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ABSTRACT 
 
AL-QUTAN, ANWAR, MEFLEH., Masters : June : [2018], Masters of Science in Computing 

Title: Deep Learning Based Approach for Prediction of Cloud Resource Needs 

Supervisor of Project: Abdelkarim Erradi. 

Cloud computing allows scaling applications to serve dynamic and time-varying 

workloads and to avoid application performance degradation, while keeping low 

provisioning costs. But, resource demand of applications need to be determined 

beforehand. Therefore, accurate prediction of cloud resource needs is critical by enabling 

proactive scaling to efficiently manage cloud resources and to reduce the operational 

cost. Most of the exiting resource prediction approaches are based on the statistical 

analysis that employ shallow structure. As a result, the prediction model has poor ability 

to capture the intrinsic features in the workload data. 

Deep learning has emerged as an alternative approach that promise to produce 

more accurate prediction. This project designed, implemented and evaluated a deep 

learning based approach for prediction of cloud resources using Long Short-Term 

Memory (LSTM) and Multilayer Perceptron (MLP). Moreover, a statistical prediction 

model Autoregressive Integrated Moving Average (ARIMA) is developed and evaluated. 

Expensive experimental studies were performed to evaluate the accuracy of deep learning 

prediction models compared to traditional ARIMA approach. The result of the 

experiments shows that the prediction accuracy of LSTM, MLP and ARIMA models 

depend on the pattern of the incoming workload. Specifically, the result shows that 

LSTM model outperforms other prediction models for periodic workload patterns, while 

ARIMA has better prediction accuracy for growing and unpredicted workload patterns. 
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CHAPTER 1: INTRODUCTION 

In cloud computing, resource management is the process of allocating resources, 

such as computing, storage or networking to a set of applications in a way that meets the 

performance objective of the applications, cloud providers and cloud users. Resource 

management is considered a hard problem due to many reasons including heterogeneity 

of resource types, unpredictability of the load, large scale of today’s data center and the 

variety of objectives of different cloud actors [1]. 

Resource provisioning is one of the most important problems of resource 

management for Infrastructure as a Service (IaaS) cloud model. The main two resource 

provisioning mechanisms are reservation and on-demand plans. In reservation plan the 

client pays an in-advance fee and uses the resources when required. On other hand, on-

demand plan allows the client to pay for a new instance whenever required without any 

long-term commitment. The price of the reserved instance is cheaper than on-demand 

instance thus enabling significant savings when used. However, it suffers from two main 

problems. First, is the risk of over-provisioning of reserved instances which result in 

unnecessary monetary loss when some of the reserved resources are underutilized. 

Second, is the risk of under-provisioning where the reserved resources are unable to meet 

the actual demand, causing poor application performance leading to Service Level 

Agreement (SLA) violation. 

The availability of reserved instances is guaranteed by the cloud providers at a 

pre-determined price, but the availability and price of on-demand instances may vary 

significantly. To reduce the resource provisioning cost, we need an optimal in-advance 

reservation of resources. However, this is not an easy task due to demand uncertainties 
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from cloud consumer side and price uncertainties from cloud provider side [1]  

Successful planning of in-advance reservation of resources requires a robust and long-

term prediction mechanism to accurately predict future resource needs. Moreover, the 

speed of response to the workload changes to attain the intended level of performance is a 

critical for cloud elasticity [12]. Hence, to enable elasticity of resources allocation an 

auto-scaling system is required to adjust the allocated resources for the workload 

generated by application. Auto-scalers can be categorized according to their anticipation 

capabilities into reactive and proactive [3]. Reactive when the system reacts in response 

to the detected changes in demand. Whereas proactive reacts in response to predicted 

future demand. Hence, proactive auto-scaling requires accurate predicting of future 

resource demands. 

The salient issues faced by cloud computing regarding service provisioning is the 

critical need to accurately predict workloads of virtual machines (VMs). This will be 

beneficial in terms of cost-effective resources allocation as the consumer will only need 

to pay for what is needed and used. 

Time series analysis might be used to find the repeating pattern in input workload 

to predict future values [14]. Hence it can possibly be used for prediction of cloud 

resources. Machine learning-based techniques, such as regression and neural network are 

considered one group of time series analysis that focus on direct future prediction [3].  
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1.1.Problem Statement 

In cloud computing, virtual machine (VM) workload impacts resource 

provisioning. Most auto scaling approaches are reactive as they add/remove Virtual 

Machines (VMs) when resources utilization cross certain threshold. Realizing the full 

potential of the cloud using proactive auto-scaling remains challenging particularly due to 

the need to accurately estimate the application resource requirements for time-varying 

workload. Therefore, accurate prediction of virtual machine resource needs is very 

critical to manage the cloud resources efficiently and reduce the cost of resources. Most 

of the exiting resource prediction approaches based on the statistical analysis that employ 

shallow structure or based on neural network with one hidden layer. In consequence, the 

prediction model has poor ability to find the intrinsic features in the workload data, due to 

the randomness and nonlinear nature of the workload data [4].  

Deep learning has been found to be appropriate for big data analysis with many 

successful applications to computer fields, such as computer vision and pattern 

recognition. They have been shown to produce better results on various tasks [5]. Based 

on that, deep learning emerges as a candidate approach that promises to produce more 

accurate prediction. Therefore, this research, will use deep learning to build a resource 

prediction model to address the problem of cloud resource needs.  

The specific objectives of this study are the following: 

 Design and implement a deep learning model to forecast future cloud resource 

needs based on historical data. 
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 Compare the prediction accuracy of deep learning prediction model with the 

traditional approaches. 

1.2. Proposed Approach 

This project applies and compares various approaches for prediction of cloud 

resource needs. A Feed-Forward Multilayer Perceptron (MLP) will be developed, then a 

Long Short-Term Memory (LSTM) Recurrent Neural Network will be built as it is 

specifically designed for sequence prediction. Also, an Autoregressive Integrated Moving 

Average (ARIMA) model will be built, which is a popular and commonly used statistical 

model for time series forecasting. All the thereafter created prediction models will be 

trained using the same dataset and then evaluated. After that, the results are compared.  

The implementation is based on the best of breed Python deep learning library 

called Keras 1that uses TensorFlow 2 as a backend [6]. 

