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ABSTRACT 

AL HAWLI, BASMA, Masters: January : 2018 

Masters of Science in Environmental Engineering 

Title: A Novel Hybrid Electro-Coagulation/ Forward Osmosis Membrane System for 

Treatment of Produced Water

Supervisor of Thesis: Abdelbaki Benamor. 

Large volumes of fresh water are consumed in the process of oil and gas 

exploration, producing even larger volumes of highly contaminated produced water 

(PW) which exhibits a major environmental problem.  

This work investigates the application of a novel hybrid system by combining 

electro-coagulation and forward osmosis (FO) for the treatment and reclamation of PW. 

Electro-coagulation was applied at three different current densities 10, 30 & 60 mA/cm2 

for 10 and 30 minutes. Following that, the treated produced water was further treated 

by Forward Osmosis (FO) using polymeric membrane. Two orientations of the 

membranes (active layer facing draw solution and active layer facing feed solution) and 

three flow rates 0.8, 1.2 and 2 LPM were applied. By applying electro-coagulation, the 

optimum water quality was obtained after 10 minutes run time, at a current density of 

10 mA/cm2. Electro-coagulation achieved 91 and 97% removal of total organic carbon 

(TOC) and oil and grease (O&G), respectively. FO used in pressure retarded osmosis 

(PRO) mode achieved the highest flux at a flow rate of 1.2 LPM and reduced the PW 

conductivity to 16%. Overall, the hybrid system attained a total of 99% removal of total 

suspended solids (TSS).  The obtained improved water quality suggests a high potential 

of practicability of the applied hybrid system in the treatment and reclamation of PW. 
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CHAPTER 1:  INTRODUCTION 

 

1.1   Overview  

Water scarcity has become one of the most important global challenges [1]. 

Currently around two-thirds of the world’s population live in water stressed regions; it 

is expected that this number will continue to increase in the few coming years [2]. The 

need of fresh water will increase, as the population is increasing and living standards 

in developing countries are rising [3].  

Qatar is a major oil and gas producing country at which oil and gas are the main 

contributors in the Qatari economy. Production of oil and gas generates an aqueous 

stream that is highly contaminated with dispersed oils, organics constituents, suspended 

solids and dissolved salts. This stream is referred to as “produced water”. In oil and gas 

production, enormous produced water is generated where its ratio is estimated to be 4:1 

produced water to oil and gas product [4]. The volume of oil and gas produced water is 

expected to rise further in the years to come [5]. When this oily wastewater is released 

to the environment, it forms films on water surfaces and deposits on shorelines, this 

consequently affects ecological resources and functions [6, 7]. It also affects human 

health and aquatic life [8, 9]. Moreover, oil takes a long time to biodegrade naturally in 

the ecosystem. In the long term produced water components affect environmental 

biological functions. 

The methods currently available for the treatment of high oil content water are 

inefficient in the removal of fine emulsified oil droplets that need a relatively long time 
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to separate by gravitational means [10]. Moreover, typical treatment methods only 

recover 50 to 60% of the contaminated produced water [11]. Once drilling is complete, 

the produced water is usually injected into deep wells (class II) removing it from the 

water cycle completely [12]. Hence, there is an urgent need globally to better manage 

the produced water, in terms of the recycle and reuse, as well as implementing new 

technologies for produced water treatment [13-15]. Due to the large volumes of water 

used in oil and gas production and the water stress that the world is going through 

generally, and lack of fresh water sources of Qatar specifically, new novel technologies 

must be investigated to find a cost effective, efficient and reliable produced water 

treatment technology.  

In the recent years, electro-coagulation (EC) has gained interest for the treatment 

of produced water and oily wastewater. Due to several advantages to the process, such 

as; fewer amount of sludge production, use of simple equipment and short treatment 

time [16]. Also, forward osmosis (FO) has recently gained attention owing its low and 

reversible fouling property of the membrane [17]. As well as other advantages like high 

salt rejection and low energy needs [18-20]. 

The application of an integrated EC-FO water treatment system for the purpose 

of reuse of produced water is investigated in this work. The effect of current density 

and time will first be studied in EC process, followed by, water flux and fouling of 

membrane according to different flow rates and membrane orientation in FO. 

1.2   Tangible Objectives 

The purpose of this research is the treatment of produced water from oil and gas 

production, by using a novel hybrid electrocoagulation/ forward osmosis treatment 

system (EC-FO).  
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The impact of different parameters is studied in electrocoagulation (EC): 

•   Reaction time (10 and 30 minutes). 

•   The current density (10, 30 and 60 mA/cm2). 

•   Consumption of anode.  

While in forward osmosis (FO) system, the following parameters are taken into 

consideration:  

•   Impact of flow rate on flux. 

•   Impact of membrane orientation on flux. 

•   Fouling of the FO membrane. 

1.3   Thesis Structure 

The first part of this dissertation focuses on demonstrating the challenges of 

treating produced water from oil and gas production, and presents its characteristics. In 

the second chapter, a comprehensive review of existing produced water treatment 

systems is presented along with a summary of the researches conducted in EC and FO 

systems for the treatment of oily wastewater in recent years. The third chapter in this 

thesis sheds light on the methods and materials that were used to successfully assemble 

and test the EC-FO hybrid system. Testing procedures and employed characterization 

techniques of the raw produced water and the treated sample were also included in this 

chapter. In chapter 4, the results of each system; EC and FO are explained in depth and 

relationships are drawn to give a full picture of the water quality obtained. Moreover, 

the viability of the hybrid EC-FO system is discussed. Lastly, conclusions on the work 

are presented with recommendations for future work on such system.   
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1   Origin of Produced Water 

Qatar is an oil and gas producing country at which oil and gas are the main 

contributors to its economy. Qatar is a major gas producer producing around 100 

Million metric ton per annum (MTA) of liquefied natural gas (LNG) in addition to gas 

to liquid (GTL) and other petrochemical products. In oil and gas production, enormous 

amount of produced water is generated where its ratio is estimated to be 4:1 produced 

water to oil and gas product [4].  

Produced water quality differs due to the different origins; some produced water 

is originally existing in the well whereas some produced water is from the injected 

water that has been used to enhance the oil recovery from the well, which is very 

common in oil and gas production wells [21].  

2.2   Produced Water Management 

Produced water has several components which need to be treated or removed in 

order to meet the reuse or discharge regulatory standards, these components include; 

salinity, heavy metals and COD. Plants manage the produced water generated through 

several techniques, such as; injection of produced water, Discharge of produced water, 

usage of produced water in processes, usage of produced water in purposes other than 

the process and no produced water on the surface. Each of these managements methods 

are discussed below. 
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Reinjection of produced water: the produced water collected from the separation 

process on the ground is injected into the same reservoir or into another one and it aims 

to enhance the oil and gas recovery from the well. This produced water is not injected 

directly; it gets treated to remove the fouling components from it before the injection 

to prevent the fouling probabilities. 

Discharge of Produced Water: simply, produced water is treated to ensure its 

quality and to fulfill the regulatory discharge quality demands and then discharged. 

Usage of produced water in the process: produced water is treated and then used 

in the process when it meets the usage quality requirement. 

Usage of produced water in purposes other than the process: produced water is 

treated to meet the local regulatory demands for the reuse of produced water in several 

purposes such as agriculture and cooling purposes [22].  

No produced water on the surface: to prevent produced water from reaching the 

surface, polymeric gel is injected at which it stops the water from escaping to the 

surface. The separated produced water would be re-injected in the adequate formation. 

2.3   Produced Water Characteristics 

The produced water characteristics vary based on the geological location, below 

are the characteristics according to the National produced water database of U.S. 

geological survey. 
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Table 1 

Organic and Inorganic Constituent in Conventional Produced Water [23] 

Organic 

Constituents 

Concentration 

Range (ppm) 

Inorganic 

Constituents 

Concentration 

Range (ppm) 

TOC BDL* - 1,700 TDS 100 – 400,000 

COD 1,200 Sodium (Na) 150,000 

TSS 1.2 – 1,000 Chloride (Cl) 250,000 

Total Oil 2 – 565 Barium 850 

Volatiles 0.39 – 35 Strontium 6,250 

Total Polars 9.7 – 600 Sulfate 15,000 

Phenols 0.009 – 23 Bicarbonate 15,000 

Volatile Fatty 

Acids 
2 – 4,900 Calcium 74,000 

BDL* = Below Detection Limit 
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2.4   Produced Water Treatment 

The demand on fresh water is increasing urging to find suitable effective 

technologies to treat wastewater (produced water). The different origins of produced 

water results in the variation of their quality, and the direct use of this water with its 

variant qualities is biologically hazardous and could damage the environment. Hence, 

the development of an effective treatment process in order to reuse and recycle the 

produced water is very important to remove the pollutants which have an adverse effect 

on the environment. Pollutants are numerous in the produced water whereas organic 

pollutants consume oxygen from water and the removal of these pollutants is carried 

out through different stages and processes [24]: 

Physical process: uses the physical properties and physical principles without the 

addition of chemicals or bacteria to remove solid and biomass; filtration and 

sedimentation are examples of such physical treatment processes.  

