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ABSTRACT 

ALI, MOHAMED, A., Masters: June: 2018, Masters of Science in Computing 

June : 2018, Masters of Science in Computing 

Title: Bagged Randomized Conceptual Machine Learning Method 

Supervisors of Thesis: Ali, M, Jaoua and Somaya, A, Al-Maadeed. 

 

Formal concept analysis (FCA) is a scientific approach aiming to investigate, 

analyze and represent the conceptual knowledge deduced from the data in conceptual 

structures (lattice). Recently many researchers are counting on the potentials of FCA to 

resolve or contribute addressing machine learning problems. However, some of these 

heuristics are still far from achieving this goal. In another context, ensemble-learning 

methods are deemed effective in addressing the classification problem, in addition, 

introducing randomness to ensemble learning found effective in certain scenarios. We 

exploit the potentials of FCA and the notion of randomness in ensemble learning, and 

propose a new machine learning method based on random conceptual decomposition. We 

also propose a novel approach for rule optimization. We develop an effective learning 

algorithm that is capable of handling some of learning problem aspects, with results that 

are comparable to other ensemble learning algorithms. 
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𝐻(. ) Set of Classifiers (hypotheses) 
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CHAPTER 1: INTRODUCTION 

This thesis studies a new conceptual learning paradigm—an innovative machine 

learning approach for handling the learning problem based on Formal Concept Analysis, 

random conceptual coverage, and ensemble learning. In this chapter, we introduce 

supervised learning by taking a glance at its importance and applications, and by 

introducing Formal Concept Analysis.  Through these introductions, we will start to 

understand our motivations behind using this approach. In addition, we will elaborate on 

the main problem in machine learning and define some of the popular learning problem 

approximations. Finally, we will examine the research questions and discuss our main 

objectives.  

1.1 Supervised Machine Learning 

Supervised learning is an active research area as its importance is reflected in 

several fields. As is well known, it plays an important role in many computing practices 

such as spam filtering[1], text, speech recognition, and image processing[2], as well as 

many applications that have a direct impact on people’s lives, such as crime data analysis, 

medical research[3]  and much more. Supervised learning is usually a discrete process; it 

may process continuous data such as streaming data learning[4]. Machine learning 

algorithms can be defined as computational structures that learn from given data and 

apply the knowledge deduced from the data to decision-making[5]. Supervised learning 

algorithms learn from given training examples that fall in specific categories. Generally, 

supervised learning is oriented toward discovering the hidden patterns that construct 

these categories or classes, in order to use these patterns to classify future data. All the 

existing learning algorithms are proposed as an approximation to one problem with 
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different aspects, and this problem is called the learning problem [5]. However, have 

these algorithms succeeded? The answer is not that simple. It is not easy to judge the 

performance of a classification model, and it is not possible to point to a certain method 

that solves the learning problem completely. Some tradeoffs need to be done in order to 

achieve an acceptable resolution. In order to create a successful learning algorithm, there 

are many aspects to consider, such as the learning techniques and tools, classification 

method, the proper ways to handle the data, and tradeoffs. In the present, there are many 

supervised learning algorithms; some are successfully implemented and used for different 

applications. This is due to their abilities to handle classification tasks properly. In fact, 

most of the existing learning algorithms are built on top of statistical approaches, such as 

decision and naïve Bayesian; some others may use different tools. 

In our scenario, we are going to build our learning system by utilizing a 

mathematical approach known as Formal Concept Analysis (FCA). FCA is based on set 

theory and discrete mathematics as well as exploitation of some existing statistical 

methods.  We will use this approach to achieve our goal, which will be explained later in 

more details. In the beginning, we are going to discuss the learning problem. Then, we 

are going to show our motivations behind adopting Formal Concept Analysis for this 

task, and explore why we think it is suitable for this mission. 

1.2 Problem Description  

In general, any classification model is considered acceptable if it satisfies the 

user’s requirements. These requirements may vary from one user to another, while each 

user has his or her own measures to determine the quality of the produced classification 

results. However, it is common to evaluate a classification model based on the 
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performance of that model. Typically, it is necessary for a classification model to achieve 

a level of generalization, so later; it could properly perform the classification process of 

the unseen data. A machine-learning model is the process of generalizing the information 

deduced from the training examples and intersecting that information with data in the 

unseen records. A general model is more likely to perform the classification task 

accurately, with a minimal prediction error rate[6], [7]. Since the quality of a model relies 

on how general it is, we might say a good classifier is a model that has a low 

generalization error rate, meaning most of the predicted classes are the correct classes of 

the given records. The calculation of the generalization error relies on how it will perform 

with the future data; however, it is not possible because the process is discrete. Many 

approximations have been used to predict the model’s abilities to perform in the future, 

more specifically to validate the learning potentials and to verify the adequacy of the 

training data. In the next subsections, we will focus on the formulation of the learning 

problem; briefly discuss various approximations for addressing the learning problem, and 

tradeoffs to make. 

1.2.1 Learning Problem 

As mentioned in the previous section, the learning problem[5] is represented as 

the learner’s ability to produce a classification model that is able to predict the future data 

correctly (i.e. a model with a low generalization error). The process of learning is 

formulated as follows: for a given training set 𝑆 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, the 

instances 𝑥𝑖 drawn independently and identically distributed from 𝐷, where 𝐷 is the 

distribution over instance space 𝑋. We have 𝑓(𝑥𝑖) = 𝑦𝑖, where 𝑓 a target function that 
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produces the correct class of instance  𝑥𝑖. The aim is to form a hypothesis ℎ that 

minimizes the generalization error, given by:  

𝑒𝑟𝑟(ℎ) =  𝔼𝑥~𝐷[𝕀(ℎ(𝑥) ≠ 𝑓(𝑥))] (1.1) 

The notation 𝔼𝑥~𝐷 is the Mathematical Expectation (summation, or integration) of 

the outputs of 𝕀(. ), the later is an indicator function; returns 1 if (.) is true, and 0 when (.) 

is false. However, the generalization error is composed of three kinds of errors: (i) error 

because of bias, (ii) error because of variance, (iii) irreducible error or noise. Bias error 

occurs because of the learning algorithm’s inability to build a strong hypothesis that can 

be used to classify the future data; such an error occurs because of weaknesses in the 

learning algorithm itself (see figure 1). In contrast, an error caused by variance reflects 

the ability of the learning algorithm to learn efficiently from the existing data; however, 

the produced model may fail at estimating the classes of future data. This is usually 

caused by the lack of representative examples in the complex learning algorithm. The 

third error category is caused by noise, which is probably out of hand and irreducible. 