1.3. Project Contributions 

Following is a list of the main contributions of this work: 

 Conduct a literature review of traditional and deep learning methods used in time 

series prediction in the context of cloud resource predictions. 

 Design and implement MLP and LSTM for resource prediction for facilitating 

proactive auto scaling of cloud resources.  

 Evaluate and compare MLP, LSTM and ARIMA prediction accuracy to predict 

cloud resource needs for the different workload patterns. 

                                                            
1 https://keras.io/ 
2 https://www.tensorflow.org/ 
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 Analyzing the impact of using multiple input variables (multivariate features) on 

MLP and LSTM prediction accuracy. 

The rest of the report is organized as follows. Chapter 2 provides a background 

and surveys the literature for time series prediction using deep learning techniques and 

other traditional methods. Chapter 3, presents the dataset, the data exploration and 

preparation for building the deep learning models. The methodology used for designing 

and building the deep learning prediction models is explained in chapter 4. Chapter 5 

provides the evaluation and discussion. Chapter 6 concludes and suggests future works.  
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CHAPTER 2: BACKGROUND AND RELATED WORK 

In this chapter the background and basic concepts used in this research project and related 

work are introduced. Section 2.1 is an overview of resource management in cloud 

computing and time series analysis. Section 2.2 provides the literature review.  

 

2.1. Background  

Cloud computing is an Internet-based computing that involves the delivery of 

hosted services over the Internet using pay-as-you-go model.  

2.1.1. Resource Management in Clouds 

Resource management is the process of allocating resources to a group of 

applications in a way that meets the performance objective of the applications, of the 

cloud providers and of the cloud users. In general, cloud environment has three different 

actors: a Cloud Provider, a Cloud User and an End User. They have different objectives 

and play different roles. The objectives of the cloud provider are to focus on efficient and 

effective use of resources within the constraints of SLAs with cloud user. The cloud user 

cares more about the application performance, availability and cost-effective scaling. 

From the cloud resource management perspective, the cloud provider manages the 

resources by allocating them in a way that meets SLAs. The cloud user uses the resources 

to host applications. The end user generates the workloads which are processed by cloud 

resources.  
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2.1.2. Auto-scaling Techniques 

Elastic applications dynamically provision/release computing resources to meet a 

varying workload. To enable the elasticity, an auto-scaling system is needed for 

automatic resources adjustments in order to handle the applications' workload. The auto-

scalers make dynamic scaling decisions without human intervention.  

Scalability falls into two categories: (a) horizontal scaling that involves 

adding/removing nodes, (b) vertical scaling that involves adding/removing resources to a 

single node in the system. Horizontal scaling is offered by many cloud providers. The 

auto-scaling process has the following four phases (MAPE loop): 

 Monitoring phase: involves gathering performance metrics of the system and 

the state of its application at different time granularity. 

 Analysis phase: obtaining the current system utilization and/or predictions of 

future demand. 

 Planning phase: in this phase resource modification action (e.g. add/remove 

VM, upgrade memory) can be planned in a way that retains a good balance 

between cost and SLA compliance. 

 Execution phase: execute the action. 

Auto-scalers can be reactive or proactive. Reactive where the system reacts in 

response to the detected changes in demand. The reactive auto-scaling may fail to 

respond to rapid changes in the workload, especially in cases of sudden spike (a new 

virtual machine usually takes 5 to 10 minutes to be operational). Due to time needed to 

obtain and configure new resources, proactive auto-scaling is more promising technique 
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as it reacts in response to predicted future demand. 

According to [3] auto-scalers can also be categorized according to the underlying 

technique used for implementation of auto-scaler into: 

 Threshold-based rules: The scaling decision in the threshold-based rules 

are based on some performance metrics (such as average of input request, average of 

response time and average CPU utilization) and pre-defined threshold. This technique 

is considered to be simple, but suffers from the difficulty of choosing the right 

performance metrics. 

 Reinforcement learning: This method learns from past experience (trial 

and error method) the best obtainable option taken in each particular state. The auto-

scaler gets a feedback from the system after executing every action that shows the 

goodness of the performed action, therefore the auto-scaler has always a tendency to 

execute the best actions. The main drawback of this technique is the long learning 

phases and bad initial performance.  

 Queuing theory:  Queuing theory relies on modeling the system for 

determining its future resource needs. It involves finding relationships between 

arriving/leaving jobs from the system. Elastic application can be formed using a simple 

queuing model in which the load balancer is represented by single queue that distribute 

the request among number of VMs. Simulation is often used to solve the queuing models. 

Some of the performance metric used average waiting time in a queue and average 

response time. Limitation of the queuing theory model is non-flexibility and the 

parameters and metrics always need to be recomputed. 
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 Control theory: Control theory requires creating a model of application. 

It involves defining a controller that adjusts the needed resources for the application 

demand. Different types of control system exist, open-loop controller, which uses the 

current state data in computing the input to the system without using feedback to check if 

the goal is achieved. Feedback controller observes the system output and corrects any 

differences from the target value. Finally, feed-forward controller which predicts and 

reacts before the errors happen. Feedback controllers are the most used control system. 

They adjust the input variables according to the target value in the output variable. 

However, the problem of creating a dependable performance model that maps input to 

output variables remains challenging. 

 Time series analysis: In time series analysis technique, a certain 

performance metric sampled periodically at fixed intervals for prediction of future values. 

Time series analysis can be used to find repeating patterns in the input workload to 

predict future values. 

2.1.3. Time Series Analysis and Forecasting 

Time series is widely used in various domains to represent the change of 

measurement over time. The time series are a sequence of data points that are measured 

at equally spaced time intervals. Time series analysis uses a variety of methods for 

patterns detection and for future values prediction 

The main methods used for prediction include: 

 Moving Average (MA) methods:  

The method is used to remove the noises or to make predictions. The prediction formula 
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calculates the weighted average of the last history window of the successive values. 

Similarly, there are different variations, such as simple moving average that assigns equal 

weight to all observations. It is only useful for forecasting when there is no trend. 

Weighted moving average gives a different weight to each observation value. In which 

more weight is given to the recent observations. Moving averages methods are still not 

able to handle significant trends when forecasting. 