Chemical process: uses chemicals to separate dissolved particles from the 

suspended particles. The addition of chemicals adds extra expenses on the treatment 

process and this would be the chemical process disadvantage. Flocculation and 

coagulation are typical examples of such chemical treatment processes. 

Biological process: uses bacteria to remove biodegradable material through the 

consumption of the organic content and nutrients within the water body that needs to 

be treated. The biological processes are either aerobic or anaerobic. The aerobic process 

is carried out at the presence of oxygen, whereas the anaerobic process is conducted at 

the absence of oxygen. Activated sludge process is an example of such biological 

treatment process. 
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Table 2 

Treatment Processes and Treatment Unit Operation [5] 

Process Treatment Unit Operation 

Physical •   Floatation 

•   Sedimentation 

•   Filtration 

•   Membrane Separation 

Chemical •   Adsorption 

•   Chemical Oxidation 

•   Coagulation / Electro-Coagulation 

Biological •   Aerobic Digestion 

•   Anaerobic Digestion 

 

Several Components are meant to be removed from the produced water and 

among those are oil and grease and they need to be removed in all of their forms from 

the produced water. The removal of oil and grease should follow United States 

Environmental Protection Agency (USEPA) standards to verify the usage of the treated 

produced water in the services of the oil and gas industry. The USEPA standards limits 

the oil and grease to maximum of 42 mg/L per day and 29 mg/L per month on average. 

Various technologies used to remove oil and grease of different particle size shown 

below. 
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Table 3 

Oil and Grease Removal Technologies and The Minimum Particle Size They Can 

Remove [22] 

Technology 
Particle Minimum Size Can 

Be Removed (Microns) 

API Gravity Separator 150 

Corrugated Plate Separator 40 

Induced Gas Floatation (Without Flocculants) 25 

Hydrocyclone 10 – 15 

Mesh Coalescer 5 

Media Filter 5 

Induced Gas Floatation (With Flocculants) 3 – 5 

Centrifuge 2 

Membrane Filter 0.01 

 

It is worth mentioning that among those technologies, American Petroleum 

Institute (API) separator and Hydrocyclone are the most commonly used technologies 

in oil and grease removal.  
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API gravity separator uses the gravitational force only to settle down the oil 

particles that tend to flocculate and coagulate at the suitable operating conditions. Oil 

particle are left to settle down, and accordingly this process is highly dependent on the 

retention time and the tank’s design. Moreover, the efficiency of the separator varies 

with different size particles. The disadvantage of the API separator would be its high 

capital cost, maintenance duration and the dependence of the treated produced water 

quality on the tank’s design [25].  

Hydrocyclone technology uses the centrifugal force in a cone structure reactor to 

separate water from oil by keeping the light oil droplet in the middle and pushing the 

heavy water particles outwards. The separation process could be enhanced by the 

addition of gravitational force to the separation process. This technology has a very 

good removal performance at high organic loading rates, but the system needs to be 

operated at high pressure which limit the removal process. Moreover, the system 

experiences blockages at the bottom or on the surface due to the solids accumulation; 

moreover, the maintenance of hydrocyclone is a cost extensive process [26].  

Soluble organics are one of the components that need to be removed from the 

produced water. Soluble organics are considered as oil and greases contaminants; 

however, they cannot be removed with the same technologies used for oil and grease 

removal and this is due to their solubility in water. Aromatic compounds and polar 

hydrocarbon are types of the soluble organics that can be found in produced water. 

Aromatic compounds such as benzene, toluene and xylene do not get affected by pH, 

nevertheless, polar hydrocarbons such as fatty acids are sensitive and they can get 

affected by pH; thus, resulting in the change of the organics solubility in water. Fatty 
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acids become more soluble in water at high pH as they transfer to an ionic form and 

become insoluble in water at low pH as they form carboxylic acid. 

 

 

Figure 1: Solubility of  Fatty Acids with Different pH [27].  

 

Soluble organics can be treated via some approaches; such as adsorption process 

at which an adsorption column is used. The column would be filled with adsorbent 

solids or filtrate, these include among others, clay and activated carbon. The adsorbent 

of filtrate provides a contact surface area with the water that needs to be treated. The 

higher the surface area of the adsorption solids, the higher is the removal percentages 

of these organics from the produced water. The effectiveness of the process is limited 

by several factors; such as hydraulic retention time and the capacity of the reactor. Other 

approaches include the oxidation of soluble organics with strong oxidizers, O3 and OH-
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, which turn organics into carbon dioxide that can be stripped via ultra-violate (UV) air 

stripper. 

Total dissolved solids (TDS) are also components that need to be removed from 

the produced water and the technology selection to be used for that purpose is highly 

dependent on the quality of the produced water needs to be treated. The common 

methods to remove TDS are: electrocoagulation, membrane technology and 

evaporation and filtration technology. 

Treatment of produced water requires the removal of algae and bacteria in order 

to inhibit the formation of any contaminant after the treatment process. The removal of 

theses contaminants is done using chemicals such as chlorine and O3 as conventional 

methods and UV light as an alternative method [27]. 

The efficiency of these technologies and the feasibility of their application in the 

designated treatment purpose has been studied through several researches [28]. Among 

the technologies those were studied, electrocoagulation showed a great potential in term 

of operational cost, effectiveness and oil and grease removal efficiency. 

2.5   Electrocoagulation 

In the 19th century, Michael Faraday discovered the electrocoagulation process, 

at which the science of electrochemistry is used to flocculate, coagulate and oxidize the 

particle in wastewater [29]. A chemical reaction results, as electrocoagulation proceeds, 

from the passage of an electric current between 2 electrodes through an electrolytic 

solution [30]. The electrocoagulation process is composed of: electro flocculation, 

electro coagulation and electro oxidation, and it has the ability to remove pollutants and 

particles from wastewater by creating, disturbing, and neutralizing the repulsive forces 
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between those particles causing them to from larger particles, and hence settle down. 

Accordingly, electrocoagulation has an advantage among other treatment processes for 

its ability to treat oily water as the tiny oil droplets would be electro coalesced and then 

removed [31]. This process, electrocoagulation, destabilizes the oil emulsion in water 

by turning the oil droplets surface to a negatively charged surface and accordingly a 

double electrical layer will be formed between these droplets and the positively charged 

water body. The potential of this double layer decreases when oil droplets moves away 

creating a repulsive force that pushes oil droplets away and prevents them from 

colliding resulting in inhibiting the coalescence of oil droplets [32]. The strength of this 

double layer is referred to as Zeta Potential, and it is the difference in potential between 

the negatively charged oil droplets and the surrounding water body [33]. The zeta 

potential is a measure for the tendency of the oil droplet emulsion to stabilize as the 

higher value of zeta potential expresses a higher tendency of this emulsion to stabilize 

during the process of electrocoagulation [32]. This double layer can be illustrated as 

Figure 2 is showing below: 

 

 

Figure 2: Electric Double Layer Around a Negatively Charged Particle [33]. 
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Weakening this potential is required to allow the emulsion to flocculate or 

coagulate so that is can be removed from the water body. The potential can be reduced 

by generating ions at the anode, those would neutralize the charged ions present in 

water causing the electrostatic repulsion between the oil droplets and water body to 

reduce, so that oil forms flocs and settle down as a sludge [34]. Another method to 

reduce the potential could occur at the cathode side at which hydrogen is generated. 

The formed Hydrogen bubbles are move upwards carrying with them oil droplets, as a 

result of the adhesion between the bubble and the oil droplets, those would flocculate 

on the surface [35]. 

2.6   Membrane Treatment 

2.6.1   Reverse Osmosis 

Reverse osmosis (RO) is a membrane based separation technology that has been 

commercialized since the 1970’s for saline water desalination. RO produces fresh water 

and concentrated brine by applying a pressure to saline feedwater through a 

semipermeable membrane. The pressure is supplied by a high pressure pump; pressure 

needs to exceed osmotic pressure to allow water passage through the membrane [42]. 

The RO membranes are selective, where they restrict the passage of anything other than 

fresh water. The first RO membrane synthesized in the laboratory, using phase 

inversion technique, was by Sidney Loeb and was made of cellulose acetate [43, 44]. 

Other polymeric membranes are used in RO, such as polyamides and polyimides; these 

are currently employed as they possess better salt rejection properties, more durability 

and require less energy [45]. There are several membrane configurations, two of them 
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are spiral wound and hollow fine fiber [46, 47]. Figure 3 shows a representation of RO 

process. 

The RO process operates at ambient temperature; however, fluctuations of 

feedwater may occur; RO membranes are able to withstand temperatures up to 35-40 

oC. Fluctuations in the feedwater temperatures affect the membrane performance, due 

to the difference in water viscosity. At higher temperatures, higher flux is obtained. The 

operating pressure for seawater desalination ranges between 55 and 68 bar; it is highly 

dependent on the salinity of feedwater [48].  