However, to overcome the error, we should sacrifice some bias and vice versa. This 

tradeoff will be discussed in the next subsection. 

1.2.2 Bias-Variance Tradeoff 

To understand the Bias-Variance tradeoff [8], let us assume that we have training 

data with overlapped data points, and we consider that we have only two classes (O, X) 

that represent the whole feature space. Fitting a linear model on this data may result in 

poor performance, due to the overlap between the data points, where some of data points 

that belong to class O share some features with data points that belong to the other class, 
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X. The model will include many data points that belong to the other class. This kind of 

error is caused by a biased hypothesis that is not flexible enough to separate between the 

data points and results in poor performance or under-fitting.    

 

 

 
 

Figure 1. Different versions of models fitting 

 

 

On the other hand, if we assumed that we were able to find a flexible hypothesis 

that fit tightly on the training data, we may face another problem when it comes to 

classifying unseen records with a different distribution over space, because the model is 

tightly fitted on the training examples and unable to generalize. Figure 1 shows the 

differences between model over-fitting and under-fitting. As we can see, the decision 

boundary is precise in an over-fitted module. It only describes the properties of the 

training examples. It will probably fail to predict unseen records with different 

distributions. However, using a linear model may result in high bias that leads to a high 
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error rate. In order to design a learning algorithm, we should tradeoff some bias for the 

sake of variance (see figure 2). 

 

 

 
 

Figure 2. Bias-variance tradeoff 

 

 

The goal is to achieve a level in which the model is able to keep both the variance 

and bias as low as possible. Many techniques have been created to handle some aspects 

of the learning problem; we are going to introduce some of them in the next section. 
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1.2.3 Problem Approximation Techniques 

In literature, we can find many approaches that minimize the effects of the 

learning problem, concerning predicting performance. Some techniques are designed to 

average the variance, such as data partitioning methods, sampling, random subspace, and 

pruning[6]. Others work to produce unbiased hypotheses, such as boosting. Variance 

reduction techniques tend to hide some of the data from the learner, to avoid over-fitting 

or revising the produced hypotheses, such as rules/decision tree pruning. Other methods 

aim to average the variance while keeping the bias as low as possible, not by hiding the 

data, but by building multiple models on top of different subsets sampled from the data. 

In the presence of such a large number of approximations, it becomes difficult to decide 

what kind of practice is more suitable to adapt. So far, the empirical results favor the 

ensemble learning approaches. Before discussing ensemble learning, we will cover our 

perception of how to utilize Formal Concept Analysis in supervised learning as well as 

the main research questions deduced from the problem, and our motivations for using 

FCA. 

1.3 Research Questions and Motivations 

Based on the stated problem, the main question of the thesis is: how is it possible 

to create an effective learning procedure using a randomized rule extraction method 

based on Formal Concept Analysis? To answer this question, we need to answer two sub-

questions: 

1. How we can utilize FCA to minimize the learning bias? 

2. Is it possible to produce models with minimal variance relying on FCA alone, 

and if not, what is the best practice to use along with FCA to achieve that goal?   
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In this thesis, we aim to implement a FCA-based learning method. Therefore, we 

will focus on the best practices and the strategies in the literature that we can be exploited 

to achieve our goals. Generally, FCA is used in many computing-related fields such as 

feature extraction, categorization, data reduction, human language processing, and 

knowledge discovery. In addition, FCA is used in different machine learning practices, 

including ensemble learning, with promising outcomes[2], [9]–[12]. Creating an effective 

FCA-based learning system means that we should develop learning methods with 

acceptable results in terms of classification performance while taking into account the 

other design considerations concerning the learning problem. 

1.4 Purpose of the Study 

The goal of this thesis is to design, implement, and evaluate a FCA-based learning 

system that contributes effectively to the learning problem. To achieve this goal, we will 

utilize the recent advances and the best practices in machine learning and Formal 

Concept Analysis to satisfy the following objectives: 

 Design an FCA-based learning algorithm with minimal possible bias. 

 Adapt a suitable ensemble-learning paradigm to minimize the variance aspect. 

 Utilize random conceptual coverage as a practice for lowering model variance. 

 Implement the design and assess the quality and performance of the model by 

comparing the model with other existing methods, using known benchmark 

databases.  

 The new approach should be effective, with acceptable and comparable 

performance. 
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1.5 Contribution of the Thesis 

In this thesis, we show the effect of using ensemble machine learning alongside 

Formal Concept Analysis in order to contribute in solving the learning problem. The 

principal contributions of this thesis are:  

 A new concepts decomposition method based on random coverage; this method is 

introduced to use within ensemble learning environment to enforce the diversity 

between the classifiers.  

 A novel rule enhancement method to reduce the bias of the conceptual 

classification rules and to improve the overall performance of the system. 

 To contribute to the learning problem of variance we exploit Bagging ensemble 

learning paradigm alongside our proposed conceptual learner in order to achieve 

better performance.  

 

1.6 Summary and Thesis Structure 

In this chapter, we give a glance at supervised learning, its importance, and its 

applications. We introduce FCA and its contributions to the supervised learning area in 

section 1.1, and in in section 1.2 we define the learning problem how affects the 

classification modeling. In that section, we also mention in this chapter various 

approximations to the learning problem, but we focus on ensemble learning, as it serves 

the goal of this thesis. We follow that explanation with the research questions and discuss 

the main questions to be answered in this study in section 1.3 and in section 1.4, we state 

our objectives based on the research questions, and the learning problem that we want to 

tackle.  
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In the next chapter, we discuss different ensemble learning and their main 

properties. In chapter 3 we will introduce Formal Concept Analysis and we will focus on 

its application in machine learning, specifically in ensemble learning. In chapter 4 we 

will propose our method and we will explain how it works. In chapter 5 we will 

experiment our method and show our results, and finally conclude and discuss the future 

work.   
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CHAPTER 2: ENSEMBLE LEARNING 

  
In this chapter, we review ensemble learning as an approximation to the learning 

problem. First, we discuss the reasons behind considering the ensemble method for 

learning. Then, we discuss the common ensemble learning approaches and methods used 

for achieving diversity and the techniques used for aggregation in ensemble learning. 

 

2.1 Why Ensemble Learning? 

In supervised learning, the objective is to build a strong model ℎ that minimizes 

the generalization error 𝑒𝑟𝑟(ℎ), which can be decomposed to variance/bias errors. 

