

QATAR UNIVERSITY

 COLLEGE OF ENGINEERING

BAGGED RANDOMIZED CONCEPTUAL MACHINE LEARNING METHOD

BY

MOHAMED ABDALHAKEM TAHA ALI

A Thesis Submitted to

the Faculty of the College of

Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Masters of Science in Computing

 June 2018

© 2018 Mohamed Abdalhakem Taha Ali. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Thesis of Mohamed

Abdalhakem Taha Ali defended on 13/05/2018.

Dr. Ali Jaoua

 Thesis/Dissertation Supervisor

Dr. Somaya Al-Maadeed

 Thesis/Dissertation Supervisor

Dr. Engelbert Mephu Nguifo

Committee Member

Dr. Tamer Elsayed

Committee Member

Dr. Abdelkarim Erradi

Committee Chair

Approved:

Khalifa Al-Khalifa, Dean, College of Engineering

iii

ABSTRACT

ALI, MOHAMED, A., Masters: June: 2018, Masters of Science in Computing

June : 2018, Masters of Science in Computing

Title: Bagged Randomized Conceptual Machine Learning Method

Supervisors of Thesis: Ali, M, Jaoua and Somaya, A, Al-Maadeed.

Formal concept analysis (FCA) is a scientific approach aiming to investigate,

analyze and represent the conceptual knowledge deduced from the data in conceptual

structures (lattice). Recently many researchers are counting on the potentials of FCA to

resolve or contribute addressing machine learning problems. However, some of these

heuristics are still far from achieving this goal. In another context, ensemble-learning

methods are deemed effective in addressing the classification problem, in addition,

introducing randomness to ensemble learning found effective in certain scenarios. We

exploit the potentials of FCA and the notion of randomness in ensemble learning, and

propose a new machine learning method based on random conceptual decomposition. We

also propose a novel approach for rule optimization. We develop an effective learning

algorithm that is capable of handling some of learning problem aspects, with results that

are comparable to other ensemble learning algorithms.

iv

DEDICATION

I dedicate this thesis to my family who stayed beside me in every stage of my life surrounding me

with love, to all of my friends who supports me and encouraged me to continue, and to my

supervisors and teachers for always being supportive during my master’s thesis.

v

ACKNOWLEDGMENTS

First and last we thank Almighty God for his grace. Second, I would like to

express my deepest gratitude to my supervisors Dr. Ali Jaoua and Dr. Somaya Al-

Maadeed for their support, guidance and patience. And I would like to express my

gratitude to my family and friends who supports me in this challenge. I am eternally

grateful to my instructors for the quality of knowledge I got from them during my study

in Qatar University.

This contribution was made possible by NPRP grant #07- 794-1-145 from

the Qatar National Research Fund (a member of Qatar Foundation). The statements made

herein are solely the responsibility of the authors.

https://www.sciencedirect.com/science/article/pii/S0010482517302421?via%3Dihub#gs1

vi

TABLE OF CONTENTS
DEDICATION .. iv

ACKNOWLEDGMENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

NOTATIONS ... x

ABBREVIATIONS .. xi

CHAPTER 1: INTRODUCTION .. 1

1.1 Supervised Machine Learning ... 1

1.2 Problem Description .. 2

1.2.1 Learning Problem .. 3

1.2.2 Bias-Variance Tradeoff ... 4

1.2.3 Problem Approximation Techniques .. 7

1.3 Research Questions and Motivations ... 7

1.4 Purpose of the Study .. 8

1.5 Contribution of the Thesis ... 9

1.6 Summary and Thesis Structure .. 9

CHAPTER 2: ENSEMBLE LEARNING .. 11

2.1 Why Ensemble Learning? .. 11

2.2 Ensemble Methods ... 12

2.2.1 Sequential Learning Paradigm .. 12

2.2.2 Parallel Learning Paradigm ... 15

2.2.3 Stacked Generalization Learning Paradigm .. 19

2.3 Distribution Methods ... 21

2.3.1 Weights Distribution ... 21

2.3.2 Random Subspace ... 22

2.3.2 Probability Sampling .. 22

2.4 Combination Methods .. 24

2.4.1 Majority Vote .. 24

2.4.2 Weighted Majority Vote ... 25

2.4.3 Bayesian Probability ... 25

2.4.4 Meta-Combiners ... 26

2.5 Chapter Summary .. 26

CHAPTER 3: FORMAL CONCEPT ANALYSIS IN MACHINE LEARNING.......................... 29

3.1 Why FCA? ... 29

vii

3.2 Definitions ... 30

3.3 FCA Conceptual Decomposition Methods .. 32

3.4 FCA-Based Learning ... 33

3.5 FCA-based Rules-Induction Methods .. 39

3.6 Chapter Summary .. 40

CHAPTER 4: PROPOSED METHOD .. 42

4.1 Random Conceptual Coverage Learner ... 42

4.2 Gini-Based Discretizer ... 48

4.4 RCL Ensemble Paradigm ... 57

4.5 Bagged RCL vs. other FCA-based Ensemble Learning Methods .. 60

4.6 Chapter Summary .. 62

CHAPTER 5: EXPERIMENTS ... 63

5.1 Datasets Characteristics ... 63

5.2 The Stability of the RCL .. 64

5.3 Comparative experiments setup ... 68

5.4 Results .. 71

5.5 Chapter Summary .. 74

CONCLUSION AND FUTURE WORK .. 75

REFERENCES .. 76

viii

LIST OF TABLES

Table 1 Example of Meta-combiner dataset .. 26

Table 2 A comparison of different reviewed ensemble approaches 28

Table 3 Formal Context Example .. 30

Table 4 Formal Context with Class labels ... 39

Table 5 Dataset Example (𝐷) .. 47

Table 6 Sub-context 𝐷 ∗ generated by Algorithm-1 ... 48

Table 7 Golf dataset before scaling. .. 54

Table 8 Golf dataset after scaling. ... 55

Table 9 Bins obtained by the discretizer. ... 56

Table 10 FCA-Based Learners main characteristics ... 61

Table 11 Datasets Characteristics ... 64

Table 12 Training Error vs. Testing Error using RCL (%) ... 65

Table 13 Effect of Bagging-RCL on Training/Testing Errors (%) 66

Table 14 Experiments Results (Accuracy %) ... 72

Table 15 Significance test results .. 74

ix

LIST OF FIGURES

Figure 1. Different versions of models fitting 5

Figure 2. Bias-variance tradeoff 6

Figure 3. General sequential ensemble learning process 13

Figure 4. General parallel ensemble learning structure 17

Figure 5. Stacked Generalization learning process 20

Figure 6. Conceptual Lattice of the formal context in table 3 31

Figure 7. Bagged RCL learning schema 59

Figure 8. Bagged RCL classification schema 60

Figure 9. The stability of RCL. 67

Figure 10. Effect of classifiers number on Bagged-RCL 70

Figure 11. Performance of B-RCL against the nearst competitor. 73

x

NOTATIONS

𝔼(.) Mathematical expectation of possible values of (.) – Summation or

integration of the expected values.

𝕀(.) Indicator function, returns 1 if (.) is true, and 0 when (.) is false.

ℎ(.) Classifier (hypothesis).

𝑓(.) Target function, returns the correct value of variable (.).

𝐻(.) Set of Classifiers (hypotheses)

𝑒𝑟𝑟(.) Error function returns the error caused by (.).

arg 𝑚𝑎𝑥 (.) The argument of maxima, return the maximum value of (.).

𝑃(.) Probability of (.).

γ, λ Galois Operators, used for obtaining Galois closure.

𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(.) Returns the instances where (.) is observed.

|. | Cardinality, measures the number of elements in (.)

xi

ABBREVIATIONS

𝐹𝐶𝐴 Formal Concept Analysis.

𝑅𝐶𝐿 Random Conceptual Learner.

B-𝑅𝐶𝐿 Bagged Random Conceptual Learner.

𝐵𝐹𝐶 Boosting Formal Concepts.

𝐵𝑁𝐶 Boosting of Nominal Concepts.

𝐷𝑁𝐶 Dagging Nominal Concepts.

𝐶𝑁𝐶 Classifier Nominal Concept

𝐵𝑎𝑔𝑔𝑖𝑛𝑔 Bootstrap Aggregating.

𝑅𝑀𝐶𝑆 Recommender-based Multiple Classifier System.

𝐷𝑎𝑔𝑔𝑖𝑛𝑔 Disjoints samples Aggregating.

𝑊𝑎𝑔𝑔𝑖𝑛𝑔 Weight Aggregation.

𝑉𝑜𝑔𝑔𝑖𝑛𝑔 Variance Optimized Bagging.

𝑅𝐹 Random Forests.

𝑆𝑃𝐹𝐶 Selecting Plausible Formal Concepts.

𝐼𝑅𝑃 Incremental Rule Production.

𝐹𝐼𝑃𝑅 Fuzzy Incremental Production Rule.

𝑆𝐴𝑀𝑀𝐸 Stagewise Additive Modeling using a

Multi-class Exponential loss function.

1

CHAPTER 1: INTRODUCTION

This thesis studies a new conceptual learning paradigm—an innovative machine

learning approach for handling the learning problem based on Formal Concept Analysis,

random conceptual coverage, and ensemble learning. In this chapter, we introduce

supervised learning by taking a glance at its importance and applications, and by

introducing Formal Concept Analysis. Through these introductions, we will start to

understand our motivations behind using this approach. In addition, we will elaborate on

the main problem in machine learning and define some of the popular learning problem

approximations. Finally, we will examine the research questions and discuss our main

objectives.

1.1 Supervised Machine Learning

Supervised learning is an active research area as its importance is reflected in

several fields. As is well known, it plays an important role in many computing practices

such as spam filtering[1], text, speech recognition, and image processing[2], as well as

many applications that have a direct impact on people’s lives, such as crime data analysis,

medical research[3] and much more. Supervised learning is usually a discrete process; it

may process continuous data such as streaming data learning[4]. Machine learning

algorithms can be defined as computational structures that learn from given data and

apply the knowledge deduced from the data to decision-making[5]. Supervised learning

algorithms learn from given training examples that fall in specific categories. Generally,

supervised learning is oriented toward discovering the hidden patterns that construct

these categories or classes, in order to use these patterns to classify future data. All the

existing learning algorithms are proposed as an approximation to one problem with

2

different aspects, and this problem is called the learning problem [5]. However, have

these algorithms succeeded? The answer is not that simple. It is not easy to judge the

performance of a classification model, and it is not possible to point to a certain method

that solves the learning problem completely. Some tradeoffs need to be done in order to

achieve an acceptable resolution. In order to create a successful learning algorithm, there

are many aspects to consider, such as the learning techniques and tools, classification

method, the proper ways to handle the data, and tradeoffs. In the present, there are many

supervised learning algorithms; some are successfully implemented and used for different

applications. This is due to their abilities to handle classification tasks properly. In fact,

most of the existing learning algorithms are built on top of statistical approaches, such as

decision and naïve Bayesian; some others may use different tools.

In our scenario, we are going to build our learning system by utilizing a

mathematical approach known as Formal Concept Analysis (FCA). FCA is based on set

theory and discrete mathematics as well as exploitation of some existing statistical

methods. We will use this approach to achieve our goal, which will be explained later in

more details. In the beginning, we are going to discuss the learning problem. Then, we

are going to show our motivations behind adopting Formal Concept Analysis for this

task, and explore why we think it is suitable for this mission.

1.2 Problem Description

In general, any classification model is considered acceptable if it satisfies the

user’s requirements. These requirements may vary from one user to another, while each

user has his or her own measures to determine the quality of the produced classification

results. However, it is common to evaluate a classification model based on the

3

performance of that model. Typically, it is necessary for a classification model to achieve

a level of generalization, so later; it could properly perform the classification process of

the unseen data. A machine-learning model is the process of generalizing the information

deduced from the training examples and intersecting that information with data in the

unseen records. A general model is more likely to perform the classification task

accurately, with a minimal prediction error rate[6], [7]. Since the quality of a model relies

on how general it is, we might say a good classifier is a model that has a low

generalization error rate, meaning most of the predicted classes are the correct classes of

the given records. The calculation of the generalization error relies on how it will perform

with the future data; however, it is not possible because the process is discrete. Many

approximations have been used to predict the model’s abilities to perform in the future,

more specifically to validate the learning potentials and to verify the adequacy of the

training data. In the next subsections, we will focus on the formulation of the learning

problem; briefly discuss various approximations for addressing the learning problem, and

tradeoffs to make.

1.2.1 Learning Problem

As mentioned in the previous section, the learning problem[5] is represented as

the learner’s ability to produce a classification model that is able to predict the future data

correctly (i.e. a model with a low generalization error). The process of learning is

formulated as follows: for a given training set 𝑆 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, the

instances 𝑥𝑖 drawn independently and identically distributed from 𝐷, where 𝐷 is the

distribution over instance space 𝑋. We have 𝑓(𝑥𝑖) = 𝑦𝑖, where 𝑓 a target function that

4

produces the correct class of instance 𝑥𝑖. The aim is to form a hypothesis ℎ that

minimizes the generalization error, given by:

𝑒𝑟𝑟(ℎ) = 𝔼𝑥~𝐷[𝕀(ℎ(𝑥) ≠ 𝑓(𝑥))] (1.1)

The notation 𝔼𝑥~𝐷 is the Mathematical Expectation (summation, or integration) of

the outputs of 𝕀(.), the later is an indicator function; returns 1 if (.) is true, and 0 when (.)

is false. However, the generalization error is composed of three kinds of errors: (i) error

because of bias, (ii) error because of variance, (iii) irreducible error or noise. Bias error

occurs because of the learning algorithm’s inability to build a strong hypothesis that can

be used to classify the future data; such an error occurs because of weaknesses in the

learning algorithm itself (see figure 1). In contrast, an error caused by variance reflects

the ability of the learning algorithm to learn efficiently from the existing data; however,

the produced model may fail at estimating the classes of future data. This is usually

caused by the lack of representative examples in the complex learning algorithm. The

third error category is caused by noise, which is probably out of hand and irreducible.

However, to overcome the error, we should sacrifice some bias and vice versa. This

tradeoff will be discussed in the next subsection.