 

 

Figure 3: Reverse Osmosis [49]. 
 

The energy requirement for RO desalination is a factor of recovery ratio, flux, 

membrane, temperature, feed water salinity and system orientation [50]. The total 

energy requirement for RO unit including pre- and post- treatment with no energy 

recovery is estimated to be around 12 kWh/m3 [51]. Two methods have been found to 
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reduce the energy requirement of RO, which are synthesizing new membranes and 

using energy recovery devices [52]. Implementing energy recovery, the total RO energy 

requirement is reduced to the order of 3-6 kWh/m3 [53, 54]. 

2.6.2   Forward Osmosis 

Forward osmosis (FO) is one of the promising water treatment technologies; it is 

driven by osmotic pressure difference across a semi-permeable membrane to produce 

water and is considered as a clean energy process [18, 55]. The semi-permeable 

membrane allows only water to pass while ions are withheld. The draw solution (DS) 

is a highly concentrated salt solution, which has low water chemical potential. The DS 

is used to draw feed solution (FS) through the semi-permeable membrane, due to its 

higher osmotic pressure. The diluted DS is then separated by utilizing an energy 

efficient technique to recover fresh water. FO process, unlike reverse osmosis, does not 

require the application of hydraulic pressure to recover fresh water from the FS; FO 

takes advantage of the natural occurring osmotic pressure difference, as shown in 

Figure 4. 

FO separation process includes two steps: firstly, the semi-permeable membrane 

allows the passage of FS to the DS. Secondly, the DS is recovered to produce fresh 

water.   
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Figure 4: Forward Osmosis [49]. 

 

There are several advantages of the FO process, some of these advantages 

include: relatively low energy consumption when compared to RO, as mentioned 

previously; this is due to the utilization of the natural occurring osmotic pressure rather 

than applying hydraulic pressure [56]. Fouling in the membrane of the FO process is 

very low, and if fouling occurs, it can be easily reversible by backwashing [18, 56, 57]. 

FS quality rarely affects the FO process as it can withstand highly contaminated feeds 

[18, 58-61]. FO considerably has high water recoveries in comparison to other 

desalination methods [55]. 

2.6.2.1   Concentration Polarization (CP)  

FO membranes are asymmetric and have a dense active layer (for salt rejection) 

on one side and a support porous layer on the other side [18]. There are two possible 

orientations for FO membranes; Active layer facing draw solution (AL-DS), and active 
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layer facing feed solution (AL-FS) referred to as forward osmosis (FO) and pressure 

retarded osmosis (PRO) respectively [62]. 

Concentration polarization (CP) is a phenomenon occurring in the FO membrane, 

it is associated to the transport across the membrane [18, 63, 64]. The CP phenomena 

cause lower actual flux than theoretically possible, and this is because of lower osmotic 

pressure difference occurring across the AL of the membrane when compared to the 

bulk pressure difference [65-67]. There are two forms of CP; the external concentration 

polarization (ECP) and the internal concentration polarization, these two phenomena 

affect and lower the effective osmotic pressure difference in the FO treatment process 

[68]. 

2.6.2.2   External Concentration Polarization (ECP)  

ECP is the phenomena that take place at the dense active layer of the membrane, 

and it can be either concentrative external concentration polarization (CECP) or dilutive 

external concentration polarization (DECP) according to the orientation of the 

membrane. When the orientation of the membrane is in FO mode (active layer is facing 

the feed solution) CECP occurs as shown in Figure 5. 
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Figure 5: Effective Driving Force for Water Transport in The Presence of 

Concentration Polarization When Active Layer is Facing Feed Solution (FO) [68]. 

 

Alternatively, when on PRO mode (active layer is facing the draw solution) 

DECP is the dominant phenomena, as shown in Figure 6. In FO mode, CECP build up 

solutes on the dense active layer of the membrane and hence increases the concentration 

of the feed solution at the active, as a result of feed solution flow. Consequently, the 

net deriving force decreases and hence the water flux also decreases. On the other hand, 

ECP effect can be mitigated by optimizing the flow rate to increase turbulence [18, 63, 

65]. Generally, due to the lack of high pressure in the system, solute buildup is not 

major on the membrane. Hence, ECP effect is minimal on reducing the water flux. 
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Figure 6: Effective Driving Force for Water Transport in The Presence of 

Concentration Polarization When Active Layer is Facing Draw Solution (PRO) [68]. 

 

2.6.2.3   Internal Concentration Polarization (ICP)  

ICP occurs within the asymmetric FO membrane and is the main contributor to 

the decrease in FO water permeation as it was shown by various researches [66, 67, 69-

72]. There are two types of ICP, concentrative internal concentration polarization 

(CICP) and dilutive internal concentration polarization (DICP). CICP occurs in PRO 

mode when the active layer is facing the draw solution. It is a result of accumulation of 

solute inside the porous support layer of the asymmetric FO membrane, the 

accumulation polarizes the active layer of the membrane. The difference between CICP 

and CECP is that the former occurs within the pores of the support layer, thus increasing 

the flow rate cannot mitigate CICP effect [68]. On the other hand, DICP takes place in 

FO mode when the active layer is facing the feed solution. The transport of water from 
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the feed side to the draw side, reduces the concentration of the solute within the pores 

of the support layer. This phenomenon, DICP is a major drawback in FO desalination 

because it can reduce the water permeation rate up to 80% than the theoretical value. 

Just like CICP, CICP cannot be mitigated by increasing flux and turbulence [65]. 

2.7   Previous Work Using Electrocoagulation and Forward Osmosis for Oily 

Water Separation 

2.7.1   Previous Electrocoagulation Studies on Oily Wastewater 

Electrocoagulation treatment is a process that has been implemented for a long 

period of time, Table 4 summarizes some of the studies of electrocoagulation used for 

the purpose of treating oily wastewater.	
    

Xu and Zhu [36], investigated the removal of oil from restaurant wastewater by 

electrocoagulation. The water generated from restaurants contains a considerate 

amount of oil and grease which get disposed in the drainage. The presence of oil and 

grease causes fouling and a foul smell in the sewer system. Xu and Zhu, studied the 

different operational conditions to get optimal removal of oil. They have found that 

applying a current density between 10 and 14 A/m2 for 30 minutes, using iron 

electrodes with a distance of 10 mm between them, achieves a removal efficiency of 

oil exceeding 95%.  
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Table 4 

Summary of EC Studies for Oily Wastewater Treatment 

Year 

Oily 

Wastewater 

Source 

Electrode 

Current 

Density 

(A/m2) 

Run 

Time 

(Min) 

Ref. 

2004 Restaurant 

wastewater 

Iron 10 - 14 30 [36] 

2006 Slaughterhouse 

wastewater 

iron 150 25 [37] 

2008 Oilfield 

wastewater 

Aluminum 18.5 40 [23] 

2010 Bilge water Platinum/Iridium 128 240 [38] 

2014 Bilge water Iron and 

aluminum 

6 75 [39] 

2015 Produced water Aluminum and 

iron 

1343 6.8 

L/min 

[40] 

2017 Automobile 

garage 

wastewater 

Viz. mild steel 

and aluminum 

60 15 [41] 

 

 

 



23	
  
	
  

 

Kobya et al. [37] examined the treatment of slaughterhouse wastewater. 

Slaughterhouse wastewater typically contains fat, oil and organic constituents. Kobya 

et al. achieved high COD removal efficiency by applying a current of 150 A/m2 for 25 

minutes, using iron electrodes. A removal efficiency of oil and grease reached a 

maximum of 98%. 

Bande et al. [23] investigated the removal of oil from oilfield wastewater. The 

tested samples contained dispersed fine oil emulsified with water. He used perforated 

aluminum electrodes. He found that oil removal efficiency can be improved by 

decreasing the salinity of the effluent. 

The treatment of bilge water was studied by Körbahti & Artut [38]. The oily water 

was treated by a batch electrocoagulation process, using platinum/iridium (Pl/Ir) 

electrodes. The applied current density was 128 A/m2 for 240 minutes. Which, achieved 

oil removal efficiency of 93.2%. Körbahti & Artut reported that the reaction 

temperature plays a role in the removal efficiency of COD. As the temperature increase, 

mass transport increase and hence COD removal also increase. 

Rincón and La Motta [39], also investigated the treatment of oily bilge water, 

however, their study focused on the removal of oily emulsions and heavy metals like, 

zinc, copper and nickel. They achieved an oil removal efficiency of more than 99%. 

Yet still, the removal rate of copper and nickel didn’t exceed 70%. 