 Exponential smoothing (ES) 

ES is similar to MA, it is used to compute the weighted average of past 

observations. However, it considers the past history of the time series. It earmarks 

exponentially decreasing weights over time. There are various versions of ES, such as 

Single ES, Double ES and Triple ES. Single (i.e. simple) exponential smoothing is 

insufficient in case of time series with changing trends. However, when there is a linear 

trend, double ES is a good choice.  

 Auto-regression of order p, AR(p) 

The formula to make prediction is defined according to a linear weighted sum of 

past values. The main idea is to obtain the best values for the weights or auto-regression 

coefficients. There are different techniques used to compute the AR coefficients. The 

most common ones are those based on the calculation of auto-correlation coefficient and 

on Yule-Walker equations [3].  

 Auto-Regressive Moving Average (ARMA) 

ARMA is a combination of both auto-regression and moving average. It is 

suitable for stationary time series which means the time series have no trend or 
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seasonality. However, the Auto-regression Integrated Moving Average (ARIMA) which 

is an extension to ARMA model may be used for non-stationary time series. 

 Machine learning-based techniques 

The most popular machine learning-based techniques are regression and neural 

networks. Regression is a widely used technique that based on statistical model for 

finding out an estimation about the relationships between variables. A neural network is 

connected group of nodes (neurons) that consist of many layers, which include input 

layer, output layer, and hidden layer/s in between. According to [3], the neural network 

performs better accurate results than MA and simple ES methods.   

The other group of time series analysis focuses on identifying patterns of time 

series which follows and then uses these patterns for predicting future demand. Normally, 

it has four classes of components, (a) Trend, (b) Seasonality, (c) Cyclical and (d) 

Randomness. The following techniques could be used to determine the repeating patterns:  

 Pattern matching technique. 

 Fast Fourier Transform (FFT). 

 Auto-correlation.  

Generally, time series analysis is considered to be the key took for proactive auto-

scaling. However, its main drawback is that the prediction accuracy depends on the 

application workload. 
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2.1.4. Time Series Forecasting with Deep Learning 

Deep learning is "a class of machine learning techniques that exploit many layers 

of non-linear information processing for supervised, or unsupervised feature extraction, 

and for pattern analysis and classification" [26]. 

Time series forecasting is different from other regression predictive modeling 

where the sequence adds an order dependence on the observation that must be well-

preserved during training the model and making predictions. Different deep learning 

architectures that could be used for time series forecasting were found in the literature. 

The two most common among them are Multilayer Perceptron and Long Short-Term 

Memory. 

2.1.4.1. Multilayer Perceptron 

One of the most widely used machine learning techniques for prediction is 

Artificial Neural Networks (ANN) or Multilayer Perceptron (MLP). The power of neural 

networks is their ability to learn the representation of training data and relate this 

representation to output variable that we need to predict. The predictive capability of 

ANN comes from hierarchical structure of the networks, which allows representing 

features at different scales. The basic building block of neural networks, are neurons, 

which are simple computational models that have weighted input and produce output 

value using an activation function [11]. The activation function is a simple mapping 

between summed weighted input and the output of the neuron. In Multilayer Perceptron, 

neurons are grouped into layers, and these layers grouped into networks called network 

topology. 
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Neural networks need to be trained on the dataset to build a model that we can use 

to make predictions. The common training algorithm for artificial neural networks is 

stochastic gradient descent. This is where each row of data is exposed to the network as 

input and processed upwards activation function to produce an output. This phase is 

called forward pass. The second phase is the back propagation pass where the output of 

the network is compared to the expected value that we already have in the dataset and 

calculate the error. which then propagated back through the network and the weights are 

updated according to the amount of error they participated in. 

MLPs are useful for many machine learning problems due to their ability to solve 

problems stochastically. However, they have some limitation with respect to the 

problems that involve sequence prediction. In the next section a special type of neural 

networks that is designed for sequence problems will be introduced.  

2.1.4.2. Long Short-Term Memory 

In general, Recurrent Neural Networks (RNNs) are a special type of neural 

network designed for sequence problems. RNN can be thought as adding loops the 

architecture of the standard feedforward Multilayer Perceptron network. Another way to 

think about RNNs is the addition of memory to the network that allow it to store and 

remember information, and utilize the ordered nature of observations within input 

sequences. 

The Back-propagation algorithm is used to train feedforward neural networks 

breakdown in RNN due to loop connections. As a result, a new technique is used for 

training RNN called Back-propagation Through Time (BPTT) where the structure of the 

network is unrolled (copies of neurons are created) into a full network. Figure 1 shows a 
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typical RNN (left) being unrolled (right). This chunk of NN (A) looks at some input xt 

and outputs a value ht. A loop in RNN permit information to be passed from one step to 

the next. 

 

 
 

Figure 1. Typical RNN and the unrolling in time3 
 

When Back-propagation used in very deep learning and in unrolled RNN, the 

gradients which are generated to update the weights can become unstable, they might 

become very small which results in vanishing gradient problem, or a very large which 

also results in exploding gradients [13].  This problem is solved in deep Multilayer 

Perceptron network by using the Rectifier function, or unsupervised pre-training of 

layers. In RNN it is solved or reduced by using a new type of architecture called Long 

Short-Term Memory. 

The Long Short-Term Memory (LSTM) is a kind of Recurrent Neural Network 

(RNN) designed to address the problem of vanishing gradients. The LSTM has memory 

blocks instead of neurons that can be connected into layers. Each block contains three 

main gates: a forget gate, an input gate, and an output gate. Those gates manage each 

                                                            
3 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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block’s state and output by controlling h information to be discarded, updated and to be 

outputted. LSTM has the capability to solve many time series tasks which are unsolvable 

by MLP using fixed size window method [28]. Moreover, it has the capability also to 

solve complex "long-time-lag" tasks that have never been solved by previous RRN 

algorithms [29]. Figure 2 below shows LSTM cell structure that contains four NN layer 

(button) compared to a standard RNN that contains a single layer (top). 

 

 
 

Figure 2. Unrolled RNN cell structure (top) vs. LSTM cell structure (bottom)4 
 
 
 
 
 
 
 
 

                                                            
4 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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2.2. Related Work 

The goal of the related work is to review the existing approaches in the literature 

that address time series prediction using traditional and deep learning approaches in the 

context of cloud computing. Prediction of cloud resources usage would contribute to the 

efficiency of cloud auto scaling systems. Most techniques found in literature focus on the 

prediction of workload, performance and SLA metrics. According to survey [12] the 

notion workload is interpreted in different ways in literature: 

 Application workload is equal to the number of requests received by the 

application.  