1.2.2 Bias-Variance Tradeoff

To understand the Bias-Variance tradeoff [8], let us assume that we have training

data with overlapped data points, and we consider that we have only two classes (O, X)

that represent the whole feature space. Fitting a linear model on this data may result in

poor performance, due to the overlap between the data points, where some of data points

that belong to class O share some features with data points that belong to the other class,

5

X. The model will include many data points that belong to the other class. This kind of

error is caused by a biased hypothesis that is not flexible enough to separate between the

data points and results in poor performance or under-fitting.

Figure 1. Different versions of models fitting

On the other hand, if we assumed that we were able to find a flexible hypothesis

that fit tightly on the training data, we may face another problem when it comes to

classifying unseen records with a different distribution over space, because the model is

tightly fitted on the training examples and unable to generalize. Figure 1 shows the

differences between model over-fitting and under-fitting. As we can see, the decision

boundary is precise in an over-fitted module. It only describes the properties of the

training examples. It will probably fail to predict unseen records with different

distributions. However, using a linear model may result in high bias that leads to a high

6

error rate. In order to design a learning algorithm, we should tradeoff some bias for the

sake of variance (see figure 2).

Figure 2. Bias-variance tradeoff

The goal is to achieve a level in which the model is able to keep both the variance

and bias as low as possible. Many techniques have been created to handle some aspects

of the learning problem; we are going to introduce some of them in the next section.

7

1.2.3 Problem Approximation Techniques

In literature, we can find many approaches that minimize the effects of the

learning problem, concerning predicting performance. Some techniques are designed to

average the variance, such as data partitioning methods, sampling, random subspace, and

pruning[6]. Others work to produce unbiased hypotheses, such as boosting. Variance

reduction techniques tend to hide some of the data from the learner, to avoid over-fitting

or revising the produced hypotheses, such as rules/decision tree pruning. Other methods

aim to average the variance while keeping the bias as low as possible, not by hiding the

data, but by building multiple models on top of different subsets sampled from the data.

In the presence of such a large number of approximations, it becomes difficult to decide

what kind of practice is more suitable to adapt. So far, the empirical results favor the

ensemble learning approaches. Before discussing ensemble learning, we will cover our

perception of how to utilize Formal Concept Analysis in supervised learning as well as

the main research questions deduced from the problem, and our motivations for using

FCA.

1.3 Research Questions and Motivations

Based on the stated problem, the main question of the thesis is: how is it possible

to create an effective learning procedure using a randomized rule extraction method

based on Formal Concept Analysis? To answer this question, we need to answer two sub-

questions:

1. How we can utilize FCA to minimize the learning bias?

2. Is it possible to produce models with minimal variance relying on FCA alone,

and if not, what is the best practice to use along with FCA to achieve that goal?

8

In this thesis, we aim to implement a FCA-based learning method. Therefore, we

will focus on the best practices and the strategies in the literature that we can be exploited

to achieve our goals. Generally, FCA is used in many computing-related fields such as

feature extraction, categorization, data reduction, human language processing, and

knowledge discovery. In addition, FCA is used in different machine learning practices,

including ensemble learning, with promising outcomes[2], [9]–[12]. Creating an effective

FCA-based learning system means that we should develop learning methods with

acceptable results in terms of classification performance while taking into account the

other design considerations concerning the learning problem.

1.4 Purpose of the Study

The goal of this thesis is to design, implement, and evaluate a FCA-based learning

system that contributes effectively to the learning problem. To achieve this goal, we will

utilize the recent advances and the best practices in machine learning and Formal

Concept Analysis to satisfy the following objectives:

 Design an FCA-based learning algorithm with minimal possible bias.

 Adapt a suitable ensemble-learning paradigm to minimize the variance aspect.

 Utilize random conceptual coverage as a practice for lowering model variance.

 Implement the design and assess the quality and performance of the model by

comparing the model with other existing methods, using known benchmark

databases.

 The new approach should be effective, with acceptable and comparable

performance.

9

1.5 Contribution of the Thesis

In this thesis, we show the effect of using ensemble machine learning alongside

Formal Concept Analysis in order to contribute in solving the learning problem. The

principal contributions of this thesis are:

 A new concepts decomposition method based on random coverage; this method is

introduced to use within ensemble learning environment to enforce the diversity

between the classifiers.

 A novel rule enhancement method to reduce the bias of the conceptual

classification rules and to improve the overall performance of the system.

 To contribute to the learning problem of variance we exploit Bagging ensemble

learning paradigm alongside our proposed conceptual learner in order to achieve

better performance.

1.6 Summary and Thesis Structure

In this chapter, we give a glance at supervised learning, its importance, and its

applications. We introduce FCA and its contributions to the supervised learning area in

section 1.1, and in in section 1.2 we define the learning problem how affects the

classification modeling. In that section, we also mention in this chapter various

approximations to the learning problem, but we focus on ensemble learning, as it serves

the goal of this thesis. We follow that explanation with the research questions and discuss

the main questions to be answered in this study in section 1.3 and in section 1.4, we state

our objectives based on the research questions, and the learning problem that we want to

tackle.

10

In the next chapter, we discuss different ensemble learning and their main

properties. In chapter 3 we will introduce Formal Concept Analysis and we will focus on

its application in machine learning, specifically in ensemble learning. In chapter 4 we

will propose our method and we will explain how it works. In chapter 5 we will

experiment our method and show our results, and finally conclude and discuss the future

work.

11

CHAPTER 2: ENSEMBLE LEARNING

In this chapter, we review ensemble learning as an approximation to the learning

problem. First, we discuss the reasons behind considering the ensemble method for

learning. Then, we discuss the common ensemble learning approaches and methods used

for achieving diversity and the techniques used for aggregation in ensemble learning.

2.1 Why Ensemble Learning?

In supervised learning, the objective is to build a strong model ℎ that minimizes

the generalization error 𝑒𝑟𝑟(ℎ), which can be decomposed to variance/bias errors.

Ensemble learning was introduced to achieve this goal. We can define ensemble learning

as a set of finite models{ℎ1, ℎ2, … , ℎ𝑡} referred to as base classifiers, produced from a

homogenous or heterogeneous learning process and aggregated together using a

combination method to form a strong classifier 𝐻(𝑥). It is expected to outperform single

models if it achieves a level of diversity between the base classifiers[13]. 𝐻(𝑥)is a

diverse ensemble classifier if the base classifiers produce uncorrelated errors. The

diversity of an ensemble classifier is reflected in the performance of that model. Many

studies show that it is more likely to reduce the bias of a learning system by combining

multiple weak learners in a dependent sequential manner; other proposed methods work

to reduce the variance while maintaining the bias as low as possible by aggregating the

decisions made by multiple independent models[6].

In the next section, we will review the common ensemble methods and their

characteristics and limitations.

12

2.2 Ensemble Methods

Different taxonomies are reported in the literature for classifying ensemble

learning methods. Some are based on ensemble fusion topologies [14]; others are based

on their learning functionalities [6]. In this chapter, we will review different ensemble

learning methods and discuss both their contributions to the learning problem and their

common implementations.

2.2.1 Sequential Learning Paradigm

In sequential ensemble learning, the learning process is performed in a cascading

manner. The learning algorithm will be executed N times, to learn from the training data.

Each learning phase depends on the output of the previous phase (see figure 3). Each

phase consists of a validation process to identify learning errors. Sequential methods

generate a weighted classification model in each running phase. The output of each

learning phase is considered weighted training data; the weights are distributed based on

the validation errors; such that higher weights are assigned to the instances that are

misclassified. Generally, the aim of such procedures is to boost the performance of a

weak learning algorithm and reduce the bias by correcting the errors made in the prior

execution.

The first sequential ensemble procedure was proposed by Schapire[15].The idea

behind this method is to boost the learning ability of a weak learner through a cascading

process to enhance classification decisions of the produced model. The author’s argument

is built on the notion of “weak and strong learners”. Weak learners produce high training

errors, and consequently generate biased models with performances that are only slightly

13

better than random guessing, while strong learners produce models with very low bias.

Figure 3. General sequential ensemble learning process

Adaptive Boosting, or AdaBoost, is a binary ensemble learning family, introduced

by Freund and Schapire[16] based on boosting. AdaBoost learner will start by assigning

equal weights in the training examples, which indicates the importance of each record.

By increasing the weights on the misclassified examples in the validation process, the

algorithm raises their priorities, so instances with higher weights get more attention in the

next iteration. At the base level, it requires a learning algorithm that is able to handle the

14

weights properly, and it is possible to use any learning algorithm that is able to perform

this task. The AdaBoost algorithm controls the processes of distribution and weighting.

The objective of this approach, as in the case of all sequential learning ensembles, is to

reduce the bias produced by a weak learning algorithm. However, AdaBoost shows an

increased over-fitting behavior [17] as long as the optimization process is ongoing. Over-

fitting can be controlled by limiting the number of learning iterations over the training

data.

Another implementation of adaptive boosting, called boosting with re-sampling

[16], [18], does not require a base learning algorithm with the ability to handle weighted

instances. In this case, the weights are handled through a sampling process; the ensemble

learner draws N samples from the training data with replacements; the probability of

selecting each instance is proportional to the weight of that instance. Two advantages can

be drawn from this approach:

1. The first advantage is that the ensemble learner is no longer limited to base

learners that can handle the weights.

2. The second advantage is that the ensemble shows some resistance to over-

fitting through the re-sampling process [19].

Generally, AdaBoost generates M classification models along with M learning

iterations performed; each model is weighted based on the errors produced by that model

in the validation process. In the classification phase, the final decisions are based on

weighted majority voting criteria that involves all the generated models through the

learning process. In literature, boosting ensembles, underwent several optimizations over

time, including resample boosting. Other extensions have been added to the algorithm to

15

enhance the predictive abilities, such as the multi-class extension by Hastie[20], which

allows AdaBoost to act on multi-class problems. Gradient boosting [21] is another

popular variety of the boosting algorithm; it shares the same concept with AdaBoost,

however, gradient boosting does not reweight the training instances. Instead, the next

weak learner will learn from the remaining errors (pseudo-residuals) of the previous

learners. In addition, the weighting criteria for the generated model in each phase is

constructed through a gradient descent optimization process.

Finally, we can conclude that most of the sequential learning ensembles are

designed using the same concepts and to serve the same goal, which is to reduce the bias

produced by weak learning algorithms. However, models that are produced using these

procedures are sensitive to variance, especially when the number of learning iterations is

very large. In the next section, we are going to review the second ensemble-learning

paradigm and discuss the main objectives and characteristics of the parallel ensembles.

2.2.2 Parallel Learning Paradigm

In the previous section, we discussed the sequential ensemble methods as an

approximation to highly biased learners. In contrast, the parallel ensemble methods

objective is to reduce the variance of unstable learning algorithms. We can define the

model stability referring to the tradeoff discussed earlier in Chapter 1. Unstable learning

algorithms [21] are the algorithms that use complex hypotheses to learn from the training

data, and they produce a very low training bias. Unstable learners are very sensitive to

changes in the data; any small change in the training data will produce different

classification hypotheses. In contrast, small changes in the training data will not affect

16

stable learners. Unstable classifiers tend to over-fit the training data, and produce

classification models with high error rates when it comes to classifying unseen or future

data.

In the parallel paradigm, the learning algorithm will be executed multiple times in

an independent fashion. Each iteration is not dependent on the previous one, and in each

learning phase, the learner will work on different samples of the training data. This

method aims to achieve some normalcy between variance and bias, as the traditional

approaches, such as data partitioning or early stopping, will limit the learner’s ability to

learn from the data, which will increase the bias produced by the learning algorithm. The

theory behind this approach is to enable the unstable learner to learn at a high capacity

from multiple samples taken from the training data; these samples represent the scope of

the information in the training data, but from different perspectives. Generally, parallel

ensemble learning approaches creates S samples from the training data, and release the

base unstable learning algorithm to learn from all the data generated independently; an

independent classification model will result from each iteration (see figure 4).

The first ensemble approach utilized for the parallel learning paradigm is Bagging

(Bootstrap aggregating) predictors [22]. The idea behind bagging is to generate multiple

bootstrap samples from the training data; those samples are generated randomly with

replacements. Each of the generated samples is used to generate a separate classification

model. Later, in the classification phase, all the classifiers will vote, and the most voted

class will be used as a final decision. Bootstrap sampling ensures significant variety

among the examples selected for each sample, and this leads to the production of

classification models with lower correlation.

17

Figure 4. General parallel ensemble learning structure

Bagging achieves diversity and independence if it is used with unstable base

learners, such as decision tree; if base classifiers built using stable base learner, the

generated models will be quite similar, they will produce the same decisions repeatedly,

and no improvements will be achieved, in terms of reducing the variance of the model.

Disjoint sample aggregating (Dagging) is similar to bagging except that it uses stratified

sampling rather than bootstrapping [23]. Other variants of bagging are wagging [24] and

vogging[25]. Wagging uses random weighting distribution to omit some instances from

the training data on each run; here, instances with weights equal to zero will be neglected.

However, wagging requires a base learner with the ability to handle the weights

distribution. On the other hand, vogging (variance optimized bagging) introduced to

further reduce the variance of the classification models using Markowitz Mean-Variance

Portfolio to produce low variance model while retaining the bias at the same level.

18

Decision Forests[26] is another parallel learning approach, which build multiple decision

trees by dividing the features space into random subsets rather than sampling the data as

in bagging.

Random forests is another popular variation of parallel ensemble learning

introduced by Breiman[7]. A collection of CART decision tree base classifiers will be

constructed using bootstrap sampling and a high level of variety is enforced between the

trees by adding another level of randomization on the base learner, by utilizing the notion

of random subspace [26]. The main difference between traditional bagging and random

forests is that bagging uses all the features at each node to split while the random forests

algorithm utilizes random sub features, where it selects m < M random features among

the best M features to split the decision tree nodes. The aim of such levels of

randomization is to reduce the correlations between produced classifiers, which

empirically reduce the variance of the resulted model. Similar to bagging, random forests

adapt majority voting for selecting the right class for a specific object. Breiman

introduced several methods for random features selection. Forest-RI was used for

splitting by randomly selecting one variable from the best possible options to split. In

another method, the selection was determined by generating linear combinations of inputs

and the number of combinations was predefined. The default selection method for

random forests is to select m < M features from each instance, where the size of m is

equal to the square root of the total number of features in each instance[7]. Moreover,

random forests introduced a new error estimation metric known as the out-of-bag error

estimator, which relies on the training instances that are not selected while constructing a

certain base classifier. Rotation Forests algorithm[27], proposed to enhance the accuracy

19

and diversity of base classifiers. It carries similar concepts exists in random forests while

claiming to introduce an enhanced model of randomization using rotation matrix and

Principal Component Analysis (PCA) for feature extraction.