Esmaeilirad et al. [40] used electrocoagulation to treat oilfield wastewater. The 

ability to treat oilfield wastewater on site, reduces the added cost of transportation and 

of providing fresh water for drilling. Esmaeilirad et al. achieved oil removal of 60% by 

using aluminum and iron electrodes, applying a current density of 1343 A/m2. 
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Oil removal from wastewater generated by automobile garages by electro-

coagulation was investigated by Manilal et al. [41]. In the study two electrodes were 

uses; aluminum and iron. Several parameters were examined; salt concentration, 

current density, pH and time effects of the removal of oil and grease. The results 

showed that aluminum anode performed better than iron electrode. The aluminum 

electrode removed 90.8% of oil at a current density of 60 A/m2 running for 15 

minutes. 

2.7.2   Previous Work Using Forward Osmosis for Oily Water Separation 

Recently, forward osmosis has been deemed as a promising treatment technology 

for the more complicated and challenging liquid streams. Forward osmosis has been 

implemented successfully in various treatment processes, such as; seawater 

desalination, landfill leachate concentration, wastewater treatment and desalination of 

brackish water [18, 63, 73]. In Table 5 a summary of the available publications on the 

applications of forward osmosis tested specifically in the treatment of oily water 

streams is presented. 
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Table 5 

Overview of FO Treatment for Oily Wastewater 

Year Feed Solution Draw Solution Membrane Ref. 

2010 Frac water 
26% NaCl 

saltwater 
spiral-wound FO membrane [74] 

2013 

representative 

drilling 

wastewater 

26% NaCl 

cellulose triacetate (CTA) 

polymer cast over a fine 

polyester support mesh 

[75] 

2013 

Frac flowback 

from the 

Marcellus shale 

NH3/CO2  

6.0 M (carbon)  

12.0 M (nitrogen) 

spiral wound FO membrane 

array 
[76] 

2014 
synthesized oily 

wastewater 

0.58 M, 2M NaCl 

 

Lab-fabricated thin film 

composite (TFC) 

membranes based on 

cellulose triacetate (CTA) 

hollow fiber supports and 

poly (vinylidene fluoride) 

(PVDF) hollow fiber 

membranes 

[77] 

2015 
Process Produced 

Water (PPW) 
70 g/L NaCl 

flat sheet thin film 

composite membranes 
[5] 

2016 Produced water salt solution 

semipermeable polyamide 

thin-film composite (TFC) 

membrane with embedded 

polyester screen support 

[78] 
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The treatment of oily waste water using FO  process was first investigated by 

Hutchings et al. [74]. The process success was evaluated by the ability of the system to 

reduce the demand of freshwater. The membrane used for the process was 8-in. 

diameter x 40-in.-long spiral wound FO membrane. While, the draw solution to the 

process was 26% sodium chloride (NaCl). 

In the year 2013, Hickenbottom et al. [75] optimized the previous work of 

Hutchings et al. [4]. The study used CTA membrane that was custom made for the 

purpose of the study. The draw solution used was also 26% NaCl. The findings of this 

study confirmed Hutchings results, that forward osmosis process proved to be a valid 

method for the concentration of oil and grease wastewater that was generated from 

drilling. 

Hancock et al. [76], treated oil and gas wastewater in three steps; pretreatment, 

FO treatment and polishing of product brine. In the pretreatment step, he used soda ash 

to generate flocs that have low solubility and precipitate, while in the FO process, he 

used a new patented draw solution composed of ammonia and carbon dioxide. The feed 

to the FO system is the pretreated oily water. Then in the final stage, the draw solution 

was regenerated by heating then condensing the diluted draw solution. 

Zhang et al. [77], investigated the use of a hybrid forward osmosis/membrane 

distillation (FO-MD) system. The oily wastewater which was the draw solution to the 

FO, was synthesized at the lab by oil in water emulsion, and also, they used fabricated 

cellulose triacetate (CTA) – based thin film composite (TFC) and polyvinylidene 

difluoride (PVDF) hollow fiber membranes. He concluded that membrane fouling 

increased marginally as the concentration of oil increased, water flux affected the extent 
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of fouling due to the presence of oil. Lastly it was noted that when using the membrane 

in PRO mode, fouling would increase 

The reduction of produced/process water (PPW) volume was studied by Minier-

Matar et al. [5], in 2015. In the study, he used 70 g/L sodium chloride as a draw solution 

to simulate brine from thermal desalination or sea water. The forward osmosis process 

feed solution was varied between treated PPW and untreated PPW, to investigate the 

effect of pretreatment on the FO performance. The results proved that pretreated feed 

was superior to the untreated PPW, because it reduced fouling on the FO membrane.  

Most recent study was done by Bhinder et al. [78]. He aimed to treat water from 

bitumen extraction from oil sands. The process used for this extraction is called steam 

assisted gravity drainage (SAGD). SAGD produced water was used as the feed to the 

FO treatment system. The draw solution consisted of salt solution. The study found that 

increasing the temperature of feed water would increase the flux. He also noticed that 

CP was minimized by increasing the flow rate. TOC rejection of the process was 

between 85-96%, a water flux as high as 25 LMH was achieved. 
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CHAPTER 3:  EXPERIMENTAL MATERIALS AND METHODS   

 

3.1   Synthesis of Produced Water 

Produced water (PW) was prepared by mixing salts, solids and oil content in 

deionized (DI) water. Selected salts included, Iron(II) sulfate (FeSO4), Calcium 

chloride (CaCl2), Potassium Chloride (KCl), Magnesium chloride (MgCl2), Sodium 

chloride (NaCl), Calcium sulfate (Ca2SO4), Monosodium Phosphate (NaH2PO4), 

Sodium bicarbonate (NaHCO3) and Boric Acid (H3BO3). These salts were all purchased 

from Sigma-Aldrich.  The chemicals were of analytical grade and were used as received 

without any further treatment. Oil & Grease spiked by commercial oil for engine and 

gear box and solids contained cellulose material and as stated by the standard method 

(ASTM D5907). 

Salts were first dissolved completely in DI water according to the amounts shown 

in Table 6 below. Solids were then added to act as suspended solids. Eventually oil and 

grease content was characterized by their addition in high shear rates mixer for four (4) 

hours to ensure complete emulsion of oil in water. The synthesized samples were then 

immediately used in electrocoagulation tests. 
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Table 6  

Charachteristics of Produced Water 

Characteristics 

Turbidity (NTU) 915 

TSS (ppm) 3116 

TOC (mg/L) 1260  

Oil and Grease (mg/L) 950 

pH-Value 6.3 

Conductivity (mS/cm) 96.4 

Color Black 

FeSO4 (mg/L) 100 

CaCl2 (mg/L) 7000 

KCl (mg/L) 2000 

MgCl2 (mg/L) 7500 

NaCl (mg/L) 55000 

Ca2SO4 (mg/L) 2000 

NaH2PO4 (mg/L) 40 

NaHCO3 (mg/L) 1000 

H3BO3 (mg/L) 200 
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3.2   Electrocoagulation 

Electrocoagulation tests were carried out in 1 L volume beaker equipped with a 

magnetic stirrer to provide uniform mixing throughout the experiment time, the speed 

of stirring was maintained at 250 rpm throughout the whole experiment time. Two rods 

of aluminum with surface area of 53.9 cm2 (9.8 cm x 5.5 cm, 1mm) each and thickness 

of 1 mm, were used as anode and cathode, show in Figure 7. Three different current 

intensities were applied by DC amplifier, for 10 and 30 minutes. The electro-

coagulation tests took place at room temperature (25.0 ±2 oC). 

 

 

Figure 7: The Aluminum Plates Used as Anode and Cathode on PVC Mount. 

 

A picture of the laboratory setup of the electro-coagulation test is shown in 

Figure 8, a schematic diagram of the system is illustrated in Figure 9. 
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Figure 8: Electro-Coagulation System Laboratory Setup. 

 

 

Figure 9: Schematic Diagram of The Electro-Coagulation System. 

 

DC Amplifier 

Magnetic 
Stirrer 

Sample 
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All the electrocoagulation tests were carried out following the same procedure. 

The produced water synthesized was used immediately after oil emulsification to 

prevent the oil separation with time. After each experiment, the treated samples were 

left for 24 hours to settle the precipitates generated from the electrocoagulation process 

and then the pure sample was pumped out in to a clean beaker. The conductivity, TSS, 

pH, turbidity and TOC of produced water were measured prior to the starting of each 

set of experiments and after collection of pure sample.  

The analyzed parameters removal efficiency was calculated by Equation 1: 

%	
  𝑅𝑒𝑚𝑜𝑣𝑎𝑙	
  𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 	
   01203
01

×100,    (1) 

Where; 

Ci: initial concentration 

Cf: final concentration 

3.3   Forward Osmosis Unit 

After the Electro-coagulation tests, the electro-coagulated water (EC), after 

sedimentation for 24 hours, was transferred to the draw solution (DS) tank of the FO 

module using treated sewage effluent (TSE) as feed.  

•   Feed solution used for the FO was secondary treated sewage effluent (TSE) 

after passing through the clarifier, the TSE was acquired from Doha West Waste 

Water Treatment Plant. 