 The future demand of VMs. In this case, the future demand of resources of VMs 

are forecasted. 

 Resources utilization in terms of CPU and memory. 

Many methods in the literatures proposed focusing on the resources utilization. 

These methods forecast the usage, the load or the utilization of resources. CPU and 

memory are the most considered resources in the literature.  

Several approaches have been proposed in order to predict VM workload, for 

example, Qiu et al. [4] proposed VM workload prediction (CPU utilization) based on 

deep learning. The prediction model was designed with a Deep Belief Network (DBN) 

composed of multiple-layered restricted Boltzmann machines (RBMs) and a Regression 

Layer (RL). The DBN was used for features extraction from all VMs workload data and 

the regression layer was used for workload prediction. They used CPU utilization data of 

all VMs of several pervious time steps as input to the proposed model and forecast one-
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time step in the future of CPU utilization for one single VM. They compared their 

approach with exponentially weighted moving average method, simple neural networks, 

multilayer neural networks and ARIMA model. Their results showed that the proposed 

approach has better workload prediction performance than the other used workload 

prediction approaches. 

Jheng et al. [22] proposed a workload prediction method using Grey Forecasting 

model to predict the workload of VMs. Specifically, they predicted the average utilization 

of resources CPU, Memory and RAM of physical machines. Their proposed approach 

uses fewer training to predict the workload and it reduces the power consumption. In [23] 

the authors used the following time series prediction methods: moving average, Auto-

regression, ANN, Support Vector Machine (SVM) and Gene Expression Programming to 

forecast the future demand of VMs and the capacity planning. They proposed a novel 

cost-sensitive measure called Cloud Prediction Cost (CPC) to guide the prediction 

procedure. 

Bankole et al. [24] developed three machine learning forecasting models for a 

web server and database performance benchmark (TPC-W) web application using 

Support Vector Regression, Neural Network and Linear Regression. The developed 

forecasting models are used to predict the CPU utilization of VMs and SLA metrics 

(response time and throughput). The results showed that SVM outperforms NN and LR. 

In [25] the auhors used Autoregressive Integrated Moving Average (ARIMA) model to 

propose workload prediction module for dynamic provisioning of resources  for SaaS 

providers.   

 



  
   

18 
 

Deep learning has been successfully applied for time series prediction problems in 

other domains. For example, Hernández et al. [19] proposed a deep learning model based 

on Auto-encoder and Multilayer perceptron to forecast the daily accumulated rainfall. 

The authors used Auto-encoder for feature selection and MLP for making predictions. 

The results showed that their proposed model performs better than other approaches. The 

authors in [20] were able to predict heavy rainfall events for 2 days earlier of the event (6 

to 48 hours before the event) with great precision. The authors used deep learning with 

stacked Auto-encoder for features learning, then they used them to predict extreme 

rainfall. Huang et al. [21] propsed a deep learning architecture for traffic flow prediction. 

The proposed architecture composed of Deep Belief Network (DBN) for feature learning 

and regression layer (RL) used for supervised training, they concluded that their approch 

outperfom state-of-the-art methods with 3% improvement. 

The unique approach of this study is to apply Long Short Term Memory (LSTM) 

Recurrent Neural Network deep learning architecture for the first time in cloud resource 

prediction, though it had been used in other fields. Most of the techniques used in cloud 

for resource needs prediction opt to other resource prediction approaches. But, this study 

focused the research on usage of LSTM in this area counting on its suitability for 

reaching accurate results in cloud resource needs prediction. Moreover, this work studies 

the impact of selecting multiple input features on the prediction accuracy of the deep 

learning models. 
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CHAPTER 3: DATA COLLECTION AND ANALYSIS 

Section 3.1 describes the dataset used for the experiments. Section 3.2 explores 

the dataset in order to understand it better. Section 3.3 describes the data preprocessing 

phases. 

3.1. Data Collection 

A long-term and large-scale workload traces from a distributed cloud datacenter 

(Bitbrains) are the dataset used in this work. The dataset contains performance metrics of 

1,750 VMs. The traces include information about CPU, memory, disk I/O and network 

I/O, for both requested and used resources. The VMs host business-critical applications. 

The dataset is collected and analyzed by Shen et al. [9] and made publicly available at the 

Grid Workloads Archive [10]. The format of the dataset is a row-based, sampled every 5 

minutes. Each row represents an observation of the performance metrics.  

The dataset is very large in term of size and it has workload data for 1750 VMs 

and most of them contains thousands of observations. For evaluation with sensible time, 

we need to make a reduced sample to work with. In fact, the dataset should be small 

enough, so that we can build deep learning models and test them with a reasonable time 

and computations. Later, well performing models can be always scaled up and trained on 

all dataset. For the evaluation purpose, 15 samples of the dataset that represent three 

different workload patterns were chosen. Authors in [17,18,26] categorize workload 

patterns in cloud computing environment into the following three different workload 

patterns: 
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1.  Periodic workload which represents workloads with cyclical (seasonal) 

change. 

2. Growing workload which represents workload with growing trend. 

3. Unpredicted workload which represents fluctuating workload.  

In this project dataset samples are selected to represent these three workload patterns 

only. In the following section we will explore these datasets. Further, we describe the 

data preparation performed to prepare the input to the deep learning CPU usage 

prediction models designed in chapter 4. In fact, the problem can be framed to forecast 

other resource metric, such as memory usage. Figures 3,4 and 5 show the univariate plots 

of the target attribute (CPU usage) for three VMs, each with different workload patterns.  

 

 
 

Figure 3. CPU usage over time for VM1 having a Periodic Workload 
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Figure 4. CPU usage over time for VM7 having an unpredicted workload 

 
 

 

 

 

Figure 5. CPU usage over time for VM12 having a growing workload 
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3.2. Data Exploration 

In machine learning, problems are solved by learning from data. Hence, firstly 

there is a need to prepare and understand the dataset well before starting working on the 

deep learning models.  The dataset is explored using the following Python libraries: 

1. NumPy5: efficient computation of multi-dimensional arrays 

2. Pandas6: fast and flexible data structures for data analysis 

3. Matplotlib7:  2D plotting library 

4. Seaborn 8 : additional plot types, stylish and readable plots 

Pandas are used to read the dataset into a data frame. Then, statistics and charts 

are generated to better understand the dataset.  

