a sequence {k,} C [1,00) and Y oo (k, — 1) < oc.
Suppose further that the set F of common fixed points of T;,i = 1,2, 3 is nonempty. Define a sequence {x,} in C as:

x1=x€C,

2= P (T3P o+ (1 = a)xa)

s = P (BaTa (P ™ 20+ ea T (P 0+ (1 = by — ) 1)

St = P (T (PT) ™ vy + B 1 (PT ™ 20+ (1 = ety = ) 22) . m €N,

Suppose either

(D) {an}, {bn}, {cn}, {an} and {B,} are sequences in [0, 1] which satisfy: b, + ¢, € [0, 1], 0, + B, € [0, 1], 0 <
liminf, o0 by <limsup,_, o, (b, +cy) < land 0 < liminf,_, o o0y < limsup,_, o (ay + Bn), or
) {an}, {bn}, {cn}s {an B}, {bn + cn} and {oy, + B} are sequences in [e€, 1 — €] where € € (0, 1).

If one of the T;, i = 1,2, 3 is either completely continuous or demicompact and F # ¢, then {x,}, {yn} and {z,}
converge strongly to a point of F.

Remark 3. (1) The above theorem when reduced to two mappings case contains Theorems 3.3 and 3.4 of Wang [16].
(2) The above theorem when extended to finitely many mappings case contains Theorems 3.4 and 4.1 of Chidume
and Ali [17].
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