Generally, parallel ensembles are designed to exploit the learning abilities of

unstable learners to aggregate multiple classification models and enhance the diversity

among them. The classification models produced using parallel ensemble learning

preserve their predication abilities and show a resistance to variance, especially when the

number of learning iterations is increased. In the next section, we are going to review the

third ensemble-learning paradigm, and we will discuss the main objectives and

characteristics of the stacking ensembles.

2.2.3 Stacked Generalization Learning Paradigm

 Stacking ensembles [28] consist of two levels of learners: level-1 learners, and a

combiner or “meta-learner”. Similar to bagging and boosting, each of the level-1 learners

is trained using a different set of sampled/same data; then the outputs from the first layer

are used as inputs for the lower-level meta-learner. Stacking ensembles usually consist of

“heterogeneous” sets of level-1 learners. Unlike boosting and bagging, it can be

considered as a hybrid approach; in the upper level, the learners are trained independently

on parallel; then the meta-learner uses the outputs produced by the validation process to

learn about the generated models itself. The meta-learner uses the outputs from each

classification model to learn which model is better than the others for classifying certain

instances; figure 5 shows the learning phase in stacking models. This is achieved by

creating a new training set, which contains information about how each one of the

20

produced classifiers performs better in certain instances to utilize the confidences of each

decision. As in other ensemble techniques, stacking aims to improve the accuracy

classification, and it achieves a higher level of accuracy than individual classifiers.

Figure 5. Stacked Generalization learning process

Variant learning methods that are constructed with the same concepts of stacking

are reported in various pieces of literature. Because of the generality of stacking, these

methods may vary from each other based on different factors. Such as the types of upper-

level learners and meta-learners [29], evaluation methods [30], meta-data set construction

methods, and the types of metadata [31], [32]. Generally, stacking ensembles are prone to

the biases of the selected learner; therefore, to achieve the best possible performance,

21

different considerations should be taken into account, such as performance of upper-level

and meta-level learners, the number of upper-level learners, and the metadata generation

approach [13]. Stacking is more efficient in terms of variance reduction, and this is

because stacking ideally works with different samples of the training data by using

multiple heterogeneous learning algorithms.

2.3 Distribution Methods

 In this section, we will review the common methods that are used to create

diversity among the base classifiers in ensemble learning; we will discuss the main

characteristics of these methods and their use.

2.3.1 Weights Distribution

 The weighting approach is commonly used in popular sequential ensembles, such

as boosting learners, and is rarely used in parallel ensembles. Generally, the weights are

used to reflect the importance and difficulty of the training instances; this will force the

learning process to concentrate on highly weighted instances. For example, AdaBoost

algorithm will set the new weight 𝐷𝑛𝑒𝑤 for training example 𝑥in the training set using the

following equation:

𝐷𝑛𝑒𝑤(𝑥) =
𝐷𝑜𝑙𝑑(𝑥)

𝑍
× {

𝑒−𝛼 𝑖𝑓 ℎ(𝑥) = 𝑓(𝑥)

𝑒𝛼 𝑖𝑓 ℎ(𝑥) ≠ 𝑓(𝑥)

(2.1)

where 𝛼 is the weight of the classifier ℎ(𝑥)and indicates the performance of the

model on the training data (training error), and 𝑓(𝑥) is targets function that yields the

correct class value, and Z is a normalization factor (for example sum of all weights).

What can be deduced from this equation (2.1) is that the weight 𝐷 indicates whether the

training example 𝑥 will be in the spotlight in the next learning phase or not. The

22

exponential function returns a fraction value if 𝑥 is correctly classified, and a value of 1

or greater if 𝑥 is misclassified. Using these weights of that particular sample can be

increased or decreased when multiplying it with the previous weight. The resulted

classification models have some level of diversity due to the different types of training

instances they deal with.

2.3.2 Random Subspace

The random space method [33] indicates that the learner will work on a random

subset of the features each time it iterates over the training data, to emphasize the

diversity among the produced models. There are different approaches to sampling the

features space, such as random sampling, where the learning algorithms use different

numbers of features each time, while running consistently. Some other approaches

sample the features space with a restrictive manner, where the number of random features

used in every execution is static [7]. Unlike sampling, the feature subspace approach

projects only parts of attribute values used to train certain models.

2.3.2 Probability Sampling

 Various sampling techniques are adopted for ensemble learning, including

bootstrap sampling[7], sampling without replacement [27], and stratified sampling [23],

where each has its own characteristics. Bootstrap sampling draws random samples from

the original population with size equal to the original population, with the probability of

repetition (i.e. each element has a chance to be taken again and added to the current

sample), where each element has a probability of not being selected equal to:

(1 −
1

𝑁
)

𝑁

(2.2)

23

while in sampling without replacement, each element has a chance to be selected

only once. Therefore, the sample size n should be maintained as 𝑛<𝑁, where 𝑁 is the size

of the original population. Otherwise, the sample will be exactly the same as the original

set. On the other hand, stratified sampling splits the population into disjoint groups

(strata); in supervised learning, these groups could be the class values. Sampling is done

with respect to strata size i.e. from each stratum 𝑘 samples will be drawn based on the

following procedure:

𝑘 = 𝑆 ×
𝑛

𝑁

(2.3)

where 𝑛 is the number of elements to be sampled randomly, and 𝑆 is the size of

the stratum; and 𝑁 is the total number of elements in the population.

Sampling in ensemble learning methods is used to average the variance in

classification by generating more datasets from the training set, by using random

sampling with replacement. In some cases, sampling is used to produce multiple training

sets of the same size as the original dataset, and in other scenarios, the repetition will only

occur across multiple training sets and not within the same training data. However,

increasing the number of the training sets will not reduce the bias or increase the model’s

prediction ability; it will average the variance, by using a combination method, such as

majority vote of the outcomes from each classification model, leading to a reduction in

the errors caused by the variance. Consequently, to obtain the best performance, we

should have a strong learner at the base level.

http://en.wikipedia.org/wiki/Combinations
http://en.wikipedia.org/wiki/Combinations
http://en.wikipedia.org/wiki/Multiset

24

2.4 Combination Methods

The combination methods and functions play an important role in terms of

classification performance; however, this role depends heavily on the diversity of the

base classifiers. Combining identical classifiers will not boost the performance of the

ensemble, but rather produce the same performance as a single one. Therefore,

combining multiple classifiers, each trained with uncorrelated and reweighted samples of

the data, will improve the prediction performance. The sequential and parallel ensemble

methods rely on un trainable combiners (majority vote, weighted majority vote) which

produce their decisions by averaging the upper layer predictions. This is not the case in

stacking, where the combiner learns from these predictions.

2.4.1 Majority Vote

Majority vote is a popular combination method; specifically in parallel learning,

as in[7], [22]. Let us assume we have a set of finite models{ℎ1, ℎ2, … , ℎ𝑡}, the output of

each model is given by ℎ𝑡(𝑥) = y ∈ 𝑌, the possible number of class values. And 𝕀(.) is

an indication function that returns {0,1} if the condition is satisfied or not.

𝐻(𝑥) = 𝑎𝑟𝑔 max
𝑦 ∈ 𝑌

∑ 𝕀(ℎ𝑖(𝑥)

𝑡

𝑖=1

= y)

(2.4)

The function 𝑎𝑟𝑔 max
𝑦 ∈ 𝑌

 will return the value of y that has the maximum number of

occurrences because of the classification hypothesis ℎ𝑖(𝑥).

25

2.4.2 Weighted Majority Vote

In another variation of majority vote, each classification model is assigned a

weighting factor that generally represents the model accuracy [15], [16], [20]. With the

same assumption made for the majority vote in (2.4); by introducing 𝑤𝑖as the weighting

coefficient for the classification model ℎ𝑖, the weighted majority vote is given by:

𝐻(𝑥) = 𝑎𝑟𝑔 max
𝑦 ∈ 𝑌

∑ 𝑤𝑖(ℎ𝑖(𝑥)

𝑡

𝑖=1

= y)

(2.5)

2.4.3 Bayesian Probability

Bayesian Combination is based on Bayesian rule; in ensemble learning, the final

decision is based on the class value that maximizes the probability function:

𝑃(𝑦, ℎ(𝑥)) (2.6)

𝑃(𝑦, ℎ(𝑥)) is the probability of instance 𝑥 to be in class 𝑦 ∈ 𝑌. The Bayesian rule

is used to approximate the probability function by:

𝑃(𝑦, ℎ(𝑥)) =
𝑃(𝑦, ℎ(𝑥))

∑ 𝑃(𝑦𝑖, ℎ(𝑥))
𝑡

𝑖=1

(2.7)

 In ensemble learning, the probability of class value 𝑦 is counted across multiple

classification models:

𝐻(𝑥) = 𝑎𝑟𝑔 max
𝑦 ∈ 𝑌

∑ 𝑃(𝑦, ℎ𝑖(𝑥))

𝑡

𝑖=1

(2.8)

Bayesian combination might be altered based on the implementation requirement

for a certain ensemble-learning model. Different ensemble learning methods adopt the

26

Bayesian combination method, such as decision forests [33], and rotation forests [27].

2.4.4 Meta-Combiners

Meta-Combiners are trainable combination methods, which are widely

implemented in stacking approaches. The meta-learner selects the best decision based on

a certain hypothesis deduced from the upper-level classifiers. Table 1 is an example of

what a meta-learner dataset may look like.

Table 1

Example of Meta-combiner dataset

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑛 𝑌

1 1 1 0 0

2 1 0 1 1

3 0 1 1 1

4 0 0 1 0

2.5 Chapter Summary

In this chapter, we discussed different ensemble learning approaches that

contribute to the learning problem. We reviewed the reasons behind using ensemble

learning as an approximation to the learning problem and that ensemble learning is

superior among the other approaches. We reviewed different ensemble implementations,

27

their characteristics, and how they treat the bias-variance tradeoff. We discussed how

each learning paradigm is used to achieve some levels of diversity among the base

classifiers, and their limitations in terms of the types and numbers of base learners that

can be used. Moreover, we reviewed some of the common combination methods used in

ensemble learning. Based on the objectives of this thesis, we are going to introduce an

FCA learning approach to ensemble learning. Therefore, in the following chapter, we will

review Formal Concept Analysis, and the learning approaches that are based on FCA.

 Table-2 summarizes different characteristics of the reviewed ensemble learning

approaches. These characteristics are the focus area, which represents the method’s main

contribution to the learning problem. The learning paradigm defines how the learning

process is carried on. The Base learner is the suitable learning algorithm to be used with a

certain ensemble method. Learning method indicates whether the method involves a

single base learning algorithm, or a set of different learning algorithms. Moreover, the

diversity generation method defines the approaches used to achieve diversity between the

produced classifiers, and finally the combination method used to combine the predictions

from the classifiers in the ensemble in order to achieve the final decision.

28

Table 2

A comparison of different reviewed ensemble approaches

Ensemble Method Focus

Area

Learning Paradigm Base

Learner

Learning

Method

Diversity

Generatio

n Method

Combination

Method

Decision Forests Variance Independent/parallel Decision

Tree

Homogenous Features

Subspace

Bayesian

Probability

Bagging Predictors Variance Independent/parallel Any

Unstable

Learner

Homogenous Bootstrap

Sampling

Majority

Vote

Dagging Variance Independent/parallel Any

Unstable

Learner

Homogenous Stratified

Sampling

Majority

Vote

Wagging Variance Independent/parallel Weights

handling

unstable

base

learner

Homogenous Weights

Distributio

n

Majority

Vote

Vogging Variance Independent/parallel Any

Unstable

Learner

Homogenous Bootstrap

Sampling

Sharpe

Ratio

Random Forests Variance Independent/parallel Decision

Tree

Homogenous Bootstrap

Sampling

& Features

Subspace

Majority

Vote

Rotation Forests Variance Independent/parallel Decision

Tree

Homogenous Bootstrap

Sampling

& Features

Subspace

Weighted

Majority

Vote

Adaboost Bias Dependent/sequential Weights

handling

Weak

base

learner

Homogenous Weights

Distributio

n

Weighted

Majority

Vote

Resampling

Adaboost

Bias Dependent/sequential Weak

Base

learner

Homogenous Weighted

Samples

Weighted

Majority

Vote

Gradient Boosting Bias Dependent/sequential Weak

Base

learner

Homogenous Pseudo-

residuals

Weighted

Majority

Vote

Stacking Variance Hybrid Any Heterogeneou

s

Sampling Meta-

Combiner

29

CHAPTER 3: FORMAL CONCEPT ANALYSIS IN MACHINE LEARNING

In the previous section, we covered a general overview of supervised learning. In

this section, we define the Formal Concept Analysis and its applications in machine

learning, focusing in ensemble methods carried on using FCA.

3.1 Why FCA?

Formal Concept Analysis [34]is a scientific approach and a discipline that aims to

investigate and analyze the data, and represent and manage the knowledge extracted from

the data in conceptual structures known as lattices. An FCA lattice helps to visualize

these concepts, enabling better methods to interpret and understand these concepts, and

also find patterns and regularities. In this manner, FCA has been adopted in many

computing-related practices, such as features extraction[35]–[37], categorization, data

reduction, linguistics, knowledge discovery[38], and machine learning. Recently, many

researchers have counted on the potentials of FCA to resolve or address many

computational problems, mainly for its efficiency and capability to accommodate and

address these problems.

Recently, many FCA research projects were carried out to address various

machine-learning aspects. Before we move on to them, we formally introduce and define

Formal Concept Analysis.

30

3.2 Definitions

In this section, we will formally define Formal Context and Formal Concept, the

constituent parts of the approach.