3.2.1. Data summary 

Since the type of each attribute is important for building an artificial neural 

network, we reviewed the data type of each attribute. The shape and the size (number of 

features and instances) are also reviewed. Fortunately, it was found that all of the input 

and output attributes are numerical. This means that there is no need for any type of 

conversion to integers or floating-point values required for a neural network. Table (1) 

shows a sample of the dataset for VM1. 

 
 
 
 

                                                            
5 http://www.numpy.org/ 
6 https://pandas.pydata.org/ 
7 https://matplotlib.org/ 
8 https://seaborn.pydata.org/ 
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Table 1 
 

Sample of the VM1 data 
 
CpuCapacity CpuUsage CpuUsagePer MemUsage DiskWrite NetTransmitted 

10400 150.8 1.45 190141.6 3.867 5 

10400 156 1.5 268435.2 4.667 5 

10400 156 1.5 246065.6 4.2 5.067 

10400 156 1.5 536870.4 4.4 5 

10400 156 1.5 290804.8 4.333 4.933 

 

3.2.2. Distributions of each attribute 

Descriptive statistics shows how values of each attribute are distributed. This 

gives an insight into the shape of each attribute. The basic statistical properties that have 

been reviewed are: count, mean, standard deviation, minimum value, 25th percentile, 

median, 75th percentile, maximum value. Table (2) shows the distribution summary of 

each attribute for the first VM1 workload data.  It can be seen that VM1 has 8621 

observations sampled every 5 minutes (i.e. one month) and 137.29 is the average CPU 

usage. 

 

Table 2 
 

Summary of attributes distribution 
 

 CpuUsage CpuUsagePer MemUsage DiskWrite NetTransmitted 

count 8621 8621 8621 8621 8621 

mean 137.29 1.32 359483.625 6.886 4.972 

std 15.892 0.153 117971.742 8.888 0.082 

min 86.667 0.833 22369.6 3.133 4.467 

25% 130 1.25 279620 4.267 4.933 

50% 130 1.25 346728.812 4.4 5 

75% 156 1.5 436207.188 4.533 5 

max 351 3.375 950708 527.733 7.6 
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3.2.3. Correlations between attributes 

Correlation refers to the relationship between two variables and how they may 

change together. It is very useful to know whether some pairs of attributes are correlated 

and how much. This help us to determine which variables should be included in the input 

to predict the output. The common various correlation coefficients are: Pearson 

correlation coefficient, Spearman's rank correlation coefficient and Kendall rank 

correlation coefficient. Pearson’s correlation coefficient is the most common method to 

calculate the correlation in the literature. It measures the linear correlation between 

continuous variables. It has a value between +1 and -1, a correlation of 1 is perfect 

positive linear correlation, whereas a value of -1 is perfect negative linear correlation and 

0 indicates no correlation. 

For many machine learning algorithms correlated features might make poor 

performance. As such, it is important to review all of the pairwise correlations between 

the attributes in our dataset. Table 3 shows the correlation between all pairs of attributes 

calculated using Pearson's correlation method. 

 

Table 3 
 

Pearson's correlation 
 

 CpuUsa
ge 

CpuUsageP
er 

MemCapaci
ty 

MemUsa
ge 

DiskWri
te 

NetTransmitt
ed 

CpuUsage 1 1 -0.229 -0.003 0.043 0.131 

CpuUsagePer 1 1 -0.229 -0.003 0.043 0.131 

MemCapacity -0.229 -0.229 1 0.155 -0.011 0.01 

MemUsage -0.003 -0.003 0.155 1 0.026 0.043 

DiskWrite 0.043 0.043 -0.011 0.026 1 0.263 

NetTransmitted 0.131 0.131 0.01 0.043 0.263 1 
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In fact, this research is trying to select those features that have the strongest 

relationship with the output variable (CPU usage). From table (3) above, some 

correlations between CPU usage and memory usage and also with disk write can be seen. 

Furthermore, we need to exclude any redundant attributes before fitting the deep learning 

model, which save computation and time. Such as CPU usage and CPU usage percentage, 

they have perfect positive correlation with each other. In fact, the CPU usage percentage 

is calculated from CPU usage.  

3.2.4. Visualization 

It is an n excellent way to better understand the data is by generating plots and 

charts. Generally, data visualization helps to learn the data very fast and understand each 

attribute independently. Specifically, the following plots are produced: 

 Histogram allows discovering the underlying distribution of a set of the data. 

Figure 6 shows the distribution of CPU usage of VM1 which shows that CPU 

usage has almost Gaussian distribution, where most common observations are 

around the mean (137.29). 
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Figure 6. Histograms of CPU usage for VM1 

 

 Correlation matrix which is used to explore the dependence between multiple 

variables at the same time. Figure 7 plot the correlation matrix for attributes in 

VM1 which shows a positive correlation (0.13) between CPU usage and Network 

transmitted throughput.  
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Figure 7. Correlation matrix for VM1 variables 
 

 

 Pairwise joint plot that shows the relation of attribute pairs to examining their 

joint distributions. Figure 8 shows the joint plot between CPU usage and Network 

transmitted throughput features. The plot reveals a linear relationship between the 

two variables. 
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Figure 8. Pairwise joint plot of CPU usage and network transmitted features 
 
 
 

3.3. Data Preprocessing 

It is a very good practice to prepare the data in such a way so as to expose the 

structure of the problem to the deep learning algorithm that we are going to use. From 

exploring the data, we found that the dataset we have is clean and has no missing values. 