Ensemble learning was introduced to achieve this goal. We can define ensemble learning 

as a set of finite models{ℎ1, ℎ2, … , ℎ𝑡} referred to as base classifiers, produced from a 

homogenous or heterogeneous learning process and aggregated together using a 

combination method to form a strong classifier 𝐻(𝑥).  It is expected to outperform single 

models if it achieves a level of diversity between the base classifiers[13]. 𝐻(𝑥)is a 

diverse ensemble classifier if the base classifiers produce uncorrelated errors. The 

diversity of an ensemble classifier is reflected in the performance of that model. Many 

studies show that it is more likely to reduce the bias of a learning system by combining 

multiple weak learners in a dependent sequential manner; other proposed methods work 

to reduce the variance while maintaining the bias as low as possible by aggregating the 

decisions made by multiple independent models[6]. 

In the next section, we will review the common ensemble methods and their 

characteristics and limitations. 
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2.2 Ensemble Methods 

Different taxonomies are reported in the literature for classifying ensemble 

learning methods. Some are based on ensemble fusion topologies [14]; others are based 

on their learning functionalities [6]. In this chapter, we will review different ensemble 

learning methods and discuss both their contributions to the learning problem and their 

common implementations. 

2.2.1 Sequential Learning Paradigm 

In sequential ensemble learning, the learning process is performed in a cascading 

manner. The learning algorithm will be executed N times, to learn from the training data. 

Each learning phase depends on the output of the previous phase (see figure 3). Each 

phase consists of a validation process to identify learning errors. Sequential methods 

generate a weighted classification model in each running phase. The output of each 

learning phase is considered weighted training data; the weights are distributed based on 

the validation errors; such that higher weights are assigned to the instances that are 

misclassified. Generally, the aim of such procedures is to boost the performance of a 

weak learning algorithm and reduce the bias by correcting the errors made in the prior 

execution. 

The first sequential ensemble procedure was proposed by Schapire[15].The idea 

behind this method is to boost the learning ability of a weak learner through a cascading 

process to enhance classification decisions of the produced model. The author’s argument 

is built on the notion of “weak and strong learners”. Weak learners produce high training 

errors, and consequently generate biased models with performances that are only slightly 
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better than random guessing, while strong learners produce models with very low bias. 

 

 

 
 

Figure 3. General sequential ensemble learning process 

 

 

Adaptive Boosting, or AdaBoost, is a binary ensemble learning family, introduced 

by Freund and Schapire[16] based on boosting. AdaBoost learner will start by assigning 

equal weights in the training examples, which indicates the importance of each record. 

By increasing the weights on the misclassified examples in the validation process, the 

algorithm raises their priorities, so instances with higher weights get more attention in the 

next iteration. At the base level, it requires a learning algorithm that is able to handle the 
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weights properly, and it is possible to use any learning algorithm that is able to perform 

this task.  The AdaBoost algorithm controls the processes of distribution and weighting. 

The objective of this approach, as in the case of all sequential learning ensembles, is to 

reduce the bias produced by a weak learning algorithm. However, AdaBoost shows an 

increased over-fitting behavior [17] as long as the optimization process is ongoing. Over-

fitting can be controlled by limiting the number of learning iterations over the training 

data. 

Another implementation of adaptive boosting, called boosting with re-sampling 

[16], [18], does not require a base learning algorithm with the ability to handle weighted 

instances. In this case, the weights are handled through a sampling process; the ensemble 

learner draws N samples from the training data with replacements; the probability of 

selecting each instance is proportional to the weight of that instance. Two advantages can 

be drawn from this approach: 

1. The first advantage is that the ensemble learner is no longer limited to base 

learners that can handle the weights.  

2. The second advantage is that the ensemble shows some resistance to over-

fitting through the re-sampling process [19].   

Generally, AdaBoost generates M classification models along with M learning 

iterations performed; each model is weighted based on the errors produced by that model 

in the validation process. In the classification phase, the final decisions are based on 

weighted majority voting criteria that involves all the generated models through the 

learning process. In literature, boosting ensembles, underwent several optimizations over 

time, including resample boosting. Other extensions have been added to the algorithm to 



  
   

15 
 

enhance the predictive abilities, such as the multi-class extension by Hastie[20], which 

allows AdaBoost to act on multi-class problems. Gradient boosting [21] is another 

popular variety of the boosting algorithm; it shares the same concept with AdaBoost, 

however, gradient boosting does not reweight the training instances. Instead, the next 

weak learner will learn from the remaining errors (pseudo-residuals) of the previous 

learners. In addition, the weighting criteria for the generated model in each phase is 

constructed through a gradient descent optimization process.  

Finally, we can conclude that most of the sequential learning ensembles are 

designed using the same concepts and to serve the same goal, which is to reduce the bias 

produced by weak learning algorithms. However, models that are produced using these 

procedures are sensitive to variance, especially when the number of learning iterations is 

very large. In the next section, we are going to review the second ensemble-learning 

paradigm and discuss the main objectives and characteristics of the parallel ensembles.     

2.2.2 Parallel Learning Paradigm 

In the previous section, we discussed the sequential ensemble methods as an 

approximation to highly biased learners. In contrast, the parallel ensemble methods 

objective is to reduce the variance of unstable learning algorithms. We can define the 

model stability referring to the tradeoff discussed earlier in Chapter 1. Unstable learning 

algorithms [21] are the algorithms that use complex hypotheses to learn from the training 

data, and they produce a very low training bias. Unstable learners are very sensitive to 

changes in the data; any small change in the training data will produce different 

classification hypotheses. In contrast, small changes in the training data will not affect 
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stable learners. Unstable classifiers tend to over-fit the training data, and produce 

classification models with high error rates when it comes to classifying unseen or future 

data. 

In the parallel paradigm, the learning algorithm will be executed multiple times in 

an independent fashion. Each iteration is not dependent on the previous one, and in each 

learning phase, the learner will work on different samples of the training data. This 

method aims to achieve some normalcy between variance and bias, as the traditional 

approaches, such as data partitioning or early stopping, will limit the learner’s ability to 

learn from the data, which will increase the bias produced by the learning algorithm. The 

theory behind this approach is to enable the unstable learner to learn at a high capacity 

from multiple samples taken from the training data; these samples represent the scope of 

the information in the training data, but from different perspectives. Generally, parallel 

ensemble learning approaches creates S samples from the training data, and release the 

base unstable learning algorithm to learn from all the data generated independently; an 

independent classification model will result from each iteration (see figure 4). 