Definition 1 (Formal Context)

Let us say we have 𝑂 = {𝑜1, 𝑜2, … . . 𝑜𝑛}, which is a finite set of objects, we have

𝐴 = {𝑎1, 𝑎2, … . . 𝑎𝑛} a finite set of attributes, and 𝑅 is a binary relation

between 𝑂 𝑎𝑛𝑑 𝐴, where𝑅 ⊆ 𝑂 × 𝐴, (𝑂, 𝐴, 𝑅) represents a formal context (see Table-

3).

Let us have 𝑋 ⊆ 𝑂,𝛾(𝑋) ∶= {𝑎 ∈ 𝐴 |∀𝑜 ∈ 𝑋: (𝑜, 𝑎) ∈ 𝑅}, and also 𝑌 ⊆ 𝐴, λ(𝑌): =

{𝑜 ∈ 𝑂 |∀𝑎 ∈ 𝑌: (𝑜, 𝑎) ∈ 𝑅}. 𝛾(𝑋) is defined as a set of all attributes of objects in 𝑋,

while λ(𝑌)is the set of all objects sharing all the attributes in 𝑌. Operators 𝛾 and λ define

the Galois connection between sets 𝑋 and 𝑌. The closure operators are γoλ, and λoγ.

Table 3

Formal Context Example

𝑂 − A 𝑎1 𝑎2 𝑎3 𝑎4

𝑜1 1 1 0 0

𝑜2 1 0 1 0

𝑜3 0 1 0 1

𝑜4 0 0 1 1

31

Definition 2 (Formal Concept)

A pair (𝑋, 𝑌)is a formal concept of (𝑂, 𝐴, 𝑅) if and only if 𝑋 ⊆ 𝑂, 𝑌 ⊆ 𝐴,

𝛾(𝑋) = 𝑌 𝑎𝑛𝑑 λ(𝑌) = 𝑋. Set X is called the extent (domain) of the formal concept, and

set Y is the intent of the formal concept (co-domain). All formal concepts

{(𝑋1, 𝑌𝑦), (𝑋2, 𝑌2), … . , (𝑋𝑛, 𝑌𝑛)} extracted from the formal context(𝑂, 𝐴, 𝑅) can be

organized in conceptual lattices (see figure 6). The formal concepts of a given context are

naturally ordered by the sub-concept; the super-concept relation is defined by:(𝑋1, 𝑌1) ≤

(𝑋2, 𝑌2) if and only if (𝑋1 ⊆ 𝑋2) and (𝑌2 ⊆ 𝑌1).

Figure 6. Conceptual Lattice of the formal context in table 3

However, representing a large number of concepts is not effective in terms of

32

space complexity; thus, the ideal solution is to represent the whole space using a

minimum number of concepts. In addition, obtaining optimal concepts is challenging as it

is considered an NP-Hard problem[39], but on the other hand, many heuristic

contributions were introduced, providing approximate solutions in order to tackle this

problem, and many of these heuristics have been deemed useful in data analysis and

reduction. In the next section, we are going to review some of the heuristics that aim to

decompose optimal formal concepts from contexts.

3.3 FCA Conceptual Decomposition Methods

In FCA, we can use the notion of concepts to obtain rule-based classification

systems. However, generating concepts from a context is fully dependent on how we

decompose the context to find the optimal points for conceptual coverage. In addition, the

method used to obtain the concepts has an impact on the complexity of the system. Many

heuristics have been introduced to obtain the optimal concepts from a given context. The

fringes decomposition [40], [41] approach is used to obtain a set of isolated points which

belong to only one concept in the binary context; the decomposition method is performed

by applying Riguet’s difunctional relation recursively in the context, and the resulting

points will be used to construct a set of formal concepts. Another approach used is

Shannon’s Entropy, to decompose the context and obtain the minimal formal concepts

that describe a given context [10], [11], [42]. Moreover, some approaches perform the

coverage based on the knowledge gained from the produced concepts; such approaches

tend to evaluate the produced concepts using certain quality measures, such as confidence

and correlation [43]. Furthermore, lazy-coverage [44] is a method that aims to obtain

only desirable concepts from a context; this approach is usually practical in classification.

33

The quality of the decomposed concepts affects the overall system performance;

therefore, it is important to obtain the best and minimal concepts that describe the whole

context. In the next section, we are going to review FCA practices in machine learning.

We will discuss the common FCA-based learning algorithms and the variation of

ensemble learning methods that utilize FCA-based learning algorithms.

3.4 FCA-Based Learning

There are several FCA-based algorithms for supervised learning, based on

Trabelsi taxonomy [45] of the existing supervised classification methods. FCA-based

classification methods can be divided into two categories: exhaustive and combinatory.

The first category involves the ensemble learning algorithms that are based on FCA. The

second category contains the learning methods that exploit the ensemble learning

paradigms.

 Some of the exhaustive learning methods are construct and use the conceptual

lattices, such as, GALOIS and Selecting Plausible Formal Concepts(SPFC)[45]. The

limitations of these approaches are time and resource complexities, because the

construction of the lattice is an exponential process. Other approaches, like Fuzzy

Incremental Production rule (FIPR)[46] and Incremental Rule Production (IRP)[47], are

constructed using only part of the lattice. Several FCA learning methods extract pertinent

concepts, such as IPR, however, these methods require some quality metrics to evaluate

or control the concept extraction processes [9]. There are many characteristics for each;

complete lattice-based classifiers are usually prone to exponential complexity in terms of

time and resources, but conversely, they are more precise in terms of extracted

knowledge. Sub lattice-based methods only use part of the conceptual lattice, which can

34

reduce the complexity and operate more efficiently for resource consumption. It also

reduces the redundancy in the generated concepts, keeping only the most relevant options

among them. However, using only sub lattices may cause information loss affecting the

overall accuracy of the algorithm.

 Combinatory approaches, or FCA learners that utilize ensemble learning, were

introduced to improve the overall performance of learning. Boosting formal concepts

(BFC)[11] and Boosting nominal classifier (BNC)[10] are considered sequential

ensemble classifiers; the base learners in BFC and BNC use the basis of Formal Concept

Analysis to extract classification rules from the training set. BNC is similar to BFC; the

only difference is that BNC was built to handle nominal data, mainly to avoid the

complexity that follows transforming the data to the binary representation. The two

algorithms cover only parts of the conceptual lattice, which is relevant to the samples

drawn from the training set. Both BFC and BNC are based on AdaBoost.M2 ensemble

learning paradigm.

 BFC operates by forming classification rules based on the discovered concepts.

The processes are divided in two phases, the learning phase and the classification phase.

In the learning phase, the algorithm extracts concepts from the data based on conceptual

decomposition. In the classification phase, a class is assigned to the unseen objects based

on the extracted concepts from the data. The learning phase is done in sequential process,

learning one classifier at a time based on a subset of the training set. The authors in [11]

claim that boosting a weak classifier allows improvement on overall performance; in

addition, it improves the error rate, and reduces over-fitting. Moreover, the decisions

obtained using multiple classifiers are more reliable than the ones produced using a single

35

classifier. Given any training set, the algorithm will assign equal weights to all training

samples, and then, it will randomly draw samples from the training set and build the first

classifier using this sample. Moving forward, it will repeat this process T times on the

data set. In each iteration, the algorithm will modify the weights and construct new

classifiers based on the new weighting criteria.

 The classifier in this case is a classification rule extracted from a formal concept.

In each iteration, the algorithm works on a different subset of the data (based on the

weights). It will extract formal concepts by selecting the attribute (ex. binary attribute)

that satisfies specific criteria (ex. minimize Shannon entropy). In a case where multiple

attributes have the same entropy value, the algorithm will select the one that has more

support. Next, after selecting the attribute, the algorithm will obtain the formal concept

by applying Galois closure on the attribute. After that, the classification rule is obtained

by the intent of the concept, and the class is obtained by the majority vote associated with

the extent of the concept. Then, the rule is returned to the main algorithm AdaBoost.M2,

which calculates Pseudo-loss on the classifier, and uses the Pseudo-loss to calculate the

error and update the weights of the training examples according to the error and a

normalization factor (ex. to have total weights = 1). In iteration T, the weight of the

correctly classified examples will decrease, while increasing the weights of those

misclassified, in order to provide more chances to select the next classifier.

 BNC was considered an extension for the previous method, BFC. Minor changes

were introduced to the previous algorithm, while working under AdaBoost.M2 method.

BNC aims to improve the performance of BFC by calculating the information gain on the

attribute itself, without resorting to its modality. BFC works only in binary context; it

36

transforms the nominal data into binary data, which leads to high resource consumption

and poor accuracy. BNC handles the nominal attributes directly without resorting to its

modalities, using the information gain for selecting the best attribute, and then returning a

set of classification rules, rather than a single one, as with BFC.

 Another text[10] proposed a new classification method based on the dagging

approach and FCA, called Dagging (Disjoint sample aggregating) Nominal Classifier

(DNC). The method constructs multiple parallel classifiers; in this case, each classifier is

constructed using the same learning algorithm. In order to perform bagging or dagging in

a set of base classifiers, you need to prove that these classifiers are unstable. It has been

proven that bagging will not improve the performance of stable classifiers, and in most

cases, it will result in similar classification rules, since the stable classifiers will not be

affected by changes in the training sets.

However, the authors prove the instability of the base classifiers by reporting the

standard deviation of error rates for multiple data sets. They demonstrate this by running

classifications with cross-validation on them. The proposed base learner (CNC), or

Classifier Nominal Concept, runs in a similar way to BNC. It receives stratified samples

from the distributer (Ensemble Paradigm. CNC will select the best attribute based on

information gain evaluation measure, and then the algorithm will derive the formal

concept using this attribute. The rule is deduced from the intent, and the class is deduced

from the extent using majority vote. Later, a majority vote is conducted to select the

appropriate class for the unseen data. The authors prefer dagging over the bagging

method, as they claim it is more efficient. The dagging technique creates stratified

subsets from the original dataset; each subset is used to create a classifier (classification

37

rule in this case), and it is used mainly to reduce the chances of model over-fitting, and to

reduce the effects of Noise. Using dagging on unstable base classifiers will ensure proper

distribution, and it will result in several different classifiers with a low correlation

between them. DNC algorithm is implemented on an existing method (dagging) to extend

the notion of parallel ensemble by using FCA, in an attempt to tackle the limitation of a

single classification. In addition, in such a scenario, validating the stability of the base

classifier helps determine to which extent this approach is applicable. Moreover, two

algorithms are introduced: one for concept induction, and the other to implement dagging

and combine the classifiers deduced using the first one.

 Furthermore, Kashnitsky and Ignatov[12] proposed Recommender-based Multiple

Classifier System (RMCS), an FCA-recommender system that recommends the best

classifier to use for specific objects among a set of different base classifiers. The base

classifiers in this case could be heterogeneous or homogenous sets of classifiers (i.e.

produced using different learning algorithms such as SVM, NB, Decision tree, etc.). The

idea is more relevant to stacking, where level-1 classifiers send their decisions to the

meta-learner, which learn from these decisions and select which classifier to use for

specific object classification. The recommender system is based on Formal Concept

Analysis, where it builds its recommendation criteria based on the notions of upper

neighbors and lower neighbors of formal concept.

Given a training set, the recommender initializes by performing a cross validation

on that training set, where all the classifiers are trained using leave-one-out cross-

validation. Then a classification context (example: Table-1) is created using the results of

38

the classifier, representing which classifier classified object 𝑥𝑖 correctly. After

constructing the classification context, the algorithm will train the set of classifiers with

all the training examples, forming another table called a prediction table that contains

each 𝑥𝑖 from the test set and its label as well as the classifier that selected this label. For

every object from the testing set, the algorithm finds its k nearest neighbors (using

Euclidean distance) from the training set according to a specific metric, and then the

algorithm searches for a concept in the classification context that has a maximal

intersection with the set neighbors. After selecting the concept from the classification

table, this concept will have a set of classifiers on its intent (or one).

 These classifiers are considered suitable for classifying that object. In the case of

several classifiers in the intent, a majority vote will be used to choose the majority labels

selected by the recommended classifiers. The upper top concept and its neighbors are

created by a function that uses the classification context. The concepts are obtained using

the Close-By-One algorithm after modification. This means the sub-lattice used only the

uppermost concept and its neighbors; here, these neighbors usually consist of multiple

objects (instance number) and one attribute (classifier number). The upper concept is

usually ignored; in most cases, it contains all the objects and empty sets of classifiers.

 The algorithm performs training two times among n classifiers. The first time, it

creates a classification table using leave-one-out cross-validation; the second time, it

creates the prediction table where each object is associated with the classification

decisions made by each classifier. Regardless of the time it takes to obtain the uppermost

concepts, this approach is equal to the stacking method in terms of time complexity.

39

3.5 FCA-based Rules-Induction Methods

 For a classification task, it is possible to obtain the conceptual classification rules

using any conceptual coverage heuristic, or it can be obtained using the whole conceptual

lattice; the produced concept can be used later for classification rules. Conceptual

coverage is obtained using the Galois closure/connection. For example let us assume that

the optimal points are {𝑎1, 𝑎4} in the context (table 4); calculating Galois closure from

each point using the closure operators defined in chapter 3:

Concept 𝑐1 = {λ({𝑎1}), λoγ({𝑎1})} = {{𝑜1, 𝑜2}, {𝑎1, 𝑎2}}

Concept 𝑐2 = {λ({𝑎4}), λoγ({𝑎4})} = {{𝑜3, 𝑜4, 𝑜5}, {𝑎3, 𝑎4}}

Table 4

Formal Context with Class labels

𝑂 − A 𝑎1 𝑎2 𝑎3 𝑎4 𝐶𝑙𝑎𝑠𝑠

𝑜1 1 1 1 0 1

𝑜2 1 1 0 0 1

𝑜3 0 1 1 1 2

𝑜4 0 0 1 1 2

𝑜5 0 1 1 1 1

The rules can be obtained from a concept by taking majority vote of the class

40

labels assigned to objects sub-set. For the previously obtained concepts; we will have the

following rules:

𝐼𝐹𝑎1 𝑎𝑛𝑑 𝑎2𝑇ℎ𝑒𝑛 Class = 1

𝐼𝐹𝑎3 𝑎𝑛𝑑 𝑎4𝑇ℎ𝑒𝑛 Class = 2

What can be deduced from the second rule is that the concept is not always

precise; where the attributes(𝑎3, 𝑎4) are not always associated with class label 2, which

may result in imprecise classification rules. Accordingly, we can introduce some

weighting criteria to produce concepts such as confidence or support. Another approach

is to perform oriented conceptual coverage by starting attributes/class pairs, or to start

from the best point using certain evaluation methods.