In this section we will describe the preprocessing phases we used to prepare the data for 

building the predictions models. 
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3.3.1. Features Selection 

In this phase the redundant features might be removed and new features could be 

developed. In general, having unrelated features in the data can decrease the performance 

of many deep learning models. Feature selection helps reduce overfitting, improves the 

performance of the model and reduces the training time.  Those features that contribute 

most to the output variable (CPU usage) need to be selected. For univariate deep learning 

model the CPU usage history will be used to predict the future values. For multivariate 

deep learning model it is important to select the desired features based on the data 

analysis done in the previous section. Memory capacity provisioned, Memory usage, 

Disk read throughput, Disk write throughput, Network received throughput and Network 

transmitted throughput will be used as input features. Figure 9 is a plot with 7 subplots 

showing 8621 observations from one month of CPU usage data. Other features will be 

removed as some of them are redundant (e.g. CPU usage in percentage) and others are 

fixed for all samples such as CPU capacity provisioned, CUP cores. Disk Read can be 

removed in this case as it has only zero values. The authors in [20] argue that their model 

works better than other approaches that rely on feature extraction and selective feature 

reduction, because they include all the features so that the model tries to understand the 

underlying patterns and dependencies.  
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Figure 9. Line plots of VM1 time series 
 
 

Feature selection can also be done automatically. In this case, the common 

method of recursive feature elimination (RFE) used to identify the features that are the 

most predictive. From simple conducted experiment, RFE helps to pick out the most 

important features as shown in table (4), where rank “1” means the most important to the 

output variable (the predictive importance decreases as the ranking increase).   

RFE also shows that two features (Disk Read and Network received throughput) 

have the least importance. In fact, disk read for VM1 can be eliminated. Truly, the results 

here conform with what we previously got in section 3.2.3. 
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Table 4 
 

Ranked feature relevant for CPU usage prediction 
 

Feature Name Feature Ranking 

Memory Capacity Provisioned 1 

Memory Usage 2 

Disk Read Throughput 6 

Disk Write Throughput 3 

Network Received Throughput 5 

Network Transmitted Throughput 4 

 

 

3.3.2. Stationary Data 

Stationary time series means that the series of observations do not depend on 

time. In other words, stationary time series have no trend or seasonal components. 

Usually, when working with a sequence of real values, such as the data of this research 

making the series stationary has to be taken into account, if it is not stationary. 

Specifically, in such case the trend, seasonality or any other time-dependent structures 

has to be removed, if any is founded. Statistical modeling approaches assume the time 

series to be stationary. But, deep learning models (e.g. LSTM) have the ability to learn 

events for long time period. However, when the series is stationary it can be easier to 

model. In this case checking for stationary was made by two ways. First, by looking at 

the line plots of VMs workload. It was found here that there is an obvious lack of trend 
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and seasonality components for VM1. Second, by use of statistical tests (i.e. reviewing 

summary statistics) like mean and variance to check if there is a change over time. The 

checking was performed by splitting the CPU usage series into two equal contiguous 

groups, then we calculated the mean and standard deviation for both groups. Table (5) 

shows the results for CPU usage variable in VM1, which shows a little difference, but still 

in the same ballpark. As a result, we did not stationaries the data for deep learning model.  

 

Table 5 
 

Mean and variance of CPU usage variable in VM1 for two equal partitions 
 

Group 1 Group 2 

Mean Variance Mean Variance 

138.848465 231.151657 135.732864 269.071259 

 

 

Generally, if there is a trend or seasonality, it can be removed by the standard 

differencing method, which helps to eliminate or reduce trend and seasonality [16]. 

Python Pandas library has a function that automatically calculate the 1st discrete 

difference dataset. 

3.3.3. Data Normalization 

Normalization referrers to process of rescaling the observations to have the same 

scale into the range between 0 and 1. Essentially, it is useful for sparse dataset that has 

attributes of varying scales. In our case it can be very useful as there are lots of zeros in 
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the dataset. Normalization is very useful for algorithms that weight inputs like neural 

network. Since this research is going to use the neural network Long Short-Term 

Memory recurrent neural networks all the features are normalized into the range [0 and 1] 

to be ready for univariate and multivariate models. MinMaxScaler class from scikit-learn 

9library  was used to perform the normalization.  

3.3.4. Lag and Sequences 

Before using the data in any machine learning prediction problem, the data has to 

be reframed into supervised learning problem, which has the required format as input to 

the deep learning model. In this step the selected features from the previous step were 

transformed from their raw based time series format into lags and sequences. Lags 

represent the time steps needed to look back to the past, and each lag will be a feature 

that included for the deep learning prediction models. The sequences are the future time 

steps that are needed to predict. Initially, the next time step was predicted that represent 

the CPU usage for 5 minutes in the future. Since the prediction time interval is short the 

data was down-sampled to decrease the frequency of the samples from 5 minutes into 15 

minutes and 45 minutes. Then for each of them the next time step was predicated, which 

represent 15-minutes and 45-minutes in the future. Table 6 below demonstrates a five lag 

time steps (t1, t2, t3, t4, t5) to predict the current time step (t) for the feature CPU Usage. 

The input sequence in the figure is in the correct left-to-right order with the output 

variable to be predicted on the far right. 

 

                                                            
9 http://scikit-learn.org/ 
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Table 6 
 

Reframing data to supervised learning problem (VM1 data) 
 

CpuUsage   
(t-5) 

CpuUsage   
(t-4) 

CpuUsage   
(t-3) 

CpuUsage   
(t-2) 

CpuUsage   
(t-1) 

CpuUsage   
(t) 

0.66372 0.658416 0.665842 0.665842 0.668317 0.663366 

0.658416 0.665842 0.665842 0.668317 0.663366 0.665842 

0.665842 0.665842 0.668317 0.663366 0.665842 0.673267 

0.665842 0.668317 0.663366 0.665842 0.673267 0.668317 

0.668317 0.663366 0.665842 0.673267 0.668317 0.673267 
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CHAPTER 4: METHODOLOGY AND DESIGN 

This chapter describes the approach taken in this research project for predicting 

cloud resource needs. More specifically, this is a problem where given a historical 

resource usage data for a VM (e.g. CPU usage, Memory usage, Disk read/write 

throughput, Network received/transmitted throughput) the task is to predict the next CPU 

usage. This project, only predicts CPU usage. But, the same approach can be applied to 

predict other resource metrics. 

The implementation process consists of several steps including: Loading Data, 

Preparing Data, Defining Models, Compiling Models, Training Models and Evaluating 

Models. Figure 10 shows an illustration of the implementation process. The process starts 

by loading VM historical data using python APIs, and carefully chooses the features that 

the research is interested in. Data is then preprocessed for training the models. First, all 

data are normalized into [0,1]. Then, the data is transformed from its row-based format 

into lag and sequence format. To evaluate the models on new unseen data, a common 

method for time series data is to split the dataset into train and test datasets. The dataset 

was split into training dataset and testing dataset with 75% of the observations used to 

train the models, leaving the remaining 25% for testing the models. 