The first ensemble approach utilized for the parallel learning paradigm is Bagging 

(Bootstrap aggregating) predictors [22]. The idea behind bagging is to generate multiple 

bootstrap samples from the training data; those samples are generated randomly with 

replacements. Each of the generated samples is used to generate a separate classification 

model. Later, in the classification phase, all the classifiers will vote, and the most voted 

class will be used as a final decision. Bootstrap sampling ensures significant variety 

among the examples selected for each sample, and this leads to the production of 

classification models with lower correlation. 
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Figure 4. General parallel ensemble learning structure 

 

 

Bagging achieves diversity and independence if it is used with unstable base 

learners, such as decision tree; if base classifiers built using stable base learner, the 

generated models will be quite similar, they will produce the same decisions repeatedly, 

and no improvements will be achieved, in terms of reducing the variance of the model. 

Disjoint sample aggregating (Dagging) is similar to bagging except that it uses stratified 

sampling rather than bootstrapping [23]. Other variants of bagging are wagging [24] and 

vogging[25]. Wagging uses random weighting distribution to omit some instances from 

the training data on each run; here, instances with weights equal to zero will be neglected. 

However, wagging requires a base learner with the ability to handle the weights 

distribution. On the other hand, vogging (variance optimized bagging) introduced to 

further reduce the variance of the classification models using Markowitz Mean-Variance 

Portfolio to produce low variance model while retaining the bias at the same level.  
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Decision Forests[26] is another parallel learning approach, which build multiple decision 

trees by dividing the features space into random subsets rather than sampling the data as 

in bagging. 

Random forests is another popular variation of parallel ensemble learning 

introduced by Breiman[7]. A collection of CART decision tree base classifiers will be 

constructed using bootstrap sampling and a high level of variety is enforced between the 

trees by adding another level of randomization on the base learner, by utilizing the notion 

of random subspace [26]. The main difference between traditional bagging and random 

forests is that bagging uses all the features at each node to split while the random forests 

algorithm utilizes random sub features, where it selects m < M random features among 

the best M features to split the decision tree nodes.  The aim of such levels of 

randomization is to reduce the correlations between produced classifiers, which 

empirically reduce the variance of the resulted model. Similar to bagging, random forests 

adapt majority voting for selecting the right class for a specific object. Breiman 

introduced several methods for random features selection. Forest-RI was used for 

splitting by randomly selecting one variable from the best possible options to split. In 

another method, the selection was determined by generating linear combinations of inputs 

and the number of combinations was predefined. The default selection method for 

random forests is to select m < M features from each instance, where the size of m is 

equal to the square root of the total number of features in each instance[7]. Moreover, 

random forests introduced a new error estimation metric known as the out-of-bag error 

estimator, which relies on the training instances that are not selected while constructing a 

certain base classifier. Rotation Forests algorithm[27], proposed to enhance the accuracy 
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and diversity of base classifiers. It carries similar concepts exists in random forests while 

claiming to introduce an enhanced model of randomization using rotation matrix and 

Principal Component Analysis (PCA) for feature extraction.  

Generally, parallel ensembles are designed to exploit the learning abilities of 

unstable learners to aggregate multiple classification models and enhance the diversity 

among them. The classification models produced using parallel ensemble learning 

preserve their predication abilities and show a resistance to variance, especially when the 

number of learning iterations is increased. In the next section, we are going to review the 

third ensemble-learning paradigm, and we will discuss the main objectives and 

characteristics of the stacking ensembles.   

2.2.3 Stacked Generalization Learning Paradigm 

 Stacking ensembles [28] consist of two levels of learners: level-1 learners, and a 

combiner or “meta-learner”. Similar to bagging and boosting, each of the level-1 learners 

is trained using a different set of sampled/same data; then the outputs from the first layer 

are used as inputs for the lower-level meta-learner. Stacking ensembles usually consist of 

“heterogeneous” sets of level-1 learners. Unlike boosting and bagging, it can be 

considered as a hybrid approach; in the upper level, the learners are trained independently 

on parallel; then the meta-learner uses the outputs produced by the validation process to 

learn about the generated models itself. The meta-learner uses the outputs from each 

classification model to learn which model is better than the others for classifying certain 

instances; figure 5 shows the learning phase in stacking models. This is achieved by 

creating a new training set, which contains information about how each one of the 
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produced classifiers performs better in certain instances to utilize the confidences of each 

decision. As in other ensemble techniques, stacking aims to improve the accuracy 

classification, and it achieves a higher level of accuracy than individual classifiers. 

 

 

 
 

Figure 5. Stacked Generalization learning process 

 

 

Variant learning methods that are constructed with the same concepts of stacking 

are reported in various pieces of literature. Because of the generality of stacking, these 

methods may vary from each other based on different factors. Such as the types of upper-

level learners and meta-learners [29], evaluation methods [30], meta-data set construction 

methods, and the types of metadata [31], [32]. Generally, stacking ensembles are prone to 

the biases of the selected learner; therefore, to achieve the best possible performance, 
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different considerations should be taken into account, such as performance of upper-level 

and meta-level learners, the number of upper-level learners, and the metadata generation 

approach [13]. Stacking is more efficient in terms of variance reduction, and this is 

because stacking ideally works with different samples of the training data by using 

multiple heterogeneous learning algorithms. 

2.3 Distribution Methods 

 In this section, we will review the common methods that are used to create 

diversity among the base classifiers in ensemble learning; we will discuss the main 

characteristics of these methods and their use. 

2.3.1 Weights Distribution 

 The weighting approach is commonly used in popular sequential ensembles, such 

as boosting learners, and is rarely used in parallel ensembles. Generally, the weights are 

used to reflect the importance and difficulty of the training instances; this will force the 

learning process to concentrate on highly weighted instances. For example, AdaBoost 

algorithm will set the new weight 𝐷𝑛𝑒𝑤 for training example 𝑥in the training set using the 

following equation: 

𝐷𝑛𝑒𝑤(𝑥) =
𝐷𝑜𝑙𝑑(𝑥)

𝑍
× {

𝑒−𝛼 𝑖𝑓 ℎ(𝑥) = 𝑓(𝑥)

𝑒𝛼    𝑖𝑓 ℎ(𝑥) ≠ 𝑓(𝑥)
 

(2.1) 

where 𝛼 is the weight of the classifier ℎ(𝑥)and indicates the performance of the 

model on the training data (training error), and 𝑓(𝑥) is targets function that yields the 

correct class value, and Z is a normalization factor (for example sum of all weights). 

What can be deduced from this equation (2.1) is that the weight 𝐷 indicates whether the 

training example 𝑥 will be in the spotlight in the next learning phase or not. The 
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exponential function returns a fraction value if 𝑥 is correctly classified, and a value of 1 

or greater if 𝑥 is misclassified. Using these weights of that particular sample can be 

increased or decreased when multiplying it with the previous weight. The resulted 

classification models have some level of diversity due to the different types of training 

instances they deal with. 