•   Draw solution used for the FO was produced water after the electrocoagulation 

treatment tests. 
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FO tests were carried out in Sepa CF042D forward osmosis unit supplied by 

Sterlitech™ Corporation, presented in Figure 10, using the principle of crossflow 

between feed and draw solutions. The FO module was made of stainless steel, which 

gives it the advantage of resisting corrosion and working safely at high flow rates.  

 

 

Figure 10: Sterlitech™ Forward Osmosis Unit [79]. 

 

CTA membrane shown in Figure 11, was used for the separation process. The 

CTA membrane (11.5x5.57 cm, 0.5 mm) was acquired from Hydration Technology 

Innovations (Albany, OR), it composed of a cellulose triacetate (CTA) active layer with 

an embedded woven support mesh and an active area of 0.0042 m2. Cellulose acetate 

membrane possesses various positive properties, such as; robustness, affordability, 

resistance and delivery of acceptable water flux [80]. Various other studies have used 
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this FO membrane, due to its ability to withstanding harsh conditions, like high TSS 

and TOC and thus they were used in this study [57, 63, 81, 82]. However, these 

membranes are prone to biological attack, and may undergo hydrolysis. Accordingly, 

pH of feed and draw solution must be maintained between 4-6, and operation temperate 

should not exceed 35oC [18]. 

 

 

Figure 11: Forward Osmosis Membrane (a) Active Layer, (b) Support Layer. 

 

A polymeric mesh spacer (Sepa CF high fouling spacer, 8x3.5 cm) shown in 

Figure 12, was used on the support layer side of the membrane. Mesh spacers are known 

to enhance the flow turbulence and provide membrane support. In this set up, the mesh 

spacer was used in order to prevent the membrane from breakage.  

(b) (a) 
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Figure 12: Polymeric Mesh Forward Osmosis Spacer. 

 

A gear pump (75211-15, Cole-Parmer®) was placed on both the feed and draw 

solution side to circulate and maintain their flow rates. The system used two pressure 

gauges and two site read panel mount flow meters (Blue-White) at the inlet and outlet 

of the cell to observe the transmembrane pressure and flow rate of both feed and draw 

solutions.  

A mechanical stirrer was used at the feed tank at constant speed throughout the 

experiment, and a magnetic stirrer was used at the draw tank to avoid settling of 

suspended solids.  

The feed solution tank was placed on a digital balance (EW-11017-04, Ohaus 

Ranger™) which has a capacity of 12 kg, to measure the feed solution weight change. 

The weight difference was recorded on to the PC in 10 minute intervals throughout the 

total run time of the experiment, to calculate the water flux. Both feed and draw solution 

tanks initial volume was 4.0 L each. Temperature and pressure were constant 

throughout the whole experiment time. Figure 13 shows a schematic diagram of the 



36	
  

experimental set-up including the FO unit and all the other units and equipment used to 

monitor and control the system.  

Figure 13: Schematic Diagram of Forward Osmosis Unit. 

All the FO experiments were carried out following the below protocol: 

The membrane was first soaked in deionized (DI) water for 24 hours prior to its 

first use, this was done to release any preservatives present on the new membranes. The 

FO system was then operated for 1 hour with DI water in both feed and draw tanks. 

After operating the system with DI water, the feed and draw tanks were drained and 

filled with actual feed and draw solutions. The conductivity, TSS, pH and turbidity of 

both feed and draw solutions were measured prior to starting each test at a specific flow 

rate. Once the experiment was completed after 1000 minutes run time, the conductivity, 

TSS, pH and turbidity were measured for both feed and draw solutions then the system 

was flushed with DI water. 
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3.4   Hybrid system 

The whole process including Electro-coagulation and FO was named as EC-FO. 

The produced water first enters the EC system to remove and reduce TSS, TOC, oil & 

grease and conductivity. Then the effluent of the EC system inters FO membrane 

system for further treatment and dilution, where the conductivity of water is 

significantly reduced. The feed to the FO system is treated sewage effluent (TSE). A 

schematic diagram of the full setup is shown in Figure 14 below. 

 

 

Figure 14: Schematic Diagram for Hybrid EC-FO System. 

 

3.5   Measured parameters 

3.5.1   Dissolved, Suspended and Total Solids 

Total solids (TS), total dissolved (TDS) and total suspended solids (TSS) 

measurements were determined according to standard method (ASTM D5907), the 

measurements were taken for produced water prior and after electro-coagulation and 

for produced water and treated sewage effluent before and after forward osmosis 

treatment. 
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Total suspended solids measurements were done by taking a volume of 50 mL of 

a well-mixed sample and filtering it through glass fiber filter with pore size of 1.5 µm. 

The filter paper was then placed in drying oven at a temperature of 105oC until it was 

completely dry, then the filter paper was weighed using a precision balance (PGW 

6002e, aeAdam Company). 

The total suspended solids in ppm were calculated using the following equation: 

 𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑	
  𝑆𝑜𝑙𝑖𝑑𝑠	
  (𝑝𝑝𝑚) =
?2@ ×	
  ABBBCD

D ×	
  ABBBCE
E

FG
 ,              (2) 

Where; 

A: weight of filter paper with the dried residue (g) 

B: standard weight of filter paper (g) 

Vs: volume of the sample (mL) 

 

 

Figure 15: Drying Filter Paper Used for Calculating Total Suspended Solids. 
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The total solids were measured by the following procedure; first the weight of an 

empty clean evaporation dish was taken on balance (PGW 6002e, aeAdam Company), 

then it was filled with 50 ml of the well mixed sample. The filled evaporation dish was 

placed inside the drying oven at a temperature of 105 oC until the sample was 

completely dry. The evaporation dish was then taken out of the oven and placed in a 

desiccator to remove the humidity from the sample, then it was measured by the balance 

and the weight was noted. The total solids (ppm) were measured by the following 

equation: 

 𝑇𝑜𝑡𝑎𝑙	
  𝑠𝑜𝑙𝑖𝑑𝑠	
  (𝑝𝑝𝑚) = 	
  
?2@ ×	
  ABBBCD

D ×	
  ABBBCE
E

FG
 ,   (3) 

Where; 

A: weight of dish containing residue (g) 

B: weight of dish (g) 

Vs: Volume of the sample (mL) 

 

Figure 16: Samples Placed in Evaporation Dishes Before Drying in The Oven for TS 

measurements. 
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The total dissolved solids value is the difference between suspended and total 

solids and it was determined by the subtraction of the total suspended solids from total 

solids present in the sample. 

  𝑇𝐷𝑆 = 𝑇𝑆 − 𝑇𝑆𝑆,     (4) 

 

3.5.2   Determination of Oil Concentration  

Infrared reference method was used for determination of oil concentration 

following (ASTM D7066-04) standards. The measurement was carried out with S-316 

polymeric solvent. The samples pH was adjusted to 2 using hydrochloric acid (HCl). 

The solvent and prepared sample were then poured into the separating funnel and shook 

vigorously for 10 minutes. Once the separation of the two layers was observed, the 

solvent phase (at the bottom) was filtered through filter paper which contained 

anhydrate sodium sulfate (NaSO4, sigma-aldrich,99%) to remove any moisture present 

in the extract. The extracted sample was then measured using Horiba oil content 

analyzer OCMA 350 device. The oil concentration in samples (Coil, ppm) was 

determined as follows:  

   𝐶MNO =
0FGPQ
FGRCSQT

 ,     (5) 

Where; 

C: concentration of oil read on calibration curve (ppm) 

Vsol: volume of solvent used for extraction (mL) 

Vsample: volume of sample (mL) 
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3.5.3   Total Organic Carbon (TOC) Measurement  

Total organic carbon (TOC) of each sample was measured after the electro-

coagulation test. The method used for determining TOC was oxidative combustion-

infrared analysis using a Shimadzu TOC 680 °C analyzer which adopts the 680 °C 

combustion catalytic oxidation method, with ASI-L Autosampler. Where; the total 

carbon (TC) is measured by injecting the sample into a heated combustion tube packed 

with an oxidation catalyst. The heat vaporizes the water and carbon converts to carbon 

dioxide (CO2). A carrier gas carries the CO2 from the combustion tube into a non-

dispersive infrared gas analyzer (NDIR). The NDIR measures the concentration of CO2. 

Then, using a calibration curve that was previously prepared using standard solutions, 

the TC concentration of the samples was obtained. Inorganic carbon (IC) is determined 

by the injection of sample in phosphoric acid solution chamber. TOC is obtained by the 

difference between TC and IC as shown in the equation below. 

   𝑇𝑂𝐶 = 𝑇𝐶 − 𝐼𝐶,     (6) 

TOC provides an indication of the total organic matter concentration in water. 