 

 
 

Figure 10.  Methodology overview 

 

Load 

Data 

Prepare 

Data 

Define 

Models 

Train 

Models 

Evaluate 

Models 



  
   

36 
 

Two approaches for VM recourse prediction based on deep learning and a 

statistical one are defined and created. The deep learning based approaches which are 

used in this project are MLP and LSTM, for each of them we build univariate and 

multivariate models. The statistical approach used in this research is the ARIMA model. 

The resource prediction models were initially defined, then trained on the training 

dataset. Finally, the models evaluated on the testing dataset to see how they perform on a 

new unseen data. Chapter 5 present the results of the experiments conducted to evaluate 

the mentioned resource prediction models. 

 Many experiments were conducted for each model to choose the best 

configuration parameters. Practically, selecting the number of layers to be used and their 

types are based on heuristics. Generally, there are some heuristics that we can use and 

usually the best network structure is found through trial and error process. Indeed, we 

need a network that is large enough to capture the structure of our prediction problem. 

Section 4.1 describes the design of MLP model. Section 4.2 describes the LSTM model. 

ARIMA model is described in section 4.3 

4.1. MLP Model 

We used Multilayer Perceptron using the window method so that multiple recent 

time steps get used to make the prediction for the next time step. Based on extensive 

experiments conducted we have chosen the following MLP deep learning configuration. 

For window size of the historical data we tried different values (2, 5, 10) and selected the 

size of window that gave best results which is five. The network topology is a fully-

connected network structure with three layers chosen after trail of other deeper models (2, 
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3, 4). The first hidden layer has 50 neurons, the second hidden layer has 34 neurons, and 

finally the output layer has one neuron used to produce the output (the predicted CPU 

usage) many other wider models were tried. A summary of univariate and multivariate 

models and their configuration are depicted in Figures 11. For univariate MLP model 

multiple recent CPU usage feature was used to predict the next CPU usage. Whereas, for 

multivariate MLP model the problem was framed so that seven multiple recent 

performance metrics (see features selection on section 3.3.1) were used as input to predict 

the output CPU usage. 

ReLU rectifier activation function was used on the first two layers as it is shown 

in the literature to give good performance [11]. No activation function was used for the 

output layer as it is a regression problem and the research is interested in predicting real 

values directly without transformation. 

 

  

Figure 11. Univariate MLP (left), multivariate MLP (right) neural network models 
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After defining the univariate and multivariate MLP models. We need to compile 

them and specify the loss function and the optimizer. In general, compiling the model 

uses the numerical libraries under the hoods (i.e. back-end). In our case TensorFlow10 

was used. The loss function that used to evaluate a set of weight was Mean Squared Error 

(MSE). The efficient gradient descent algorithm Adam was the optimizer that had been 

used to learn the weights. Adam was selected, because it is an efficient default [31]. 

4.2. LSTM Model 

The LSTM model architectures are shown in figure 12. The network architectures 

for both univariate and multivariate are made of two LSTM layers with two dropout 

layers of 20% after each LSTM layer. The dropout layer serves as regularization 

technique to prevent overfitting by randomly dropping out units with their connections. 

The last layer is the output layer. The first hidden LSTM layer has 100 memory blocks, 

or neurons and the second hidden LSTM layer has 50 memory blocks. The sigmod 

activation function is used for all LSTM memory blocks. 

The Long-Short Term Memory using window method with time steps was used. 

LSTM model expects input to be provided with specific array format in terms of 

(samples, time steps, features), so that the preprocessed train and test data were 

transformed to be in the expected format (see section 3.3.4 for details). The window size 

of historical data is five (same as MLP models in order to have a far comparison later in 

the evaluation). For univariate models, five recent CPU usage used to predict the next 

CPU usage. But, for multivariate LSTM model, five recent steps for seven features (refer 

                                                            
10 https://www.tensorflow.org/ 
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to section 3.3.1 for more details about the selected features) were used as input to predict 

the output CPU usage. In general, LSTM models need to be configured in the right way, 

as they require a lot of preparation to get the data in the proper format for learning.  

 

  

Figure 12. LSTM models architecture , univariate (left), multivariate (right)  

 

 

For LSTM model compilation the same is used as MLP models. The loss function 

is mean squared error (MSE) and the optimizer is the efficient gradient descent algorithm 

Adam [31].  
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4.3. ARIMA Model 

ARIMA is chosen because it is a common and broadly used statistical method for 

time series forecasting. The following parameters were used for ARIMA model (5,1,0), 

where the lag order for Auto Regression (p) was 5, the degree of differencing (d) was 1, 

and the order of moving average window (q) was 0. Figure 13 presents the ARIMA 

model coefficient values used to fit the training dataset. 

 

 
 

Figure 13. Summary of the fit ARIMA model 
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CHAPTER 5: EXPERIMENTS AND RESULTS 

This chapter describes the experiments conducted to evaluate three different 

prediction models namely Multilayer Perceptron (MLP), Long Short-Term Memory 

(LSTM) and Autoregressive Integrated Moving Average (ARIMA) using different 

workload data from a real distributed cloud datacenter that have different workload 

patterns namely periodic, growing and unpredicted workloads. Three common forecast 

error measurements were used to evaluate the developed resource prediction models. The 

experimental setup is presented in section 5.1. The results are shown in section 5.2 and 

discussed in section 5.3 

5.1. Experimental setup 

The experiments were performed on Intel® Core™ I7-M4712MQ processor of 

2.30GHz clock speed, 4cores, 8 logical processors and having 16 GB of memory. Python 

along with Keras 11 library were selected as a tool for implementation and simulations. 

The experiments were performed on different 15 cloud VMs workload data from Bitbrain 

12 for different workload patterns as mentioned in chapter 3 . It has been referred to them 

as VM1, …, VM15. These VMs represent different workload patterns. Authors in [17,18] 

classify workload patterns in cloud computing environment into three different types, 

namely periodic, growing and unpredicted workload. Each represents typical application 

or scenario. In this work the focus will be only on study CPU prediction for these 

workload patterns.  