2.3.2 Random Subspace 

The random space method [33] indicates that the learner will work on a random 

subset of the features each time it iterates over the training data, to emphasize the 

diversity among the produced models. There are different approaches to sampling the 

features space, such as random sampling, where the learning algorithms use different 

numbers of features each time, while running consistently. Some other approaches 

sample the features space with a restrictive manner, where the number of random features 

used in every execution is static [7]. Unlike sampling, the feature subspace approach 

projects only parts of attribute values used to train certain models.  

2.3.2 Probability Sampling 

 Various sampling techniques are adopted for ensemble learning, including 

bootstrap sampling[7], sampling without replacement [27], and stratified sampling [23], 

where each has its own characteristics. Bootstrap sampling draws random samples from 

the original population with size equal to the original population, with the probability of 

repetition (i.e. each element has a chance to be taken again and added to the current 

sample), where each element has a probability of not being selected equal to: 

(1 −
1

𝑁
)

𝑁

 
(2.2) 
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while in sampling without replacement, each element has a chance to be selected 

only once. Therefore, the sample size n should be maintained as 𝑛<𝑁, where 𝑁 is the size 

of the original population. Otherwise, the sample will be exactly the same as the original 

set. On the other hand, stratified sampling splits the population into disjoint groups 

(strata); in supervised learning, these groups could be the class values. Sampling is done 

with respect to strata size i.e. from each stratum 𝑘 samples will be drawn based on the 

following procedure: 

𝑘 =  𝑆 ×
𝑛

𝑁
 

(2.3) 

where 𝑛 is the number of elements to be sampled randomly, and 𝑆 is the size of 

the stratum; and 𝑁 is the total number of elements in the population. 

Sampling in ensemble learning methods is used to average the variance in 

classification by generating more datasets from the training set, by using random 

sampling with replacement. In some cases, sampling is used to produce multiple training 

sets of the same size as the original dataset, and in other scenarios, the repetition will only 

occur across multiple training sets and not within the same training data. However, 

increasing the number of the training sets will not reduce the bias or increase the model’s 

prediction ability; it will average the variance, by using a combination method, such as 

majority vote of the outcomes from each classification model, leading to a reduction in 

the errors caused by the variance. Consequently, to obtain the best performance, we 

should have a strong learner at the base level. 

  

http://en.wikipedia.org/wiki/Combinations
http://en.wikipedia.org/wiki/Combinations
http://en.wikipedia.org/wiki/Multiset
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2.4 Combination Methods 

The combination methods and functions play an important role in terms of 

classification performance; however, this role depends heavily on the diversity of the 

base classifiers. Combining identical classifiers will not boost the performance of the 

ensemble, but rather produce the same performance as a single one. Therefore, 

combining multiple classifiers, each trained with uncorrelated and reweighted samples of 

the data, will improve the prediction performance. The sequential and parallel ensemble 

methods rely on un trainable combiners (majority vote, weighted majority vote) which 

produce their decisions by averaging the upper layer predictions. This is not the case in 

stacking, where the combiner learns from these predictions. 

2.4.1 Majority Vote 

Majority vote is a popular combination method; specifically in parallel learning, 

as in[7], [22]. Let us assume we have a set of finite models{ℎ1, ℎ2, … , ℎ𝑡}, the output of 

each model is given by ℎ𝑡(𝑥) = y ∈ 𝑌, the possible number of class values.  And 𝕀(. ) is 

an indication function that returns {0,1} if the condition is satisfied or not. 

𝐻(𝑥) = 𝑎𝑟𝑔 max
𝑦 ∈ 𝑌

∑ 𝕀(ℎ𝑖(𝑥)

𝑡

𝑖=1

= y) 

 

(2.4) 

 

The function 𝑎𝑟𝑔 max
𝑦 ∈ 𝑌

 will return the value of y that has the maximum number of 

occurrences because of the classification hypothesis ℎ𝑖(𝑥).  
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2.4.2 Weighted Majority Vote 

In another variation of majority vote, each classification model is assigned a 

weighting factor that generally represents the model accuracy [15], [16], [20]. With the 

same assumption made for the majority vote in (2.4); by introducing 𝑤𝑖as the weighting 

coefficient for the classification model  ℎ𝑖, the weighted majority vote is given by:  

𝐻(𝑥) = 𝑎𝑟𝑔 max
𝑦 ∈ 𝑌

∑ 𝑤𝑖(ℎ𝑖(𝑥)

𝑡

𝑖=1

= y) 

 

(2.5) 

 

2.4.3 Bayesian Probability 

Bayesian Combination is based on Bayesian rule; in ensemble learning, the final 

decision is based on the class value that maximizes the probability function: 

 

𝑃(𝑦, ℎ(𝑥)) (2.6) 

  

𝑃(𝑦, ℎ(𝑥)) is the probability of instance 𝑥 to be in class 𝑦 ∈ 𝑌. The Bayesian rule 

is used to approximate the probability function by: 

𝑃(𝑦, ℎ(𝑥)) =  
𝑃(𝑦, ℎ(𝑥))

∑ 𝑃(𝑦𝑖, ℎ(𝑥))
𝑡

𝑖=1

 
(2.7) 

  

 In ensemble learning, the probability of class value 𝑦 is counted across multiple 

classification models: 

𝐻(𝑥) = 𝑎𝑟𝑔 max
𝑦 ∈ 𝑌

∑ 𝑃(𝑦, ℎ𝑖(𝑥))

𝑡

𝑖=1

 

 

(2.8) 

  

Bayesian combination might be altered based on the implementation requirement 

for a certain ensemble-learning model. Different ensemble learning methods adopt the 
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Bayesian combination method, such as decision forests [33], and rotation forests [27].    

2.4.4 Meta-Combiners 

Meta-Combiners are trainable combination methods, which are widely 

implemented in stacking approaches. The meta-learner selects the best decision based on 

a certain hypothesis deduced from the upper-level classifiers. Table 1 is an example of 

what a meta-learner dataset may look like. 

 

 

Table 1 

 

Example of Meta-combiner dataset 
 

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑛 𝑌 

1 1 1 0 0 

2 1 0 1 1 

3 0 1 1 1 

4 0 0 1 0 

 

 

2.5 Chapter Summary 

In this chapter, we discussed different ensemble learning approaches that 

contribute to the learning problem. We reviewed the reasons behind using ensemble 

learning as an approximation to the learning problem and that ensemble learning is 

superior among the other approaches. We reviewed different ensemble implementations, 
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their characteristics, and how they treat the bias-variance tradeoff. We discussed how 

each learning paradigm is used to achieve some levels of diversity among the base 

classifiers, and their limitations in terms of the types and numbers of base learners that 

can be used. Moreover, we reviewed some of the common combination methods used in 

ensemble learning. Based on the objectives of this thesis, we are going to introduce an 

FCA learning approach to ensemble learning. Therefore, in the following chapter, we will 

review Formal Concept Analysis, and the learning approaches that are based on FCA.   