3.6 Chapter Summary

In this chapter, we introduced Formal Concept Analysis, its applications and

reasons behind adapting this approach in many computing related applications. We

defined the main principles that constitute this approach including formal context, formal

concept, conceptual lattice, closure operators and Galois connection. In section 3.3 we

reviewed the conceptual decomposition heuristics and its importance to avoid the

exponential complexity of constructing the conceptual lattice. In addition, we discussed

different FCA learning methods whether they are exhaustive (single classifier) or under a

certain ensemble learning paradigm and the conceptual decomposition approaches

adopted by these methods. Finally, we defined the FCA rule induction methods, defining

the common approach using a toy example.

As we mentioned earlier, we are going to adopt FCA in order to implement a

41

learning algorithm, alongside an ensemble-learning paradigm to achieve our objectives

with respect to the learning problem. The function of FCA and ensemble learning will be

explained with more details in the next chapter.

42

CHAPTER 4: PROPOSED METHOD

In the previous chapter, we passed through FCA-based learning methods and their

main properties. Therefore, in this chapter, we introduce a novel approach to induce rules

using Formal Concept Analysis, in addition a new method that minimizes classification

rule bias, and we introduce our argument on how we select the suitable ensemble-

learning paradigm for obtaining better classification performance.

4.1 Random Conceptual Coverage Learner

The proposed approach is based on random conceptual coverage. Unlike other

FCA coverage methods that select the best attribute to obtain the conceptual coverage,

our algorithm performs the selection randomly from a given training data: 𝐷 =

 {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛, 𝑦𝑛)}, where 𝑥𝑖 ∈ 𝑋 a set of features, and 𝑦𝑖 ∈ 𝑌 represents the

class label associated with set 𝑥𝑖. In the learning phase, the algorithm will iterate over N

rows randomly selecting random number of features: 𝑎𝑖 ⊆ 𝑥𝑖 without repetition. The

selected features will not be selected again in the next iterations. The method of selecting

random numbers of attribute values was to obtain different classification rules by

utilizing the notion of random coverage in the model aggregation scenario. In order to

obtain random values, the algorithm will set a random integer 𝑏; the value of 𝑏 will

change randomly in each iteration 𝑖 of the training data 𝐷 and vary from one to the length

of the features set 𝑥𝑖.

For example, let us assume that we have attributes values describing object 𝑥𝑖 =

{𝐴𝑉1, 𝐴𝑉2, 𝐴𝑉3} with size = 3, and 𝑏 is an integer with random value between 1 and 3

(size of 𝑥𝑖) for iteration 𝑖, let us say the random integer here is 2 then 𝑎𝑖 ⊆ 𝑥𝑖 is a set of

43

attributes values with size = 𝑏, for example 𝑎𝑖 = {𝑓1, 𝑓3}, and the values in 𝑎𝑖 are

selected randomly without repetition.

Algorithm 1

Random Conceptual Learner (RCL)

INPUT: Training Examples with class labels 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛, 𝑦𝑛)}

OUTPUT: Set of Classification Rules: 𝑅𝑢𝑙𝑒𝑠

PROCESS:

1. 𝑅𝑢𝑙𝑒𝑠 = { }

2. For 𝒊 = 𝟏, … … , 𝒏:

3. Randomly Select without replacement 𝑏 attribute values: 𝑎𝑖 ⊆ 𝑥𝑖, 𝑏 random integer:

𝑎𝑖 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑖, 𝑏), 1 ≤ 𝑏 ≤ |𝑥𝑖|

4. Calculate Galois Closure for 𝑎𝑖 to generate a Formal Concept: 𝑐𝑖 = {𝜆(𝑎𝑖), 𝜆𝑜𝛾(𝑎𝑖)}

5. Calculate the majority Class 𝑣𝑜𝑡𝑒 associated with 𝝀(𝑎𝑖)in 𝐷.

6. Classification Rule: 𝑟𝑢𝑙𝑒𝑖 = (𝜆𝑜𝛾(𝑎𝑖), 𝑣𝑜𝑡𝑒)

7. Calculate the confidence 𝑤𝑖 =
|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝑟𝑢𝑙𝑒𝑖)|

|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖))|
 as a weight for the obtained rule.

8. If 𝒘𝒊 = 𝟏. 𝟎 : // rule covers only one category

9. 𝑅𝑢𝑙𝑒𝑠. 𝑎𝑑𝑑(𝑟𝑢𝑙𝑒𝑖)

10. Else :// rule covers more than one category

11. Remaining attribute values that are not selected: 𝑟𝑒𝑚 = 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)) −
𝜆𝑜𝛾(𝑎𝑖)

12. 𝑅𝑢𝑙𝑒𝑠. 𝑎𝑑𝑑(𝑬𝒏𝒉𝒂𝒏𝒄𝒆𝒅_𝑹𝒖𝒍𝒆(𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)), 𝑟𝑒𝑚))//execute algorithm-2

13. End

CLASSIFICATION:

 For classification if more than one rule is triggered, the algorithm will assign

the class value that has the maximum number of votes

44

Selected features will be used to obtain the formal concepts by calculating Galois

closure 𝜆(𝑎𝑖), 𝜆𝑜𝛾(𝑎𝑖), where 𝜆(𝑎𝑖) is a closed set of objects, and 𝜆𝑜𝛾(𝑎𝑖) is a closed set

of attributes. The next step is to calculate the class label associated with 𝜆(𝑎𝑖), and this is

done through majority voting of the class labels associated with the closed set of objects

𝝀(𝑎𝑖) in the training data.

However, relying on voting may produce biased classification rules, as many

instances that belong to other categories will be neglected. Therefore, the algorithm will

calculate the confidence of the rule as weighting criteria, which is based on how many

times the rule appeared in the training data associated with the most voted class over the

total number of appearances in training data. The cardinality |𝑥|, returns the number of

instances in 𝑥:

𝑤𝑖 =
|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝑟𝑢𝑙𝑒𝑖)|

|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖))|

(4.1)

The function 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝑥) returns all the instances in the training data D that

are containing 𝑥. Rules with weight equal to 1.0 will be added directly to the

classification rule set. On the other hand, rules with weights less than 1.0 will undergo an

enhancing process that aims to minimize the classification rule bias caused by inadequate

attribute values that construct the rule. To establish an optimal classification rule, we

need to construct classification rules with minimal properties that trigger records that are

belong to only one category. To achieve that, we propose the Rules Optimization

Method; this method performs recursively to optimize biased classification rules. The

proposed enhancement method (see Algorithm-2) is also based on FCA; the algorithm

45

will iterate over the remaining (𝑟𝑒𝑚) attributes calculated in Algorithm-1. The remaining

are the attributes that are not used in the obtained rule:

𝑟𝑒𝑚 = 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)) − 𝜆𝑜𝛾(𝑎𝑖) (4.2)

The 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)) returns a set of instances in D containing 𝜆𝑜𝛾(𝑎𝑖), the

remaining 𝑟𝑒𝑚 is a set of attributes that are not used in 𝜆𝑜𝛾(𝑎𝑖). From each remaining

attribute, the algorithm will generate a formal concept and each concept will be weighted

using the same weighting approach performed previously. Algorithm-2 will run

recursively and produces two types of classification rules: The first type of rules—if the

rule confidence is equal to 1.0 (Optimized Rule), the second type of rules—if the rule

already has the maximum set of properties and cannot “grow” more. Once the 𝑟𝑒𝑚 = {}

the algorithm will stop the execution.

The rules resulting from this operation are optimized; many of them will describe

only one category. However, some of the optimized rules may describe more than one

category, and this is due to overlapping in the features of some datasets, where multiple

records share the same properties but fall in different categories; these kinds of errors are

irreducible. Similar to other classification methods like decision tree and naïve Bayesian,

the proposed FCA-based learner will perform properly when it’s applied to nominal

attributes or intervals. Therefore, to obtain the best performance, we propose an

embedded static discretizer, to create intervals from a given continuous attribute as a pre-

learning process.

46

Algorithm 2

Rule Optimization Method (𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑_𝑅𝑢𝑙𝑒)

INPUTS: 𝐷∗ = 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)) ⊆ 𝐷; 𝑟𝑒𝑚// 𝐷∗ is a sub-context from 𝐷, 𝑟𝑒𝑚 are the

attributes in 𝐷∗ not used to construct the biased rule

OUTPUT: Set of Classification Rules: 𝑅𝑢𝑙𝑒𝑠

PROCESS:

1. 𝑅𝑢𝑙𝑒𝑠 = { }

2. For 𝒊 = 𝟏, … … , 𝒏:

3. Calculate Galois Closure for 𝑎𝑖 ∈ 𝑟𝑒𝑚 to generate a Formal Concept: 𝑐𝑖 =
 {𝜆(𝑎𝑖), 𝜆𝑜𝛾(𝑎𝑖)}

5. Calculate the majority Class 𝑣𝑜𝑡𝑒 associated with 𝝀(𝑎𝑖), in 𝐷∗

6. Classification Rule: 𝑟𝑢𝑙𝑒𝑖 = (𝜆𝑜𝛾(𝑎𝑖), 𝑣𝑜𝑡𝑒)

7. Calculate the confidence 𝑤𝑖 =
|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝑟𝑢𝑙𝑒𝑖)|

|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖))|
 as a weight for the obtained rule.

8. If 𝒘𝒊 = 𝟏. 𝟎 : // rule covers only one category

9. 𝑅𝑢𝑙𝑒𝑠. 𝑎𝑑𝑑(𝑟𝑢𝑙𝑒𝑖)

10. Else If 𝒘𝒊 < 1.0 𝒂𝒏𝒅 𝜆𝑜𝛾(𝑎𝑖) contains the maximum number of attributes:

11. 𝑅𝑢𝑙𝑒𝑠. 𝑎𝑑𝑑(𝑟𝑢𝑙𝑒𝑖)

12. Else:

13. Remaining attribute values that are not selected: 𝑟𝑒𝑚 = 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)) −
𝜆𝑜𝛾(𝑎𝑖)

14. 𝑅𝑢𝑙𝑒𝑠. 𝑎𝑑𝑑(𝑬𝒏𝒉𝒂𝒏𝒄𝒆𝒅_𝑹𝒖𝒍𝒆(𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)), 𝑟𝑒𝑚)) // recursive

execution

15. Return(𝑅𝑢𝑙𝑒𝑠)

As an example, let us assume that we are learning from the dataset in table 5, and

Algorithm-1 selects randomly attributes (𝑎3), then it will generate a concept based on the

selected using Galois Closure 𝑐 = {𝜆(𝑎3), 𝜆𝑜𝛾(𝑎3)} = {{𝑜1, 𝑜3, 𝑜5}, {𝑎2, 𝑎3}}. The

majority class associated to the set of objects {𝑜1, 𝑜3, 𝑜5} is class 1, with confidence 0.66;

which means that the classification rule {𝑎2, 𝑎3} → 𝐶𝑙𝑎𝑠𝑠 1 will be triggered by instances

47

that belongs to other classes, as the confidence of the rule is not equal to 1.0.

Consequently, this rule will be enhanced using Algorithm-2, which will start the coverage

from the remaining attributes values 𝑟𝑒𝑚 = {𝑎1, 𝑎4} and the sub-context 𝐷∗ in table 6.

Algorithm-2 will iterates over 𝑟𝑒𝑚 and generates two classification rules with confidence

equal to 1.0; {𝑎1, 𝑎2, 𝑎3} → 𝐶𝑙𝑎𝑠𝑠 2 and {𝑎2, 𝑎3, 𝑎4} → 𝐶𝑙𝑎𝑠𝑠 1. Algorithm-2 will be

executed recursively N times until the stopping conditions satisfied; 𝑟𝑒𝑚 becomes an

empty set.

Table 5

Dataset Example (𝑫)

𝑂|A 𝑎1 𝑎2 𝑎3 𝑎4 𝐶𝑙𝑎𝑠𝑠

𝑜1 0 1 1 1 1

𝑜2 1 1 0 0 1

𝑜3 1 1 1 0 2

𝑜4 0 0 0 1 2

𝑜5 0 1 1 1 1

Similar to other classification methods, such as Decision Tree and Naïve

Bayesian, RCL will performs better when applied to scaled attributes. Therefore, it is

important to discretize continuous values and transform them into intervals before

48

applying RCL. Therefore, we embedded a Gini-Based discretizer to be used alongside

our algorithm; this method will be discussed with more details in the next section.

Table 6

Sub-context 𝑫∗generated by Algorithm-1

𝑂|A 𝑎1 𝑎2 𝑎3 𝑎4 𝐶𝑙𝑎𝑠𝑠

𝑜1 0 1 1 1 1

𝑜3 1 1 1 0 2

𝑜5 0 1 1 1 1

4.2 Gini-Based Discretizer

Supervised discretization involves the processes of scaling the continuous values

into ranges/intervals with respect to class values. These intervals might be labeled to form

categories, which will be used for learning. The importance of discretization of

continuous values is reflected in many aspects of supervised learning, mainly boosting

the classification performance, and cutting down processing costs by acting as a

reduction method. In addition, some of the learning algorithms deal only with scaled

features or perform better in the presence of scaled attributes [48]. Industry literature is

rich with various supervised discretization techniques; all are targeting the minimal

information loss and the maximum selection accuracy. However, generating the best

49

intervals has been labeled an NP-complete problem. Discretizes may be static, in which

they perform the scaling before classification forming, or dynamic, where the process

occurs at the same time of classification model creation, such as CART. In addition,

some algorithms perform discretization on each attribute separately (univariate) or by

considering all the attributes each time it looks for the best split point (multivariate).

In general, supervised discretization algorithms involve sorting, split point

evaluation mechanisms, and stopping conditions. There are many evaluation

mechanisms, however, the most popular and effective techniques are derived from

information theory, such as entropy and Gini index, followed by Chi-Square and

ChiMerge statistical techniques.