 

3.5.4   Anode Consumption 

The anode consumption was determined by taking the weight difference of anode 

before and after electro-coagulation.  The anode, composed of aluminum plate was 

cleaned thoroughly, the cleaning method included submerging the plate in hydrochloric 

acid (HCL) then sanding the plate with sand paper, this mechanism of cleaning was 

done to insure the removal of any metal oxide present on the surface of the plate as the 
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its presence may affect the elector-coagulation process. After cleaning, the weight of 

the plate was noted and then used for electro-coagulation test. Once the test was 

finished, the plate was removed and washed wish deionized (DI) water and dried for 

weight measurement on precision balance (PGW 6002e, aeAdam Company).  

 

 

Figure 17: Aluminum Plates After EC Treatment, (a) Cathode, (b) Anode. 

  

The percentage reduction of anode weight was calculated by the following 

equation: 

 𝐴𝑛𝑜𝑑	
  𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	
  (%) = YZ12YZ3

YZ1
×100,    (7) 

Where; 

mAi: initial anode weight (g) 

mAf: final anode weight (g) 

(a) (b) 
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3.5.5   Scanning Electron Microscopy 

Microstructure and macrostructure imaging of sample with transmission or 

reflection modes offer valuable information on metallurgical, biological and geological 

samples. Scanning electron microscopy (SEM-bench top Jeol) is capable to magnify 

sample up to 60,000 x.  SEM images were taken for the FO CTA membrane before and 

after the treatment of water. The equipment used to take the SEM images was 

(Benchtop SEM- JCM 6000). 

 

3.5.6    Water Characterization 

Characterization of water samples was done prior and after both 

electrocoagulation and forward osmosis tests. This characterization included pH, 

conductivity and turbidity of measurements. A digital pH meter (Digimed DM-2) was 

used for pH measurements, the conductivity was measured using a conductivity probe 

(Hach 51800-10, sensION) and turbidity measurements were conducted using a 

turbidimeter (HACH, 2100P). All samples were measured by taking an adequate well 

mixed representative sample after each test. Prior to each measurement each respective 

device was thoroughly cleaned with DI water.  
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CHAPTER 4:  RESULTS & DISCUSSION 

 

This chapter mainly discusses the results obtained in this work. The chapter starts 

with the electro-coagulation (EC) tests results. Then, discusses the results obtained 

from forward osmosis tests (FO), and finally discusses the outcome of a hybrid 

combined water treatment system of electro-coagulation and forward osmosis (EC-

OF). 

4.1   Electrocoagulation 

Three main processes occur during electrocoagulation, they are: electrolytic 

reactions, formation of coagulants and adsorption and removal of soluble and colloidal 

pollutants [83]. The electrolytic reactions occur on the surface of the electrode, while 

the coagulants formation occurs in the aqueous phase. The adsorption and removal of 

pollutants take place via either sedimentation or floatation [84]. In this work, Aluminum 

electrodes were used because they have shown an enhanced removal efficiencies of 

total suspended solids, turbidity and color compared to other steel electrodes [85]. 

When using Aluminum electrodes, a series of reactions occur in the electrocoagulation 

process, these reactions take place at the anode and cathode surface, and are as follows 

[84, 86-88]: 

Anode Reactions:   𝐴𝑙 [ → 	
  𝐴𝑙]^(_`.) + 3𝑒2,    (8) 

    𝐴𝑙 [ → 	
  𝐴𝑙d^(_`.) + 2𝑒2,    (9) 

Cathode reaction:  𝐻d𝑂 + 2𝑒2	
   → 	
  𝐻d	
  (g) + 2𝑂𝐻2,            (10) 
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Solution/Electrolyte: 𝐴𝑙]^(_`.) + 3𝐻d𝑂	
   → 𝐴𝑙(𝑂𝐻)] + 3𝐻^,         (11) 

The removal process of the pollutant involves the dissolution of metal ions. The 

metallic hydroxide, Aluminum Hydroxide, formed by electrolytic oxidation in the 

aqueous solution destabilizes the emulsified oil droplets those are negatively charged 

so they get neutralized by the positively charged aluminum ions present in the solution 

[86]. 

When the anode’s potential is high, direct oxidation of the chlorine ions and the 

organic compounds present in wastewater might occur as secondary reactions and 

produce the very strong oxidant chlorine. This produced chlorine can promote the 

electrode reactions and oxidize the organic compounds [86]. 

Chlorine oxidation:  2𝐶𝑙2 	
  → 	
  𝐶𝑙d + 2𝑒2,                (12) 

All in all, the electrical energy would generate these oxidants that will oxidize the 

organic compounds and remove them either via floatation or sedimentation [86]. 

4.1.1   Effect of Current Density 

Current density is defined as the current loaded per unit area. Current density can 

be varied externally and has a direct effect on the movement of particles, oxidation of 

electrode, release of hydrogen, pollutant removal and operating cost of the process [84, 

89, 90]. In the current study, the effect of three current densities 10, 30 and 60 mA/cm2 

was investigated to determine its effect on the electro-coagulation process performance. 

The samples investigated were given abbreviations; CD10, CD30 and CD60 for current 

densities of 10, 30 and 60 mA/cm2 respectively. Four parameters were investigated; 
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total suspended solids (TSS), turbidity, oil and grease (O&G) content and total organic 

carbon (TOC) to assess the performance of electro-coagulation process. 

 

 

Figure 18: Total Suspended Solids (TSS) Removal for Different Current Densities at 

Different Times. 

 

Figure 18, shows the total suspended solids removal rate for the different runs 

performed. The highest TSS removal rate of 98.5% was achieved at current density 30 

mA/cm2 and 30 minutes run time. All the runs had very close removal rates. The highest 

enhancement was achieved at 60 mA/cm2. The TSS removal rate at CD60 was 

enhanced by 0.82% and 1.44% at run time 10 and 30 minutes, respectively. An 

increasing trend can be seen between the different current densities that shows as the 

charge increase the TSS removal rate increase. All the TSS removal values are at the 

high range as all the samples achieved a removal rate higher than 97%. This shows that 
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a plateau was reached, where at a certain current density the increase in removal rate 

will be limited due to the increasing amount of coagulant that will precipitate at the 

bottom of the beaker [88, 91, 92], this is shown in the following equation: 

 𝐴𝑙]^(_`.) + 3𝐻d𝑂	
   → 𝐴𝑙(𝑂𝐻)] + 3𝐻^,            (13) 

 

 

Figure 19: Turbidity Removal for Different Current Densities at Different Times. 

 

Figure 19, shows the turbidity removal at various current densities. At 10 minutes 

run time, CD10 showed the lowest turbidity removal rate of 91.6%. As the current 

density increase the removal rate of turbidity also increase and at CD60 the removal 

rate reaches 93%, an enhancement in the turbidity removal of only 1.53% between the 

highest and lowest values at this run time. At a longer run time, the effect of current 

density can be seen more clearly. The removal rate was increased by 7.74% when the 
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current density increased from 10 to 60 mA/cm2. An overall increasing trend can be 

noticed when increasing the current density and that is primarily due to the abundancy 

of charge present in the solution to completely destabilize it [92]. These findings of 

TSS and turbidity removal agree with previous findings and can be explained; as the 

current density increase for a fixed detention time, the amount of aluminum cations 

(Al3+) released by the anode will also increase and thus the amount of coagulant 

(Al(OH)3) will increase and therefore, the coagulant produced destabilize the colloidal 

particles and form precipitates which settle down easily, following the reaction equation 

that was previously stated in this chapter [88, 91, 92]. 

 

 

Figure 20: Oil and Grease Removal for Different Current Densities at Different 

Times. 
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The current density has a direct relation with the percent of oil and grease 

removed, as the current density increase the oil and grease removal increase [41, 93]. 

This is because, the higher the current density the more efficient becomes the anode 

and cathode, this increase in efficiency results in the increase of flock production, which 

leads to higher removal rates of O&G [94]. The results in Figure 20 shows that the oil 

and grease at both run times 10 and 30 minutes, are following the same pattern. The 

removal of oil increases with increasing current density and then decreases slightly at 

higher current density of 60 mA/cm2. The slight decrease in the oil and grease removal 

was reported to occur at higher current densities and this is attributed to the presence of 

excess aluminum ions (Al3+). The oil droplets are negatively charged, the surplus of the 

aluminum cations reverses the charge of the oil droplets and results in the decrease of 

oil removal [83, 95, 96].  

 

 

Figure 21: Total Organic Carbon (TOC) Removal for Different Current Densities at 

Different Times. 
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The highest total organic carbon (TOC) removal rate of 91.3% was obtained at 

run time of 10 minutes and current density of 10 mA/cm2. The results show that an 

increase in the current density causes a decrease in the removal efficiency and this 

might be attributed to the same reason the oil and grease removal decrease at higher 

current densities. At high current density, excess Aluminum cations (Al2+) are produced 

and this excess can affect the removal of TOC. This effect can be even more obvious 

at a longer reaction time as shown in Figure 21. 

4.1.2   Effect of Contact Time 

Effect of contact time in the electro-coagulation tests was investigated for two 

different durations, 10 and 30 minutes because the electrolysis time is an important 

factor in the electrocoagulation process [97]. This was performed to evaluate the effect 

of process time on the removals of total suspended solids, turbidity, oil and grease and 

total organic carbon.  