                                                            
11 https://keras.io/ 
12 http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains 
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The experiments were carried out on the workload data obtained from real data 

center to forecast resource needs. More specifically, we use the historical data to forecast 

the CPU usage for future 5, 15 and 45 minutes. As the evaluation of a model is an 

estimation on how well the model may do in practice we need to test the created 

prediction models on new unseen data and see how they perform. Hence, the data was 

divided in two parts called training and testing data in the ratio of 75:25. The 25% of the 

data were used to evaluate the model in which we make forecast then calculate the 

performance metrics with respect to expected values. 

Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Square 

Error (RMSE) used to evaluate the created resource prediction models. Which are the 

most common evaluation metrics for time series prediction that focus on the prediction of 

real values [30].  

For the deep learning based prediction models (MLP and LSTM), we developed 

two versions (univariate and multivariate). In addition to the classical statistical model 

(ARIMA), we can think of them as 5 prediction models, each is evaluated on 15 VMs 

that have different workload patterns (5 VMs for each workload type). The accuracy of 

prediction models in terms of MAE and RMSE are reported in the next section. The 

results are then compared and discussed to see which model is performing better for 

forecasting cloud resource needs. 
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5.2. Evaluation results 

For comparing the results of the developed resource prediction models, the 

average RMSE (A-RMSE) and average MAE (A-MAE) are computed as the 

performance index. Table (7) and table (8) show the average RMSE and the average 

MAE per workload type of all prediction models for the CPU usage value for several 

future time intervals (5-minutes, 15 minutes and 45 minutes). The tables illustrate the 

workload type (WT), where “P” represents periodic workload, “U” represents 

unpredicted workload and “G” represents growing workload. The values in red color 

represent the best results for a given model for the forecasted interval.  

 

Table 7 
 

Average RMSE for prediction models (A-RMSE) 
 

 

 

Table 8 
 

Average MAE for prediction models (A-MAE) 
 

 

 

Figures 14-18 show the accuracy of the prediction models of the predicted CPU 

usage compared with the actual (expected) CPU usage for the 45 minutes in the future for 
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VM1. The x-axis represents the observations (every 45 minutes) while the y-axis 

represents the value of CPU usage. It can be seen that the predicted CPU usage using 

LSTM model are close to the actual CPU usage. 

 

 
 

Figure 14. LSTM Univariate Model - Actual vs Predicted CPU usage 
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Figure 15. LSTM Multivariate Model - Actual vs Predicted CPU usage 

 
 

 

Figure 16. MLP Univariate Model - Actual vs Predicted CPU usage 
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Figure 17. MLP Multivariate Model - Actual vs Predicted CPU usage 

 
 

 

Figure 18. ARIMA Model - Actual vs Predicted CPU usage 
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5.3. Discussion 

The outcomes of experiments have shown that the prediction accuracy of the 

developed resource prediction models (LSTM, MLP and ARIMA) depends on the 

incoming workload patterns. Evidently, there is no clear winner model for all workload 

patterns. However, the results clearly show that LSTM model outperforms other 

prediction models (MLP and ARIMA) for periodic workload patterns. It is evident from 

table (7) that LSTM model has better accuracy results, using RMSE for most of VMs that 

have periodic workloads (VM1-VM5). While the classical statistics model (ARIMA) has 

better accuracy results in growing and unpredicted workload patterns using both RMSE 

and MAE. Figure 19, presents the performance comparison of these prediction models for 

single VM CPU usage prediction.  

 

 
 

Figure 19. Comparison of VM1 resource prediction (CPU usage) 
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Figure 20 and 21, illustrate the performance comparison of these prediction 

models for multiple VMs CPU usage prediction in 5-minutes time interval. Figure 20 

shows the comparison for VMs that have periodic workload, it is apparent that LSTM 

univariate model has the best results with A-RMSE (113.84) and A-MAE (33.03), while 

figure 21 presents the comparison for VMs with growing workload, ARIMA proved to 

have the least A-RMSE (465.09) and A-MAE (204.38). 

 

 

 
 

Figure 20. Comparison of multiple VMs resource prediction with periodic workload 
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Figure 21. Comparison of multiple VMs resource prediction with growing workload 

 

The results also have shown that the univariate models had produced more 

accurate results than multivariate models which mean there is no strong correlation 

between the used variables. In fact, this depends on the problem being solved. 

Finally, based on the results of the experiments the following can be observed:  

 LSTM is the best model for predicting future cloud resource needs for 

periodic workload pattern. 

  ARIMA is the best model for predicting future cloud resource needs for 

the growing and unpredicted workload pattern. 

 It is better to always start with univariate models and if they do not 

achieve good results then turn to the multivariate model, as in the 

univariate models single variable is observed, which saves computation 

and reduce the complexity of the model. 
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The eventual goal of this study is to improve prediction accuracy for proactive 

auto-scaling systems. Based on results, there is a great promise for LSTM to be used in 

analysis phase of proactive auto-scaling, as it produced the best results for periodic 

workload patterns despite of little tuning. LSTM produces better results with a large 

amount of data and enough training epochs, which is the case with cloud data.  ARIMA 

model is also still a very good model, especially for a small dataset. In fact, ARIMA is 

one of the best state-of-the-art methods used in time series prediction. It is a combination 

of Auto Regression and Moving Average, also it adds the concept of integration to the 

model. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

In this work two deep learning models (MLP and LSTM) and one statistical 

ARIMA model for predicting VM resource usage were designed, implemented and 

evaluated. The experimental results showed that the prediction accuracy of the developed 

resource prediction models depends on the incoming workload types and patterns. 

Precisely, the results showed that LSTM has better prediction accuracy for periodic 

workload patterns, while the statistical model (ARIMA) performs well on growing and 

unpredicted workload patterns. Based on these experimental results it is shown that 

LSTM deep learning can improve the accuracy of the CPU usage prediction for periodic 

workload compared to traditional prediction approaches. Moreover, it can be concluded 

that complex multivariate models do not always perform better. Our results show that 

univariate models achieved more accurate predictions. 

In future work, we can explore algorithms that automatically characterize the VM 

workload to enable selecting the most suitable resource prediction model based on the 

workload patterns. Moreover, the features selection can be done automatically and this 

enables to include the most important features as input to the prediction model in order to 

obtain more accurate results. 
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