 Table-2 summarizes different characteristics of the reviewed ensemble learning 

approaches. These characteristics are the focus area, which represents the method’s main 

contribution to the learning problem. The learning paradigm defines how the learning 

process is carried on. The Base learner is the suitable learning algorithm to be used with a 

certain ensemble method. Learning method indicates whether the method involves a 

single base learning algorithm, or a set of different learning algorithms. Moreover, the 

diversity generation method defines the approaches used to achieve diversity between the 

produced classifiers, and finally the combination method used to combine the predictions 

from the classifiers in the ensemble in order to achieve the final decision.  
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Table 2 

 

A comparison of different reviewed ensemble approaches 

 
Ensemble Method Focus 

Area 

Learning Paradigm  Base 

Learner 

Learning 

Method 

Diversity 

Generatio

n Method  

Combination 

Method 

       

Decision Forests Variance Independent/parallel Decision 

Tree 

Homogenous Features 

Subspace 

Bayesian 

Probability 

Bagging Predictors Variance Independent/parallel Any 

Unstable 

Learner 

Homogenous Bootstrap 

Sampling 

Majority 

Vote 

Dagging Variance Independent/parallel Any 

Unstable 

Learner 

Homogenous Stratified 

Sampling 

Majority 

Vote 

Wagging Variance Independent/parallel Weights 

handling 

unstable 

base 

learner 

Homogenous Weights 

Distributio

n 

Majority 

Vote 

Vogging Variance Independent/parallel Any 

Unstable 

Learner 

Homogenous Bootstrap 

Sampling 

Sharpe 

Ratio 

       

Random Forests Variance Independent/parallel Decision 

Tree 

Homogenous Bootstrap 

Sampling 

& Features 

Subspace 

Majority 

Vote 

Rotation Forests Variance Independent/parallel Decision 

Tree 

Homogenous Bootstrap 

Sampling 

& Features 

Subspace 

Weighted 

Majority 

Vote 

Adaboost Bias Dependent/sequential Weights 

handling 

Weak 

base 

learner 

Homogenous Weights 

Distributio

n 

Weighted 

Majority 

Vote 

Resampling 

Adaboost 

Bias Dependent/sequential Weak 

Base 

learner 

Homogenous Weighted 

Samples  

Weighted 

Majority 

Vote 

Gradient Boosting Bias Dependent/sequential Weak 

Base 

learner 

Homogenous Pseudo-

residuals 

Weighted 

Majority 

Vote 

Stacking Variance Hybrid Any Heterogeneou

s 

Sampling Meta-

Combiner 
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CHAPTER 3: FORMAL CONCEPT ANALYSIS IN MACHINE LEARNING 

 

In the previous section, we covered a general overview of supervised learning. In 

this section, we define the Formal Concept Analysis and its applications in machine 

learning, focusing in ensemble methods carried on using FCA. 

3.1 Why FCA? 

Formal Concept Analysis [34]is a scientific approach and a discipline that aims to 

investigate and analyze the data, and represent and manage the knowledge extracted from 

the data in conceptual structures known as lattices. An FCA lattice helps to visualize 

these concepts, enabling better methods to interpret and understand these concepts, and 

also find patterns and regularities. In this manner, FCA has been adopted in many 

computing-related practices, such as features extraction[35]–[37], categorization, data 

reduction, linguistics, knowledge discovery[38], and machine learning. Recently, many 

researchers have counted on the potentials of FCA to resolve or address many 

computational problems, mainly for its efficiency and capability to accommodate and 

address these problems. 

Recently, many FCA research projects were carried out to address various 

machine-learning aspects. Before we move on to them, we formally introduce and define 

Formal Concept Analysis. 
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3.2 Definitions 

In this section, we will formally define Formal Context and Formal Concept, the 

constituent parts of the approach. 

 

Definition 1 (Formal Context) 

Let us say we have 𝑂 = {𝑜1, 𝑜2, … . . 𝑜𝑛},    which is a finite set of objects, we have 

𝐴 = {𝑎1, 𝑎2, … . . 𝑎𝑛} a finite set of attributes, and 𝑅 is a binary relation 

between 𝑂 𝑎𝑛𝑑  𝐴, where𝑅 ⊆ 𝑂 × 𝐴, (𝑂, 𝐴, 𝑅) represents a formal context (see Table-

3). 

Let us have 𝑋 ⊆ 𝑂,𝛾(𝑋) ∶= {𝑎 ∈ 𝐴 |∀𝑜 ∈ 𝑋: (𝑜, 𝑎) ∈ 𝑅}, and also 𝑌 ⊆ 𝐴, λ(𝑌): =

{𝑜 ∈ 𝑂 |∀𝑎 ∈ 𝑌: (𝑜, 𝑎) ∈ 𝑅}. 𝛾(𝑋) is defined as a set of all attributes of objects in  𝑋, 

while λ(𝑌)is the set of all objects sharing all the attributes in 𝑌. Operators 𝛾 and λ define 

the Galois connection between sets 𝑋 and 𝑌. The closure operators are γoλ, and λoγ. 

 

 

Table 3 

 

Formal Context Example 
 

𝑂 − A 𝑎1 𝑎2 𝑎3 𝑎4 

𝑜1 1 1 0 0 

𝑜2 1 0 1 0 

𝑜3 0 1 0 1 

𝑜4 0 0 1 1 
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Definition 2 (Formal Concept) 

A pair (𝑋, 𝑌)is a formal concept of (𝑂, 𝐴, 𝑅) if and only if 𝑋 ⊆ 𝑂, 𝑌 ⊆ 𝐴,

𝛾(𝑋) = 𝑌 𝑎𝑛𝑑 λ(𝑌) = 𝑋. Set X is called the extent (domain) of the formal concept, and 

set Y is the intent of the formal concept (co-domain). All formal concepts 

{(𝑋1, 𝑌𝑦), (𝑋2, 𝑌2), … . , (𝑋𝑛, 𝑌𝑛)} extracted from the formal context(𝑂, 𝐴, 𝑅) can be 

organized in conceptual lattices (see figure 6). The formal concepts of a given context are 

naturally ordered by the sub-concept; the super-concept relation is defined by:(𝑋1, 𝑌1) ≤

(𝑋2, 𝑌2) if and only if (𝑋1 ⊆ 𝑋2) and (𝑌2 ⊆ 𝑌1). 