As mentioned previously, FCA-based classifiers require scaled attributes to

perform properly. In this section, we propose an embedded supervised Gini-Gain

discretizer (Algorithm-3), which is based on the Gini index evaluation metric. The

reasoning supporting this measure will be discussed later in this section. The proposed

approach is static, as it does not involve with in the learning procedures and will be

executed before the learning phase. The main characteristic of this approach is that it

simultaneously considers multiple features (multivariate). The method utilizes Gini index

of impurity as an evaluation measure for creating intervals from given data. These

intervals allow the model to be more predictive in the presence of continuous data, also

acting as a data reduction mechanism and reducing the size of the training data. Though it

is not easy to decide which evaluation measure is more effective than others; each of

them has its own characteristics and applications. However, a comparative study by

García[48] shows that evaluation measures based on information theory, such as entropy

50

and Gini index, are among the best, based on empirical studies that involve other

measures. Moreover, a theoretical comparison conducted by Raileanu[49] found that

there are slight differences between Shannon entropy and Gini index, in terms of finding

the best split points, as they suggest that differences will not achieve more than 2% by

experimenting with the frequency of disagreement between the two approaches.

However, the Gini evaluation method performs faster as it does not involve any

logarithmic calculation. Moreover, choosing evaluation criteria is not an objective by

itself for this study; thus, any approach with acceptable performance is also applicable.

With the given training data, 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛, 𝑦𝑛)}, the discretizer

will operate recursively until the stopping conditions are satisfied, and it returns a set of

bins that will be used later for creating intervals in the training data. The algorithm starts

with all attribute values, and greedily checks for the best split point over all possible split

points in the training data. For all possible split points, the algorithm will split the data

into two groups using the function𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔(), which returns binary groups, 𝐺𝑟𝑜𝑢𝑝𝑠 =

{𝑔1, 𝑔2}, and evaluate each group using the Gini evaluation measure:

Gini(𝑔𝑗) = 1 − ∑ (𝑃𝑔𝑗

𝑘)𝟐
𝒍

𝒌=1

𝑤ℎ𝑒𝑟𝑒, 𝑃𝑔𝑗
𝑘 =

𝑐𝑜𝑢𝑛𝑡(𝑦𝑘)

𝑠𝑖𝑧𝑒𝑔𝑗

(4.3)

(4.4)

The evaluation is based on how many distinct class values are in each group. The

best Gini indication is achieved when each group contains one class value, where the

function Gini(𝑔𝑗) = 0 for the two groups. Consequently, it will minimize the gain

function:

51

𝐺𝑎𝑖𝑛 = ∑ Gini(𝑔𝑗).
𝑠𝑖𝑧𝑒𝑔𝑗

𝑠𝑖𝑧𝑒𝐷

𝑚

𝑗=1

(4.5)

Also, consequently, each group that contains more than one class value will be

divided again until satisfying the stopping condition. All selected split points with

minimal gain will be added to the bins list to be used later to create intervals on the

training data.

To explain the discretizer with more details, we will take the dataset in Table 7.

This dataset contains 4 attributes; two of them are numeric while the other two attributes

are categorical, with 2 class values. Before feeding the data to the Gini-Discretizer, the

categorical attributes (outlook, windy) will be labeled to numerical coefficients (i.e. the

attribute value overcast will be labeled as 1.0, rainy as 2.0 and sunny as 3.0), and the

same for windy. The discretizer will start by evaluating all the attributes values in the

dataset to find the first split point; this is done by calculating the Gini-Gain (equation-4.5)

for each unique attribute value. The binary discretizer will search for the point that can

split the dataset into two groups where each group belongs to one class category; in the

ideal scenario, it will return zero as a score. The value with minimal Gini-Gain will be

selected as the best split point, in this scenario the algorithm selected Outlook value = 1.0

(overcast) as the first split point and this is done through the following process:

 Grouping the data into two groups; where group-1 contains instances with outlook

value less than or equal to 1.0, group-2 with instances with outlook values larger

than 1.0.

 Calculating the probability score 𝑃 for each group by counting the number of

52

class values of a certain class in each group over the size of the group:

o Group-1: 𝑃𝑔1
0 =

𝑐𝑜𝑢𝑛𝑡(𝑦=0)

𝑠𝑖𝑧𝑒𝑔1

=
0

4
= 0, 𝑃𝑔1

1 =
𝑐𝑜𝑢𝑛𝑡(𝑦=0)

𝑠𝑖𝑧𝑒𝑔1

=
4

4
= 1

o Group-2: 𝑃𝑔2
0 =

𝑐𝑜𝑢𝑛𝑡(𝑦=0)

𝑠𝑖𝑧𝑒𝑔2

=
5

10
= 0.5 , 𝑃𝑔2

1 =
𝑐𝑜𝑢𝑛𝑡(𝑦=0)

𝑠𝑖𝑧𝑒𝑔2

=
5

10
= 0.5

 Calculating the Gini score for each group using equation (4.4):

o Group 1: Gini(𝑔1) = 1 − (0)𝟐 + (1)𝟐 = 0

o Group 2: Gini(𝑔2)= 1 − (0.5)𝟐 + (0.5)𝟐 = 0.5.

 Calculating the Gain using equation (4.5):

o 𝐺𝑎𝑖𝑛 = Gini(𝑔1).
𝑠𝑖𝑧𝑒𝑔1

𝑠𝑖𝑧𝑒𝐷
+ Gini(𝑔2).

𝑠𝑖𝑧𝑒𝑔2

𝑠𝑖𝑧𝑒𝐷
= 0.

4

14
+ 0.5.

10

14
= 0.357.

The discretizer will continue iterating over the rest of attributes value searching

for the best split point. For this scenario the best split point is outlook value = 1.0

(overcast), with minimal gain against others, and this point will be added to the bins list

to be used later for creating intervals in the dataset.

53

Algorithm 3

Gini-embedded discretizer

Gini_Evaluation(𝐺𝑟𝑜𝑢𝑝𝑠, 𝑌):

PROCESS:

 // Calculate the score for each group:

1. For 𝒈𝒋 ∈ 𝑮𝒓𝒐𝒖𝒑𝒔:

2. For each class value 𝒚𝒌 ∈ 𝒀:

3. 𝑃𝑔𝑗
𝑘 =

|𝒚𝒌|

𝒔𝒊𝒛𝒆𝑔𝑗

4. Gini(𝒈𝒋) = 1 − ∑ (𝑃𝑔𝑗
𝑘)𝟐

𝒍

𝒌=1

 // Calculate Gini Gain:

5. 𝐺𝑎𝑖𝑛 = ∑ Gini(𝒈𝒋).
𝒔𝒊𝒛𝒆𝑔𝑗

𝒔𝒊𝒛𝒆𝐷

𝒎

𝒋=1

6. RETURN(𝐺𝑎𝑖𝑛)

Binary_Splitter(𝐷):

PROCESS:

1.Gini_Gain = {}

2. For 𝒊 = 𝟏, … … , 𝒏:

3. For each attribute value 𝒂𝒌 ∈ 𝒙𝒊:

4. // perform binary grouping based on split point 𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡 = 𝑎𝑘; 𝑖𝑛𝑑𝑒𝑥 = 𝑘 :

 Groups𝑎𝑘
= 𝐆𝐫𝐨𝐮𝐩𝐢𝐧𝐠(𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡 , 𝑖𝑛𝑑𝑒𝑥, 𝐷) // binary grouping data on 𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡

5. Gini_Gain. 𝑎𝑑𝑑(𝐆𝐢𝐧𝐢_𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧 (Groups𝑎𝑘
, 𝑌)):

 // Return the groups and split point that minimizes Gain function:

6. RETURN(Groups𝑎𝑣𝑘
, 𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡)

Gini_Discretizer:

INPUTS: Training Examples with class labels 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛 , 𝑦𝑛)}

OUTPUT: Set of bins: 𝑏𝑖𝑛𝑠

PROCESS:

1. bins = {}

2. 𝐺𝑟𝑜𝑢𝑝𝑠, 𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡 = Binary_Splitter(𝐷)

3. 𝑏𝑖𝑛𝑠. 𝑎𝑑𝑑(𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡)

 // Check if each group contains only one class:

4. For 𝑔𝑖 ∈ 𝐺𝑟𝑜𝑢𝑝𝑠:

5. IF |𝑌𝑔𝑖
| > 1.0:

6. 𝑏𝑖𝑛𝑠 += Gini_Discretizer(𝑔𝑖)

7. RETURN(𝑏𝑖𝑛𝑠)

54

Table 7

Golf dataset before scaling.

Outlook Temperature Humidity Windy Play

overcast 83 86 TRUE yes

overcast 64 65 TRUE yes

overcast 72 90 False yes

overcast 81 75 TRUE yes

rainy 70 96 TRUE yes

rainy 68 80 TRUE yes

rainy 65 70 TRUE no

rainy 75 80 TRUE yes

rainy 71 91 TRUE no

sunny 85 85 TRUE no

sunny 80 90 TRUE no

sunny 72 95 TRUE no

sunny 69 70 TRUE yes

sunny 75 70 FALSE yes

55

Table 8

Golf dataset after scaling.

Outlook Temperature Humidity Play

Outlook <= 1 Temperature >70 Humidity >80 yes

Outlook <= 1 Temperature <=65 Humidity <=80 yes

Outlook <= 1 Temperature >70 Humidity <=80 yes

Outlook > 1 Temperature <=70 Humidity >80 yes

Outlook > 1 Temperature <=70 Humidity <=80 yes

Outlook > 1 Temperature <=65 Humidity <=80 no

Outlook > 1 Temperature >70 Humidity <=80 yes

Outlook > 1 Temperature >70 Humidity >80 no

The obtained bins will be used to create intervals (see table 9) in the datasets

before the learning process carried on. There is no split points found in windy attribute as

it is not containing useful split information for the algorithm, and it will be neglected in

the intervals generation process. Finally, the dataset will be reduced after merging the

attributes value inside these intervals as we can see in table 8 cases, the dataset is reduced

from 14 instances to only 8 instances after dropping the duplicates. RCL will benefit

56

from this phase as it allows the learner to perform faster, removing the unnecessary

attributes and scale the data so it can be used effectively for learning. Now we have a

group of instances that belong to one category, this is meaning that group-1 satisfies the

stopping condition and no longer involved in the searching process. The algorithm will be

executed recursively on Group-2 to create more sub groups until it satisfies the stopping

condition, and on each execution, the best split point will be added to the bins list.

Table 9

Bins obtained by the discretizer.

Attributes Outlook Temperature Humidity Windy

Bins 1.0 (overcast) 70.0, 65.0 80.0 n/a

 The proposed methods (Algorithms: 1, 2, 3), are designed to minimize the error

caused by biased classification rules. Algorithm-2 enhances the conceptual coverage in

order to produce rules with minimal bias by adding more properties, while creating

intervals on the training data. This reduces the chance of a rule becoming too focused on

a specific value. However, as we mentioned in Chapter 1, the learning error is not limited

to the model bias; the variance may produce a high error rate in the presence of a model

that learns deeply from the training data, reducing the model’s ability to perform in the

presence of new data. Therefore, in the next section, we are going to explain the proposed

57

method for variance averaging.

4.4 RCL Ensemble Paradigm

 In much of the literature, there are many techniques proposed for variance

reduction, such as rule pruning, tree pruning, data partitioning, scaling, and ensemble

learning. The last of these options was found to be more effective in different scenarios,

as previously discussed in chapters 1, 2, and 3. However, it exists in multiple paradigms.

Arbitrarily selecting the ensemble paradigm for a certain learner might be tricky, and may

lead to a drop in the classification performance. Sequential ensemble methods aim to

boost the accuracy of weak learning algorithms, which tends to under-fit the data and

produce biased classification hypotheses. Conversely, parallel ensembles tend to reduce

the variance of unstable learning algorithms, which over-fit and produce complex

hypotheses, while producing high error rates when it comes to unforeseen instances.

In order to choose the best ensemble paradigm, it is essential to measure the

stability of the base learner. Unstable classifiers have a high variance, as they over-fit the

training data. The training error of the unstable classifiers is very low, while the

validation error tends to be high. On the other hand, stable classifiers, have low variance

and will probably exhibit high bias. In the model aggregation scenario, unstable

classifiers produce different results if small changes occur in the data, while stable

classifiers tend to agree in general, even if some changes are applied to the training

examples. Sequential ensemble methods are used to boost the weak classifiers and reduce

the bias, but parallel ensembles average the variance of the unstable classifiers.

Therefore, to ideally utilize ensemble-learning paradigms and to decide which ensemble

method best fits our objectives; we have to verify which category the proposed method

58

falls within. The stability of the learning algorithm can be experimented by using various

techniques, such as the variance/standard deviation in classification errors, training data

injection, or simply by verifying the effect of sampling on the accuracy when aggregating

multiple models together. Empirically, bagging was found to be effective for variance

reduction. Therefore, to reduce the variance caused by RCL’s expected tendency to over-

fit the training data, we propose fusing RCL with Bagging paradigm (see algorithm-4) to

utilize its ability to average the variance. To verify its efficiency in reducing the variance

of RCL we would show the experiment results of the effect of bagging in chapter-5.

Using Bagging averages the variance by generating multiple samples from the

training data; the samples are generated using bootstrap sampling. Each of the generated

samples will be used to produce a different classification model. The discretizer will be

used locally (see Figure 7) to further enforcing the diversity between the produced

classifiers and to reduce the effects of noise on the discretization process.

Algorithm-4: RCL-Bagging Paradigm

INPUT: Training Examples with class labels 𝐷 = {(𝑜1, 𝑦1), (𝑜2, 𝑦2), … (𝑜𝑛, 𝑦𝑛)};

 N: Number of base classifiers

OUTPUT: 𝐻(𝑥) = 𝑎𝑟𝑔 max
𝑦 ∈ 𝑌

∑ 𝕀(ℎ𝑖(𝑥)
𝑁

𝑖=0
= y)

PROCESS:

1. For i = 1,….N:

2. Randomly Select with Replacement 𝑀 instances from 𝐷, and create 𝐷∗
𝑖 bootstrap sample;

 M = size(𝐷); 𝐷∗
𝑖 ≠ 𝐷.