 

 

Figure 22: Total Suspended Solids (TSS) Removal Rate of Samples at Two Different 

Times.  
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From Figure 22, it can be seen that only a slight difference in the removal of 

suspended solids took place. Overall, after running the experiment for 30 minutes, the 

TSS removal was enhanced by 0.1, 0.4 and 1.7% for current densities 10, 30 and 60 

mA/cm2 respectively. Increasing the run time only slightly increased the removal rate. 

This is because the removal achieved at the lowest density and shortest time already 

achieved high removal, and therefore minor enhancement was observed. 

 

 

Figure 23: Turbidity Removal Rate of Samples at Two Different Times. 

 

Figure 23, shows the removal of turbidity. The turbidity removal rate at 10 

minutes run time was 91.6%, and the removal rate was almost the same at 30 minutes. 

However, when the current density increased to 30 mA/cm2, the effect of reaction time 

was more evident as removal rate increased from 92% to 94.8%. Also, at current density 

of 60 mA/cm2 an increase of removal between the two times was noticed and it was 
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calculated to be 6.24%. This increase in the efficiency of removal is higher than the one 

obtained at the other two current densities studied. The highest turbidity removal rate 

obtained in the study was at 30 minutes run time for the current density of 60 mA/cm2. 

It can be observed that the increase of electrolysis time resulted in better turbidity 

removal rate, and this finding can be supported by various previous research [36, 92, 

94]. 

 

 

Figure 24: Oil and Grease Removal Rate of Samples at Two Different Times. 
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cations (Al3+). The oil droplets in the produced water samples are negatively charged, 

the surplus of the aluminum cations reverses the charge of the oil droplets and results 

in the decrease of oil removal [83, 95, 96]. This phenomenon resulted in obtaining an 

optimum point for the removal of oil and grease. This optimum point of removal was 

attained at 10 minutes run time when applying a current density of 30 mA/cm2.  

 

 

Figure 25: Total Organic Carbon (TOC) Removal Rate of Samples at Two Different 

Times. 
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removal capacity when time progresses reflects the formation of excess flocs [83]. The 

effect here on the other had is more evident than in oil and grease tests. 

4.2   Other Factors in Electrocoagulation 

4.2.1   Electrode Consumption 

Figure 26, shows the amount of aluminum electrode consumed in the 

electrochemical cell as the current density increase at two times of 10 and 30 minutes. 

The highest electrode consumption was at the highest current density and longest run 

time, 60 mA/cm2 and 30 min respectively. Similarly, the least amount of anode 

consumed was attained at the lowest current density of 10 mA/cm2 and shortest run 

time of 10 minutes. The current density and aluminum electrode consumption is 

proportional. Moreover, as the time of the test increase, the consumption of the 

electrode also increases. These results support the previous findings; at higher current 

density and longer run time more aluminum cations are produced, due to the 

consumption of the electrode. The aluminum cations produced affect the process of the 

removal of constituents present in the produced water during the electro-coagulation 

process. Accordingly, the results suggest the importance of residence time to the 

process performance. Also, the importance of anode consumption because, it has a 

direct effect to the feasibility of the treatment economically. 
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Figure 26: Current Density Vs. Electrode Consumption for Samples at Different Test 

Times. 

 

4.2.2   Conductivity and Time Relationship 

In Figure 27, the change of conductivity of the sample with applying different 

current densities is shown for two run time 10 and 30 minutes. The initial conductivity 

of the untreated PW sample was 96.4 mS/cm, after treatment the conductivity decreased 

slightly. The conductivity of the six different samples fluctuated between 92.6 and 90.5 

mS/cm. hence, the change in conductivity can be said to be random and not significant. 

The EC system only slightly affected the conductivity of PW. To be able to get 

satisfactory results for the reuse of PW, conductivity must be further reduced and this 

could be achieved by using the FO system. FO system is further discussed in section 

4.3. 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 10 20 30 40 50 60 70

%
	
  E
le
ct
ro
de

	
  co
ns
um

pt
io
n

Curret	
  Density	
  (mA/cm2)

t10 t30



56	
  
	
  

 

 

 

Figure 27: Conductivity Change with Current Density for Samples at Different 

Times. 

 

4.2.3   pH and Time Relationship 
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Figure 28: pH Change with Current Density for Samples at Different Times. 

 

4.3   Filtration Studies (Forward Osmosis) 

The feed solution to the process was treated sewage effluent (TSE) and the draw 

solution used was the electro-coagulation treated produced water. Two orientations of 

the membrane were tested; Active layer facing draw solution (AL-DS), and active layer 

facing feed solution (AL-FS) referred to as forward osmosis (FO) and pressure retarded 

osmosis (PRO) respectively in this study. The flow rates of feed and draw solutions 

were equal at all times, to prevent any pressure effect. Three flow rates at each 

orientation were tested; 0.8, 1.2 and 2 LPM. In both orientations, a spacer was used and 

placed on the support layer of the membrane. The draw solution was stirred throughout 

the experiment, to prevent settling of suspended matter. All tests were conducted at 

room temperature for 1000 minutes. 

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 10 20 30 40 50 60 70

pH
	
  

Curret	
  Density	
  (mA/cm2)

10	
  min 30	
  min



58	
  
	
  

 

The Flux (Jw, L/m2.h) was determined by observing the change of weight through 

time, using the following equation: 

 𝐽i =
jk2jl
mk2ml

∕ 𝐴o,                         (14) 

Where; 

W1, W2: weight recorded at interval 1 and 2 (g) 

t1, t2:  time recorded at interval 1 and 2 (h) 

Ae :  effective area of the membrane (m2) 

Recovery rate (% Ret) and flux reduction (%) where also calculated  

   %𝑅𝑒𝑡 = j m 2j mpB
j	
   mpB

×100 ,             (15) 

Where; 

W(t=0): initial weight at the beginning of the experiment (g) 

W(t):  final weight after 1000 minutes of run time (g) 

   𝐹𝑙𝑢𝑥	
  𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 	
  st(mpB)2st(m)
st(mpB)

	
   ×100,            (16) 

Where; 

Jw(t=0): initial flux calculated at the beginning of the experiment (L/m2.h) 

Jw(t):  final flux calculated after 1000 minutes of run time (L/m2.h) 
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4.3.1   Effect of Flow Rate on Membrane Flux 

 

 

Figure 29:  Permeate Flux Change with Time (FO Mode) for Three Different Flow 

Rates 0.8, 1.2 and 2 LPM. 
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acquired at a flow rate of 2 LPM. 
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on the membrane surface which is  due to permeation drag that reduces the flux [78]. 

The slight deviation of the flux from linearity may be attributed to the salt present in 

the porous support layer that is being diluted by the water coming from the feed side, 

this phenomenon is known as the dilutive concentration polarization (DCP) 

phenomenon, and occurs in highly concentrated draw solutions like the one in this study 

[99, 100]. As the flow rate increases, the presence of suspended solids and dissolved 

organic cause fouling to the membrane and hence low osmotic pressure lowering the 

flux of water [101, 102]. The highest flux was noticed at flow rate of 0.8 LPM. This 

can be explained by the increased fouling of the membrane as the flow rate increases. 

Increased fouling can be due to the presence of the spacer on the support layer, where 

the colloidal particles get trapped between the spacer and the membrane surface. These 

results are more visible by SEM images of the membrane that will be later discussed in 

section 4.3.3.  

 

 

Figure 30: Recovery Rate Under Three Different Flow Rates for FO Mode 

Membrane Orientation. 
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The highest recovery rate was obtained at flow rate of 0.8 LPM as it can be seen 

in Figure 30. The recovery rate kept decreasing as the flow rate increased. This is 

consistent with Figure 29 observation, where the flux decreased as the flow rate was 

increasing. This is mainly attributed to the use of spacer in the draw side which led to 

the entrapment of colloidal particles between the spacer and the rough support layer, 

leading to severe flux reduction as the flow rate increased. These results are evident in 

the SEM images that will be later discussed in this chapter, in section 4.3.3. 

4.3.2   Effect of Membrane Orientation on Membrane Flux 

Figure 30, shows the trend of flux with time, between the three different flow 

rates tested in PRO mode, the highest average flux of 5.5 L/m2.h was attained at a flow 

rate of 1.2 LPM. At the flow rate of 2 LPM, an average flux of 5.3 LPM. At the flow 

rate of 0.8 LPM, the initial flux was the highest. At the star of the experiment the 

starting flux was 12.9 L/m2.h, however the flux sharply declined with the progress of 

time until the average flux reached the lowest value among all the other average fluxes 

attained for the other flow rates.  
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Figure 31: Flux Change with Time (PRO Mode) for Three Different Flow Rates 0.8, 

1.2 and 2 LPM. 
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This can be attributed to the decrease of CP on the membrane, this trend is explained 

by previous researches [103]. As the flow rate increases the ECP is decreased due to 
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reduced the accumulation of particles on the membrane surface due to the increase 

solution turbulence this cause CICP mitigation [104].  