 

 

 
 

Figure 6. Conceptual Lattice of the formal context in table 3 

 

 

However, representing a large number of concepts is not effective in terms of 
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space complexity; thus, the ideal solution is to represent the whole space using a 

minimum number of concepts. In addition, obtaining optimal concepts is challenging as it 

is considered an NP-Hard problem[39], but on the other hand, many heuristic 

contributions were introduced, providing approximate solutions in order to tackle this 

problem, and many of these heuristics have been deemed useful in data analysis and 

reduction. In the next section, we are going to review some of the heuristics that aim to 

decompose optimal formal concepts from contexts. 

3.3 FCA Conceptual Decomposition Methods 

In FCA, we can use the notion of concepts to obtain rule-based classification 

systems. However, generating concepts from a context is fully dependent on how we 

decompose the context to find the optimal points for conceptual coverage. In addition, the 

method used to obtain the concepts has an impact on the complexity of the system. Many 

heuristics have been introduced to obtain the optimal concepts from a given context. The 

fringes decomposition [40], [41] approach is used to obtain a set of isolated points which 

belong to only one concept in the binary context; the decomposition method is performed 

by applying Riguet’s difunctional relation recursively in the context, and the resulting 

points will be used to construct a set of formal concepts. Another approach used is 

Shannon’s Entropy, to decompose the context and obtain the minimal formal concepts 

that describe a given context [10], [11], [42]. Moreover, some approaches perform the 

coverage based on the knowledge gained from the produced concepts; such approaches 

tend to evaluate the produced concepts using certain quality measures, such as confidence 

and correlation [43]. Furthermore, lazy-coverage [44] is a method that aims to obtain 

only desirable concepts from a context; this approach is usually practical in classification.  
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The quality of the decomposed concepts affects the overall system performance; 

therefore, it is important to obtain the best and minimal concepts that describe the whole 

context. In the next section, we are going to review FCA practices in machine learning. 

We will discuss the common FCA-based learning algorithms and the variation of 

ensemble learning methods that utilize FCA-based learning algorithms.  

3.4 FCA-Based Learning 

There are several FCA-based algorithms for supervised learning, based on 

Trabelsi taxonomy [45] of the existing supervised classification methods. FCA-based 

classification methods can be divided into two categories: exhaustive and combinatory. 

The first category involves the ensemble learning algorithms that are based on FCA. The 

second category contains the learning methods that exploit the ensemble learning 

paradigms. 

 Some of the exhaustive learning methods are construct and use the conceptual 

lattices, such as, GALOIS and Selecting Plausible Formal Concepts(SPFC)[45]. The 

limitations of these approaches are time and resource complexities, because the 

construction of the lattice is an exponential process. Other approaches, like Fuzzy 

Incremental Production rule (FIPR)[46] and Incremental Rule Production (IRP)[47], are 

constructed using only part of the lattice. Several FCA learning methods extract pertinent 

concepts, such as IPR, however, these methods require some quality metrics to evaluate 

or control the concept extraction processes [9]. There are many characteristics for each; 

complete lattice-based classifiers are usually prone to exponential complexity in terms of 

time and resources, but conversely, they are more precise in terms of extracted 

knowledge. Sub lattice-based methods only use part of the conceptual lattice, which can 
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reduce the complexity and operate more efficiently for resource consumption. It also 

reduces the redundancy in the generated concepts, keeping only the most relevant options 

among them. However, using only sub lattices may cause information loss affecting the 

overall accuracy of the algorithm.  

 Combinatory approaches, or FCA learners that utilize ensemble learning, were 

introduced to improve the overall performance of learning. Boosting formal concepts 

(BFC)[11] and Boosting nominal classifier (BNC)[10] are considered sequential 

ensemble classifiers; the base learners in BFC and BNC use the basis of Formal Concept 

Analysis to extract classification rules from the training set. BNC is similar to BFC; the 

only difference is that BNC was built to handle nominal data, mainly to avoid the 

complexity that follows transforming the data to the binary representation. The two 

algorithms cover only parts of the conceptual lattice, which is relevant to the samples 

drawn from the training set.  Both BFC and BNC are based on AdaBoost.M2 ensemble 

learning paradigm. 

 BFC operates by forming classification rules based on the discovered concepts. 

The processes are divided in two phases, the learning phase and the classification phase. 

In the learning phase, the algorithm extracts concepts from the data based on conceptual 

decomposition. In the classification phase, a class is assigned to the unseen objects based 

on the extracted concepts from the data. The learning phase is done in sequential process, 

learning one classifier at a time based on a subset of the training set. The authors in [11] 

claim that boosting a weak classifier allows improvement on overall performance; in 

addition, it improves the error rate, and reduces over-fitting. Moreover, the decisions 

obtained using multiple classifiers are more reliable than the ones produced using a single 
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classifier. Given any training set, the algorithm will assign equal weights to all training 

samples, and then, it will randomly draw samples from the training set and build the first 

classifier using this sample. Moving forward, it will repeat this process T times on the 

data set. In each iteration, the algorithm will modify the weights and construct new 

classifiers based on the new weighting criteria.  

 The classifier in this case is a classification rule extracted from a formal concept. 

In each iteration, the algorithm works on a different subset of the data (based on the 

weights). It will extract formal concepts by selecting the attribute (ex. binary attribute) 

that satisfies specific criteria (ex. minimize Shannon entropy). In a case where multiple 

attributes have the same entropy value, the algorithm will select the one that has more 

support. Next, after selecting the attribute, the algorithm will obtain the formal concept 

by applying Galois closure on the attribute. After that, the classification rule is obtained 

by the intent of the concept, and the class is obtained by the majority vote associated with 

the extent of the concept. Then, the rule is returned to the main algorithm AdaBoost.M2, 

which calculates Pseudo-loss on the classifier, and uses the Pseudo-loss to calculate the 

error and update the weights of the training examples according to the error and a 

normalization factor (ex. to have total weights = 1). In iteration T, the weight of the 

correctly classified examples will decrease, while increasing the weights of those 

misclassified, in order to provide more chances to select the next classifier.  

 BNC was considered an extension for the previous method, BFC. Minor changes 

were introduced to the previous algorithm, while working under AdaBoost.M2 method. 

BNC aims to improve the performance of BFC by calculating the information gain on the 

attribute itself, without resorting to its modality. BFC works only in binary context; it 
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transforms the nominal data into binary data, which leads to high resource consumption 

and poor accuracy. BNC handles the nominal attributes directly without resorting to its 

modalities, using the information gain for selecting the best attribute, and then returning a 

set of classification rules, rather than a single one, as with BFC.  