3. ℎ𝑖 = 𝑹𝑪𝑳(𝐷∗
𝑖) // ith classification model generated using random conceptual learner.

4. End

59

Sampling reduces the correlation between the produced models, which allows the

learner to produce a different hypothesis with minimal correlation based on the sampled

data. Each sample size is equal to the size of the original training set; however, it only

contains two-thirds of the training instances of the original training set because of the

repetition chances.

Figure 7. Bagged RCL learning schema

In the classification phase (see Figure 8), the same validation data will be tested

by each classifier and the final decision is based on aggregating various decisions made

60

by individual models using majority voting.

Figure 8. Bagged RCL classification schema

4.5 Bagged RCL vs. other FCA-based Ensemble Learning Methods

 Previously in chapter 3, we highlighted some of the learning methods that are

based on FCA and utilize certain ensemble paradigm, each learning method has its own

characteristics in terms of the conceptual structure they use, the conceptual coverage

method, type of inputs and the classification method. Base learners in BFC[11],

BNC[42], and DNC[10]start the conceptual coverage by selecting certain attribute/s that

satisfy a specific quality measure such as Shannon entropy, in addition these approaches

only constructs and utilize part of the conceptual lattice.

61

RMCS meta-learner[12] performs the conceptual coverage based on distance

measure (Euclidean Distance), in addition, RCMS constructs the complete conceptual

lattice. Our proposed method Bagged RCL (B-RCL), only constructs and uses part of the

lattice and performs the coverage in random fashion as explained previously, in addition

it utilize an embedded static Gini-gain discretizer. Table 10 highlights the main

characteristics of the reviewed FCA-based learners.

Table 10

FCA-Based Learners main characteristics

Learning

Method

Conceptual

Structure

Inputs Coverage Method Classification Discretization

Method

B-RCL Sub-lattice Nominal Random

Coverage

Majority Vote Embedded Gini-

gain discreteizer

RMCS Lattice top

concepts

Binary Euclidean

Distance

Defined by base

classifier.

Depends on the

used set of base

classifiers

BFC Sub-lattice Nominal Shannon Entropy Weighted Vote n/a – external

BNC Sub-lattice Nominal Information Gain Weighted Vote n/a – external

DNC Sub-lattice Nominal Information Gain Majority Vote n/a – external

62

4.6 Chapter Summary

In this chapter, we introduced new method for learning using FCA. The first

algorithm proposed to mine the concepts in a random fashion to improve the diversity

between the generated classifiers. The second method is proposed to reduce the bias of

the classification rules obtained through the process of random conceptual coverage. In

addition, we exploited a scaling method based on Gini Index evaluation criteria, the

reasons behind using this approach stated earlier. In addition, we proposed our argument

regarding the selection of the best ensemble-learning paradigm, which will be verified in

the following chapter. Based on that, in chapter 5, we will experiment the stability of the

proposed learning algorithm to verify our choice. In addition, we will conduct an

empirical comparative study to compare our proposed method against other classification

approaches.

63

CHAPTER 5: EXPERIMENTS

 Next, we compare our proposed method against other traditional ensemble

methods, Bagging, Random Forests and Adaboost. The experiments would demonstrate

the performance of our method and its validity. The comparison illustrates the differences

between our method and traditional algorithms. In section 5.1 we present the used

datasets properties to have an overview of what datasets are used and their suitability for

use in experiments. In section 5.2, we will experiment the stability of the RCL, in section

5.3 we will define the experiments setup of the comparative study, including the testing

environment, and we will explain the reasons behind the used configurations for each

experimented algorithm. In section 5.4 we will show and discuss the results obtained

from the comparative experiments.

5.1 Datasets Characteristics

In order, to test our method we will use (23) datasets as illustrated in Table-11,

these datasets are downloaded from UCI-Repository[50] and from other sources[51],

[52]. The characteristics of the used datasets are vary, where some of them are

containing only categorical attributes, others are continuous and some of them contain

different types of features. Two reasons behind using these datasets: the first reason is the

popularity and the usability of these datasets; in literature they have been commonly used

to validate classifiers accuracy such in[7], [10], [12], [16], [20], [42], [53]. The second

reason is the variance between these datasets in terms of features types (categorical,

continues, or both), number of classes in each dataset and the total number of instances.

In addition, this allows us to experiment our work with many options to see how they

reflect on the performance of our algorithm.

64

Table 11

Datasets Characteristics

Dataset Features Instances Data Types Classes
Iris 4 150 Continuous 3

Breast Cancer 9 683 Continuous 2

Sonar 60 208 Continuous 2

Glass 9 214 Continuous 6

Vowel 10 990 Hybrid 11

Ionosphere 34 351 Hybrid 2

German credit 24 1000 Hybrid 2

Ecoli 7 336 Continuous 8

Hayes-Roth 4 160 Categorical 3

Car 6 1728 Categorical 4

Zoo 16 101 Categorical 7

Liver 6 345 Hybrid 2

Wine 13 178 Continuous 3

Heart 13 270 Hybrid 2

Balance 4 625 Categorical 3

MPG 11 234 Hybrid 7

Immunotherapy 7 90 Continuous 2

Cryotherapy 6 90 Continuous 3

Waveform 40 5000 Continuous 3

Twonorm 20 7400 Continuous 2

Letters 16 20000 Continuous 26

Sat-image 36 6435 Continuous 6

Ringnorm 20 7400 Continuous 2

Table 11 illustrates the used datasets and their properties, based on the number of

features, the size of each dataset and the data types; whether it is continuous or

categorical or a combination of both.

5.2 The Stability of the RCL

To measure the stability of RCL, we set up an experiment using 5 datasets from

UCI-Repository[50]. The experiment is executed using a single training set (80% of the

data) and 4 testing sets; 3 of them are sampled from the remaining 20% of the data that

was not used in training, the 4th is the same data used for training. We preferred this

scenario rather than cross-validation because we are interested to see whether bootstrap

65

sampling enhance the accuracy in all cases as well as to run the experiment in a

before/after fashion. The first stage is to learn the model in the training data and test the

training error using the same training data for validation giving an apparent error.

Table 12

Training Error vs. Testing Error using RCL (%)

Dataset 𝑇𝑟𝑎𝑖𝑛𝑒𝑟𝑟 𝑇𝑒𝑠𝑡𝑒𝑟𝑟
1 𝑇𝑒𝑠𝑡𝑒𝑟𝑟

2 𝑇𝑒𝑠𝑡𝑒𝑟𝑟
3

Iris 0.0 26.0 6.67 20.0

Hayth-Roth 12.5 31.25 37.5 34.37

Ecoli 0.0 33.8 35.29 35.29

Wine 0.0 13.88 19.44 22.22

IMtherapy 0.0 11.1 5.5 38.8

Then, we run the tests using the three sample testing sets to verify the variance in

prediction errors. The obtained results (see table 12) show that the RCL has a very low

training error in most of the used datasets. However, the error increases dramatically

when the generated model is validated using unseen data. These results suggest that the

RCL is unstable as it tends to over-fit the training data, and this is due to complexity in

the learning procedures. Consequently, we propose bagging as an approximation for this

problem. In the next subsection, we are going to explain how to utilize the parallel

66

paradigm to average the variance produced by RCL.

The experiment is executed using the same training data and the same 3 sampled

test sets from the previous experiment without any changes. The algorithm is setup with

N = 10; generating 10 samples with replacements from the training data and feeding them

to RCL to produce 10 classifiers. In the testing phase, the same testing samples are used

to validate the aggregated model. Table 13 shows the training/testing errors for each

dataset. Empirically, bagging was found to be effective for variance reduction. Therefore,

to verify its efficiency in reducing the variance of RCL we will repeat the previous

experiment, using B-RCL (see algorithm-4).

Table 13

Effect of Bagging-RCL on Training/Testing Errors (%)

Dataset 𝑇𝑟𝑎𝑖𝑛𝑒𝑟𝑟 𝑇𝑒𝑠𝑡𝑒𝑟𝑟
1 𝑇𝑒𝑠𝑡𝑒𝑟𝑟

2 𝑇𝑒𝑠𝑡𝑒𝑟𝑟
3

Iris 1.25 6.67 3.33 6.67

Hayth-Roth 9.45 12.5 18.75 21.87

Ecoli 0.34 17.64 20.58 20.58

Wine 1.06 5.5 11.1 11.1

IMtherapy 0.69 11.1 5.5 11.1

67

Figure 9. The stability of RCL.

Results from the bagging experiments show that the testing errors are averaged in

most of the testing samples (see figure 9), while few testing errors remain the same, as

with IM therapy 𝑻𝒆𝒔𝒕𝒆𝒓𝒓
𝟏 and 𝑻𝒆𝒔𝒕𝒆𝒓𝒓

𝟐. However, we can notice a slight increase in the

training error, and this is due to the absence of some representative examples from the

68

training data because of the sampling. In general, these results verify the instability of the

base learner; therefore, it will perform better with the parallel ensemble-learning

paradigm. Moreover, it is important to state that the randomness in conceptual covering

also contributes to producing less correlated classifiers.

5.3 Comparative experiments setup

The experiments setup is unified among all the ensembles; we use 10-folds cross

validation for each dataset, in addition each experiment was repeated 10-times and the

performance will be averaged from the 10 executions. We experiment our algorithm

against scikit-learn[54] implementations of Bagging Predictors, Random Forests,

Gradient Boosting and AdaBoost. To experiment Bagged-RCL ability to learn from small

proportion of the data, we setup the experiment on the large datasets to use 1 out of 10

folds to train the learner, and the 9 folds to be used for testing only. These datasets are:

Sat-image, Letters, Ringnorm, Twonorm and Waveform.

For Bagged-RCL (B-RCL) we adjust the ensemble parameters to produce 40

classifiers and there are two reasons to select this number. The first reason comes from

verifying the effect of the number of classifiers on the average accuracy (see figure 10).

This experiment is conducted using train/test split approach and the reason is to hold the

exact train and test data without changes while adjusting the number of classifiers

parameter incrementally. For each parameter, repeat the training and testing 10 times to

reduce the effect of randomness on the results. The second reason is to reduce the

learning time by not going very far to a large number while there are no significant

changes on the accuracy. Figure 10 shows the experiment results on 4 datasets,

representing the variation on accuracy with respect to the number of classifiers. We can

69

see that the accuracy level stabilizes at 20 classifiers or earlier, which indicates that 40

classifiers is suitable to run the comparative experiment.

 In addition, we configure the Gini-Discretizer to its default configuration; where

it will perform recursively until it satisfies the stopping condition; the maximum number

of classes in the last interval should equal to one. In addition, the feature selection

method is based on sampling with replacement each instance (row); where the sample

size varies from instance to another, starting from one and limited to the number of

features in each instance. On the other hand, we are interested in unifying the experiment

against the other approaches, therefore all other ensemble methods are trained using the

same parameter (40 classifiers). With different tuning possibilities, we will have a very

large number of possible combinations for all datasets, and each possible combination

might generate different accuracy with respect to others.

Bagging and Random forests are based on CART approach, in addition, each of

the trees are grown to limit, without pruning to ensure the minimum bias the can be

produced by each tree as well as to have a fair comparison against our approach. We used

the default features selection method for Random Forests; where each node split is based

on sampled number of features given by the square root of the possible number of

features to split on. Furthermore, bagging configuration only varies from Random Forests

in term of feature selection; bagging algorithm uses the whole features to define the best

split point. Gradient Boosting and Multi-Class AdaBoost(SAMME) parameters are set to

default with learning rates equal to 0.1 and 1.0 respectively; constructing and testing 40

trees for each of them.

All experiments executed in DELL and Macintosh Notebooks, with Core-i7, 8

70

GB RAM,and Core-i5, 4 GB RAM respectively. We used Anaconda Navigator Python

3.6 to implement Bagged-RCL and for testing B-RCL against others.

Number of classifiers Number of classifiers

Number of classifiers Number of classifiers

Figure 10. Effect of classifiers number on Bagged-RCL

71

5.4 Results

In Table 14, we show the experiments results based on the configurations stated in

the previous section. For each ensemble method, we report the average accuracy of the

repeated 10 * 10-folds cross-validation. The reported accuracy indicates the number of

correctly classified records over the total number of validation records. Generally, we can

see that the obtained results are varies between different classification models; where

some models performs better in certain dataset(s) and others perform poorly in some

datasets. Therefore, to decide in which datasets B-RCL outperforms other models, not

just an artifact of randomness is by decomposing the average score into the score of the

10 executions, and then we draw line diagrams to observe the variance over the results

during the execution. We can see that B-RCL achieves higher results in Iris,

Breastcancer, Glass, Hayes-Roth, Heart and MPG; consequently, we perform comparison

between B-RCL and the nearest competitor based on the behaviors over multiple

executions of the algorithms in these datasets to determine the significance of the

obtained results. As shown in figure 11, we can observe that B-RCL outperforms

Random Forests in 9 out of 10 iterations in Breast Cancer dataset, as well as for 7 runs

out of 10 against Bagging Predictors using Hayes-Roth data set. In addition, it

outperforms Gradient Boosting in 9 iterations on MPG dataset. For Iris, Glass, Heart we

can observe that there is overlapping over the iterations; this means that the results are

very close and we cannot judge the performance for these datasets over finite iterations.

Further, we can see that AdaBoost have the least performance among others where it only

outperforms other methods in one scenario shared with Bagging Predictors, while

Random Forests preserves the highest performance in 4 out of 5 datasets.