 

  

Figure 32: Recovery Rate Under Three Different Flow Rates for PRO Mode 

Membrane Orientation. 
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Figure 33: Comparison Between FO and PRO Modes Flux Change with Time for 

Three Different Flow Rates 0.8, 1.2 and 2 LPM. 

 

It can be noted from Figure 33, that the PRO mode provided higher fluxes than 

FO mode at the same operating flow rates. This can be explained by the reduced effect 
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the active layer is facing towards draw solution side. This is attributed to the smooth 

and dense surface characteristics of the active layer, which helps in reducing the shear 

stress of the fluid on the surface of the membrane. This in turn reduces both ECP and 

ICP because it reduces the accumulation and diffusion of salts on the membrane [105-

107]. Also, since the concentration of the draw solution was significantly higher than 
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that of the feed, the CICP of PRO mode was less than DICP in FO mode, which 

contributed to the higher flux at the PRO mode. 

  

Figure 34:  Water Flux Reduction Under Three Different Flow Rates for FO & PRO 

Orientations. 

 

At the flow rate of 0.8 LPM the flux reduction is 21.3 and 66.9 % for PRO and 

FO mode respectively, in PRO mode the flux reduction is much greater than that of FO, 

this is consistent with previous studies [108]. At flow rate of 1.2 LPM the flux reduction 

of both the FO and PRO modes are close to each other. While at the flow rate of 2 LPM 

the flux reduction of PRO mode was only 9.8% compared to the 48.7% in the FO, this 

result is consistent with Figure 34, where it could be seen that the initial flux in FO 

mode was reduced from 4.3 to 2.2 L/m2.h, while at the same flow rate in PRO mode 

only a minor change in the flux was seen where the initial flux was 5.7 L/m2.h and the 

final flux was 5.2 L/m2.h. 
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4.3.3   Membrane Fouling 

SEM images revealed the formation of organic fouling on the membrane surface. 

The irregular structure that appeared on the membrane in Figure 35, represents organic 

foulants. The foulants caused fouling to the FO membrane because they blocked the 

pores of the membrane. The presence of the spacer on the support layer side also 

contributed greatly to the increased fouling where the foulants were entrapped in 

between. This result is in agreement with the hypothesis made by Li et al. [109]. Li et 

al. suggested that the membrane surface roughness has a direct relationship with the 

number of colloidal particles attaching to it. The rougher the membrane surface, the 

more particles will adhere to it. The support layer is the porous side of the membrane 

and is rougher than the active side which is the dense side of the membrane and is 

relatively smoother. Foulants will attach to the rough support side. During PRO 

orientation, the active dense layer will foul at a slower pace when compared to the 

porous support layer, the SEM images of PRO mode are shown in Figure 36. This 

explains the higher flux attained during the PRO mode when compared to the FO mode.  
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Figure 35: SEM Images of Membrane (in FO Mode) Support Layer (a)(b) Blank, 

(c)(d) 0.8 LPM, (e)(f) 1.2 LPM, (g)(h) 2 LPM.	
   

 

(a) (b) 

(e) (f) 

(g) (h) 

(c) (d) 
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Figure 36: SEM Images of FO Membrane (in PRO Mode) Support Layer (a)(b) 0.8 

LPM, (c)(d) 1.2 LPM, (e)(f) 2 LPM. 

 

(c) (d) 

(e) (f) 

(a) (b) 

(g) (h) 
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Figure 37, shows the support layer of both FO and PRO membrane orientations. 

The PRO support layer side showed a loose organic layer formed at the surface, 

whereas the FO support layer showed a denser layer formation. This was anticipated 

because of the high organic loading in the draw solution which would increase the ECP, 

that hence led to sever fouling and reduced flux. 

 

 

Figure 37: Fouling on FO Membrane Support Layer After Water Treatment Using a 

Flow Rate of 2 LPM, (a) FO mode, (b) PRO mode. 

 

4.4   Performance of The Combined Electro-Coagulation/Forward Osmosis 

System 

Table 7, presents the removal efficiencies of EC and combined EC-FO processes. 

The EC and FO running conditions were as follows; current density of 10 mA/cm2 was 

applied to the EC system for 10 minutes, as for the FO system the membrane was facing 

the DS side and the flow rates of FS and DS were maintained at 1.2 LPM.  

(a) (b) 



70	
  
	
  

 

Table 7 

Removal Efficiency of EC and EC-FO Processes 

Parameter EC (%) EC-FO (%) 

TSS 97.0 99.0 

Turbidity 91.6 98.2 

Conductivity 5.4 16.3 

 

The removal of TSS was significantly increased, changing from 97.1% with EC 

treatment alone to 99% with EC-FO hybrid system. When comparing the two treatment 

systems, the highest difference can be seen in the conductivity reduction (5.4% using 

EC and 16.3% using EC-OF) and turbidity removal (91.6% for EC and 98.2% for EC-

FO). The hybrid system enhanced the quality of the treated water and achieved the 

purpose of decreasing the high conductivity of the PW. It is possible to further reduce 

the conductivity by extending the experiment run time of the FO system, in this case 

the PW can be further diluted and the concentration of minerals will be lowered. The 

combined hybrid EC-FO system showed improvement in all measured parameters; 

TSS, turbidity and conductivity removal, and shows promising possibility for PW 

treatment. 
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CONCLUSIONS & RECOMMENDATIONS 

 

In this study, the viability of using a novel hybrid electrocoagulation/forward 

osmosis (EC-FO) system for the treatment of oil and gas produced water was 

investigated. The performance of EC on its own was first studied, then the performance 

of FO system, followed by the overall combined system of EC-FO.  

In EC treatment process, the total suspended solids, turbidity, oil and grease and 

TOC removal efficiencies were studied. Electrode consumption, pH and conductivity 

were also monitored throughout the experiments. Electro-coagulation was applied at 

three different current densities 10, 30 and 60 mA/cm2 for 10 and 30 minutes. Effective 

removal of oil and grease, TSS, turbidity and TOC from the produced water was 

observed and assessed during the study. Removal efficiencies were above 97%, 91% 

and 93% for TSS, turbidity and oil and grease respectively. The optimum water quality 

was obtained after 10 minutes run time, at a current density of 10 mA/cm2. The 

maximum removal efficiency of TOC achieved at the optimum conditions was 91.3%. 

EC was not effective in the removal of conductivity.  

Following EC process, the treated produced water was further treated through 

Forward Osmosis (FO) using two orientations of the membranes (active layer facing 

draw solution and active layer facing feed solution), and three flow rates 0.8, 1.2 and 2 

LPM. Several parameters where investigated, the effects of different flow rates and 

membrane orientation on the flux. Also, fouling of the membrane was investigated and 

SEM images of the membrane at different flow rates and different orientations were 

taken and analyzed. It was found that when FO was operating in (AL-DS) mode, the 
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membrane flux decreased with the increase of flow rate of feed, due to colloidal 

particles between the spacer and the rough support layer. The highest flux was obtained 

at a flow rate of 0.8 LPM. The flux started at 11.4 L/m2.h and dropped to 3.4 L/m2.h 

after 1000 minutes, with a recovery rate of 3.4%. (AL-FS) operation mode, yielded 

better results than (AL-DS). The maximum flux achieved was at a flow rate of 1.2 LPM. 

The flux started at 7 L/m2.h and dropped to 5.3 L/m2.h at the end of run time, the 

recovery rate obtained was 9.2%. Hence, FO operating in (AL-FS) mode at a flow rate 

of 1.2 LPM was the optimum condition and reduced the PW conductivity to 16%. 

Overall, the hybrid system efficiently removed a total of 99, 98 and 16% TSS, 

turbidity and conductivity respectively. The obtained improved water quality suggests 

a high potential of practicability of the applied hybrid system in the treatment and 

reclamation of PW. 

For further work, it is recommended to further investigate the EC-FO system 

using the following operating conditions for each EC and FO treatments; EC system 

operates for 10 minutes using a current density of 10 mA/cm2, these conditions insure 

optimal removal of oil and grease and TOC at lower operational costs. The FO system 

operates in (AL-FS) mode, using a spacer on the DS side, with a flow rate of 1.2 LPM 

to obtain the highest permeate flux and recovery rate. It is also recommended for further 

investigation that the EC operates using a variety of applied current such as AC, DC 

and pulsation mode. Also, to experiment using lower current densities, for several 

running times. Moreover, coagulants can be used in the EC treatment, to examine its 

effect on the quality of water treated. In the FO system, it could be useful to identify 

the possible interactions between the dense polyamide active layer with the feed and 
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draw solutions, in order to assess the integrity of the active layer, applying different 

types of polymeric membrane and compare them to the one presently used, is another 

option that may also be considered.  
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