72

Table 14

Experiments Results (Accuracy %)

Dataset SAMME Bagging Gradient

Boosting
Random Forests B-RCL

Iris 94.6 94.8 94.7 94.7 95.1

Breast Cancer 93.6* 95.5* 95.5* 96.4 96.9

Sonar 70.6* 78.7 82.1* 81.5* 78.3

Glass 65.9* 75.1 74.1* 76.6 77.3

Vowel 78.1* 91.0 84.7* 95.2* 90.4

Ionosphere 88.8* 91.5 92.3 93.1 92.5

German credit 69.1* 74.4* 75.1* 74.9* 72.0

Ecoli 79.3* 84.1 84.9 86.4* 84.4

Hayes-Roth 81.8* 82.4 80.1* 81.6* 84.3

Car 98.1* 98.1* 92.6* 97.7* 94.9

Zoo 95.2 95.7 95.3 95.3 95.2

Liver 62.6* 70.2 73.0* 71.9* 68.7

Wine 91.0* 96.6 93.8* 98.0* 96.1

Heart 73.2* 80.7* 81.5 82.7 83.0

Balance 77.5* 80.1* 87.0* 82.6 82.4

MPG 90.6* 93.6* 94.0* 89.8* 95.7

Waveform 70.5* 80.7* 82.3* 82.7 82.6

Twonorm 80.5* 94.5* 94.3* 95.6* 96.0

Letters 70.7 82.7* 79.2* 84.7* 70.7

Sat-image 79.9* 86.4 86.0* 87.5* 86.4

Ringnorm 83.0* 92.5* 93.3* 93.9* 92.2

Immunotherapy 80.9 84.7 84.6 84.6 84.1

Cryotherapy 87.2* 90.6 89.3 92.5 91.2

* B-RCL is significantly worse, * B-RCL is significantly better, level of significance 0.05

For the largest datasets (Sat-image, Letters, Ringnorm, Twonorm and Waveform),

we used only 10% (1-fold) of the data to train each classifiers, while using the remaining

90% (9-folds) of the data in testing. From the obtained results, we can see that B-RCL is

able to learn successfully from small portions of data and obtain good results. In order to

analyze the obtained result and we performed two-tailed unpaired t test[55]. The reason

behind using this method is to make sure that the discrepancies in accuracies are not from

the same distribution and there are significant differences between them; therefore, this

test is used to reject the null hypotheses of equal means. In this test we used the raw

results from the experiments, 100 accuracy samples from each dataset as a result of 10 ×

73

10 folds. In table 14, we indicate the significant differences with character (*), and the

mean (cross-validation average) with bold font. Finally, we summarized the results from

significance test in table 15. Generally, we can assume that our results fall in the same

ranges compared to the other ensemble methods with these configurations.

Figure 11. Performance of B-RCL against the nearst competitor.

74

Table 15

Significance test results

 RCL is Better RCL is Worse No significant

difference

SAMME 18 1 4

Bagging Predictors 6 4 13

Gradient Boosting 10 6 7

Random Forests 3 10 10

5.5 Chapter Summary

In this chapter, we verified the usability of our new method and how it performs

compared to others. We mainly conducted 3 experiments, the first experiment to test the

stability of our proposed method in order to identify the most suitable ensemble method

to be used alongside. The second experiment was conducted mainly to tune the ensemble

hyper parameter, and to validate our selection to a certain number of classifiers in

ensemble. The comparative study in section 5.4 confirms that we satisfied our main

objective, by showing results that are within the range as other methods and in many

cases, it outperforms other methods. Additional verification is performed through

unpaired t test, and the reason is to stand on the significance of the obtained results.

Moreover, the experiments performed on the largest datasets reveals the method ability to

learn from small proportion of the data.

75

CONCLUSION AND FUTURE WORK

 The main objective of this study was to design, implement and evaluate

classification system based on randomized conceptual coverage, with exceptions to

produce a model that able to predict with acceptable and comparable performance.

Therefore, we started from the state of the art of machine learning by focusing on the

ensemble learning approaches. Through this study, we discussed various ensemble-

learning methods, identifying the objectives and characteristics of each method, and to

what extent they contribute to the learning problem. Then, we studied several

implementations of ensemble learning using Formal Concept Analysis. Consequently, we

designed and implemented our method while taking into account the notion of

randomness in machine learning, and then we introduced it to ensemble learning by

verifying which ensemble paradigm is suitable with our approach. From the obtained

results, we conclude that: our method benefits from random conceptual coverage and

randomized parallel ensemble learning, in addition achieved acceptable and comparable

performance, and outperforms other methods in certain scenarios.

 Future work will involve scaling the algorithm implementation to run in parallel,

which will allow additional experiments to be carried on in short period of time, with

significantly larger datasets. Additional enhancements might be introduced to the

learning algorithm, such as embedding a specialized data reduction method in order to

reduce the running time.

76

REFERENCES

[1] T. Vyas, P. Prajapati, and S. Gadhwal, “A survey and evaluation of supervised

machine learning techniques for spam e-mail filtering,” Proc. 2015 IEEE Int.

Conf. Electr. Comput. Commun. Technol. ICECCT 2015, 2015.

[2] E. Rezk et al., “Conceptual data sampling for breast cancer histology image

classification,” Comput. Biol. Med., vol. 89, no. C, pp. 59–67, Oct. 2017.

[3] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis,

“Machine learning applications in cancer prognosis and prediction,” Comput.

Struct. Biotechnol. J., vol. 13, pp. 8–17, 2015.

[4] J. Gama, “A survey on learning from data streams: current and future trends,”

Prog. Artif. Intell., vol. 1, no. 1, pp. 45–55, 2012.

[5] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and

prospects,” Science (80-.)., vol. 349, no. 6245, pp. 255–260, 2015.

[6] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no. 1–2, pp. 1–

39, 2010.

[7] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.

[8] R. Sharma, A. V. Nori, and A. Aiken, “Bias-variance tradeoffs in program

analysis,” Popl, no. May, pp. 127–137, 2014.

[9] O. Prokasheva, A. Onishchenko, and S. Gurov, “Classification Methods Based on

Formal Concept Analysis,” FDAIR Form. Concept Anal. Meets Inf. Retr., pp. 95–

104, 2013.

[10] N. Meddouri, H. Khoufi, and M. Maddouri, “Parallel learning and classification

77

for rules based on formal concepts,” Procedia Comput. Sci., vol. 35, no. C, pp.

358–367, 2014.

[11] N. Meddouri and M. Maddouri, “Boosting Formal Concepts to Discover

Classification Rules,” in Next-Generation Applied Intelligence, 2009, pp. 501–510.

[12] Y. Kashnitsky and D. I. Ignatov, “Can FCA-based Recommender System Suggest

a Proper Classi er ? 2 Multiple Classi er Systems,” FCA do Artif. Intell. 2014), p.

17, 2014.

[13] M. P. Sesmero, A. I. Ledezma, and A. Sanchis, “Generating ensembles of

heterogeneous classifiers using Stacked Generalization,” Wiley Interdiscip. Rev.

Data Min. Knowl. Discov., vol. 5, no. 1, pp. 21–34, 2015.

[14] Louisa Lam, “Ensemble Methods in Machine Learning,” in Classifier

combinations: implementations and theoretical issues, 2000, pp. 77–86.

[15] R. E. Schapire, “The Strength of Weak Learnability (Extended Abstract),” Mach.

Learn., vol. 227, no. October, pp. 28–33, 1989.

[16] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,”

Proc. Int. Conf. Mach. Learn., pp. 148–156, 1996.

[17] A. Mayr, H. Binder, A. Mayr, H. Binder, and O. Gefeller, “The Evolution of

Boosting Algorithms From Machine Learning to Statistical Modelling The

Evolution of Boosting Algorithms From Machine Learning to Statistical

Modelling ∗,” no. March, pp. 1–32, 2014.

[18] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Resampling or

reweighting: A comparison of boosting implementations,” Proc. - Int. Conf. Tools

78

with Artif. Intell. ICTAI, vol. 1, pp. 445–451, 2008.

[19] P. Bühlmann and T. Hothorn, “Boosting Algorithms: Regularization, Prediction

and Model Fitting,” Stat. Sci., vol. 22, no. 4, pp. 477–505, 2007.

[20] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class AdaBoost,” Stat. Interface,

vol. 2, no. 3, pp. 349–360, 2009.

[21] J. H. Friedman, “1999 Reitz Lecture,” Ann. Stat., vol. 29, no. 5, pp. 1189–1232,

2001.

[22] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140,

1996.

[23] K. M. Ting and I. H. Witten, “Stacking bagged and dagged models,” Proc. of

ICML’97, no. November 1997, pp. 367–375, 1997.

[24] E. Bauer, R. Kohavi, P. Chan, S. Stolfo, and D. Wolpert, “An Empirical

Comparison of Voting Classification Algorithms: Bagging, Boosting, and

Variants,” Mach. Learn., vol. 36, no. August, pp. 105–139, 1999.

[25] P. Derbeko, R. El-yaniv, and R. Meir, “Variance Optimized Bagging 2 Markowitz

Mean-Variance Portfolio Optimization,” Lect. Notes Comput. Sci., vol. 2430, pp.

60–72, 2002.

[26] Tin Kam Ho, “Random decision forests,” Proc. 3rd Int. Conf. Doc. Anal.

Recognit., vol. 1, pp. 278–282, 1995.

[27] J. J. Rodrguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest: A New

classifier ensemble method,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no.

10, pp. 1619–1630, 2006.

[28] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2, pp. 241–

79

259, 1992.

[29] E. Menahem, L. Rokach, and Y. Elovici, “Troika - An improved stacking schema

for classification tasks,” Inf. Sci. (Ny)., vol. 179, no. 24, pp. 4097–4122, 2009.

[30] D. Fan, S. Stolfo, and P. Chan, “Using conflicts among multiple base classifiers to

measure the performance of stacking,” Proc. ICML-99 Work. Recent Adv. Meta-

Learning Futur. Work, vol. 1, pp. 10–17, 1999.

[31] L. Todorovski and S. Dzeroski, “Combining Multiple Models with Meta Decision

Trees,” Princ. Data Min. Knowl. Discov., pp. 69–84, 2000.

[32] A. K. Seewald, “How to Make Stacking Better and Faster While Also Taking Care

of an Unknown Weakness,” Icml, pp. 554–561, 2002.

[33] Tin Kam Ho, “Random decision forests,” Proc. 3rd Int. Conf. Doc. Anal.

Recognit., vol. 1, pp. 278–282, 1995.

[34] B. G. Rudolf Wille, No Title. Springer Science & Business Media, 1999.

[35] W. Kahl, M. Winter, and J. N. Oliveira, “Relational and Algebraic Methods in

Computer Science: 15th international conference, RAMiCS 2015 Braga, Portugal,

September 28 - October 1, 2015 proceedings,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9348, pp. 312–

325, 2015.

[36] M. Trabelsi, N. Meddouri, and M. Maddouri, “A New Feature Selection Method

for Nominal Classifier based on Formal Concept Analysis,” Procedia Comput.

Sci., vol. 112, pp. 186–194, 2017.

[37] E. M. Nguifo and P. Njiwoua, “Using Lattice-Based Framework as a Tool for

Feature Extraction,” in Feature Extraction, Construction and Selection: A Data

80

Mining Perspective, H. Liu and H. Motoda, Eds. Boston, MA: Springer US, 1998,

pp. 205–218.

[38] J. Poelmans, S. O. Kuznetsov, D. I. Ignatov, and G. Dedene, “Formal concept

analysis in knowledge processing: A survey on models and techniques,” Expert

Syst. Appl., vol. 40, no. 16, pp. 6601–6623, 2013.

[39] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the

Theory of NP-Completeness. New York, NY, USA: W. H. Freeman \& Co., 1990.

[40] A. Jaoua, M. Salah, S. Ben Yahia, and J. M. AL-Ja’am, “Using Fringes for

Minimal Conceptual Decomposition of Binary Contexts,” New Math. Nat.

Comput., vol. 8, no. 3, pp. 385–394, 2012.

[41] F. Ferjani, S. Elloumi, A. Jaoua, S. Ben Yahia, S. Ismail, and S. Ravan, “Formal

context coverage based on isolated labels: An efficient solution for text feature

extraction,” Inf. Sci. (Ny)., vol. 188, pp. 198–214, 2012.

[42] N. Meddouri and M. Maddouri, “Adaptive learning of nominal concepts for

supervised classification,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 6276 LNAI, no. PART 1, pp. 121–

130, 2010.

[43] A. Mouakher and S. Ben Yahia, “Anthropocentric visualization of optimal cover

of association rules,” CEUR Workshop Proc., vol. 672, pp. 211–222, 2010.

[44] S. O. Kuznetsov, “Fitting Pattern Structures to Knowledge Discovery in Big

Data,” pp. 254–266, 2013.

[45] M. Trabelsi, N. Meddouri, and M. Maddouri, “New Taxonomy of Classification

Methods Based on Formal Concepts Analysis.,” Fca4Ai@Ecai, vol. 1703, no.

81

August, pp. 113–120, 2016.

[46] M. Maddouri, S. Elloumi, and a Jaoua, “An incremental learning system for

imprecise and uncertain knowledge discovery,” Inf. Sci. (Ny)., vol. 109, no. 1–4,

pp. 149–164, 1998.

[47] M. Maddouri and A. Jaoua, “Incremental rule production: Towards a uniform

approach for knowledge organisation,” in Proceedings of the 9th International

Conference on Industrial and Engineering Applications of Artificial Intelligence

and Expert Systems, 1996, pp. 295–304.

[48] S. García, J. Luengo, J. A. Sáez, V. López, and F. Herrera, “A survey of

discretization techniques: Taxonomy and empirical analysis in supervised

learning,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 4, pp. 734–750, 2013.

[49] L. E. Raileanu and K. Stoffel, “Theoretical Comparison between the Gini Index

and Information Gain,” Ann. Math. Artif. Intell., vol. 41, no. 1, pp. 77–93, 2004.

[50] D. Dua and E. Karra Taniskidou, “UCI Machine Learning Repository,” 2017.

[Online]. Available: http://archive.ics.uci.edu/ml.

[51] F. Khozeimeh et al., “Intralesional immunotherapy compared to cryotherapy in the

treatment of warts,” Int. J. Dermatol., vol. 56, no. 4, pp. 474–478, Apr. 2017.

[52] F. Khozeimeh et al., “An expert system for selecting wart treatment method,”

Comput. Biol. Med., vol. 81, pp. 167–175, 2017.

[53] T. T. Nguyen, M. P. Nguyen, X. C. Pham, and A. W. C. Liew, “Heterogeneous

classifier ensemble with fuzzy rule-based meta learner,” Inf. Sci. (Ny)., vol. 422,

pp. 144–160, 2018.

[54] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn.

82

Res., vol. 12, pp. 2825–2830, 2012.

[55] Ross A. and Willson V.L, “Independent Samples T-Test,” in Basic and Advanced

Statistical Tests, SensePublishers, Rotterdam, 2017, pp. 13–16.