 Another text[10] proposed a new classification method based on the dagging 

approach and FCA, called Dagging (Disjoint sample aggregating) Nominal Classifier 

(DNC). The method constructs multiple parallel classifiers; in this case, each classifier is 

constructed using the same learning algorithm. In order to perform bagging or dagging in 

a set of base classifiers, you need to prove that these classifiers are unstable.  It has been 

proven that bagging will not improve the performance of stable classifiers, and in most 

cases, it will result in similar classification rules, since the stable classifiers will not be 

affected by changes in the training sets.  

However, the authors prove the instability of the base classifiers by reporting the 

standard deviation of error rates for multiple data sets. They demonstrate this by running 

classifications with cross-validation on them. The proposed base learner (CNC), or 

Classifier Nominal Concept, runs in a similar way to BNC. It receives stratified samples 

from the distributer (Ensemble Paradigm. CNC will select the best attribute based on 

information gain evaluation measure, and then the algorithm will derive the formal 

concept using this attribute. The rule is deduced from the intent, and the class is deduced 

from the extent using majority vote.  Later, a majority vote is conducted to select the 

appropriate class for the unseen data. The authors prefer dagging over the bagging 

method, as they claim it is more efficient. The dagging technique creates stratified 

subsets from the original dataset; each subset is used to create a classifier (classification 
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rule in this case), and it is used mainly to reduce the chances of model over-fitting, and to 

reduce the effects of Noise. Using dagging on unstable base classifiers will ensure proper 

distribution, and it will result in several different classifiers with a low correlation 

between them. DNC algorithm is implemented on an existing method (dagging) to extend 

the notion of parallel ensemble by using FCA, in an attempt to tackle the limitation of a 

single classification. In addition, in such a scenario, validating the stability of the base 

classifier helps determine to which extent this approach is applicable. Moreover, two 

algorithms are introduced: one for concept induction, and the other to implement dagging 

and combine the classifiers deduced using the first one.  

 Furthermore, Kashnitsky and Ignatov[12] proposed Recommender-based Multiple 

Classifier System (RMCS), an FCA-recommender system that recommends the best 

classifier to use for specific objects among a set of different base classifiers. The base 

classifiers in this case could be heterogeneous or homogenous sets of classifiers (i.e. 

produced using different learning algorithms such as SVM, NB, Decision tree, etc.). The 

idea is more relevant to stacking, where level-1 classifiers send their decisions to the 

meta-learner, which learn from these decisions and select which classifier to use for 

specific object classification. The recommender system is based on Formal Concept 

Analysis, where it builds its recommendation criteria based on the notions of upper 

neighbors and lower neighbors of formal concept. 

Given a training set, the recommender initializes by performing a cross validation 

on that training set, where all the classifiers are trained using leave-one-out cross-

validation. Then a classification context (example: Table-1) is created using the results of 
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the classifier, representing which classifier classified object 𝑥𝑖  correctly. After 

constructing the classification context, the algorithm will train the set of classifiers with 

all the training examples, forming another table called a prediction table that contains 

each 𝑥𝑖   from the test set and its label as well as the classifier that selected this label. For 

every object from the testing set, the algorithm finds its k nearest neighbors (using 

Euclidean distance) from the training set according to a specific metric, and then the 

algorithm searches for a concept in the classification context that has a maximal 

intersection with the set neighbors. After selecting the concept from the classification 

table, this concept will have a set of classifiers on its intent (or one). 

 These classifiers are considered suitable for classifying that object. In the case of 

several classifiers in the intent, a majority vote will be used to choose the majority labels 

selected by the recommended classifiers. The upper top concept and its neighbors are 

created by a function that uses the classification context. The concepts are obtained using 

the Close-By-One algorithm after modification. This means the sub-lattice used only the 

uppermost concept and its neighbors; here, these neighbors usually consist of multiple 

objects (instance number) and one attribute (classifier number). The upper concept is 

usually ignored; in most cases, it contains all the objects and empty sets of classifiers. 

 The algorithm performs training two times among n classifiers. The first time, it 

creates a classification table using leave-one-out cross-validation; the second time, it 

creates the prediction table where each object is associated with the classification 

decisions made by each classifier. Regardless of the time it takes to obtain the uppermost 

concepts, this approach is equal to the stacking method in terms of time complexity.  
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3.5 FCA-based Rules-Induction Methods 

 For a classification task, it is possible to obtain the conceptual classification rules 

using any conceptual coverage heuristic, or it can be obtained using the whole conceptual 

lattice; the produced concept can be used later for classification rules. Conceptual 

coverage is obtained using the Galois closure/connection. For example let us assume that 

the optimal points are {𝑎1, 𝑎4} in the context (table 4); calculating Galois closure from 

each point using the closure operators defined in chapter 3: 

Concept 𝑐1 = {λ({𝑎1}), λoγ({𝑎1})} = {{𝑜1, 𝑜2}, {𝑎1, 𝑎2}} 

Concept 𝑐2 = {λ({𝑎4}), λoγ({𝑎4})} = {{𝑜3, 𝑜4, 𝑜5}, {𝑎3, 𝑎4}} 

 

 

Table 4 

 

Formal Context with Class labels 
 

𝑂 − A 𝑎1 𝑎2 𝑎3 𝑎4 𝐶𝑙𝑎𝑠𝑠 

𝑜1 1 1 1 0 1 

𝑜2 1 1 0 0 1 

𝑜3 0 1 1 1 2 

𝑜4 0 0 1 1 2 

𝑜5 0 1 1 1 1 

 

 

The rules can be obtained from a concept by taking majority vote of the class 
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labels assigned to objects sub-set. For the previously obtained concepts; we will have the 

following rules: 

𝐼𝐹𝑎1 𝑎𝑛𝑑 𝑎2𝑇ℎ𝑒𝑛 Class = 1 

𝐼𝐹𝑎3 𝑎𝑛𝑑 𝑎4𝑇ℎ𝑒𝑛 Class = 2 

What can be deduced from the second rule is that the concept is not always 

precise; where the attributes(𝑎3, 𝑎4) are not always associated with class label 2, which 

may result in imprecise classification rules. Accordingly, we can introduce some 

weighting criteria to produce concepts such as confidence or support. Another approach 

is to perform oriented conceptual coverage by starting attributes/class pairs, or to start 

from the best point using certain evaluation methods. 

3.6 Chapter Summary 

In this chapter, we introduced Formal Concept Analysis, its applications and 

reasons behind adapting this approach in many computing related applications. We 

defined the main principles that constitute this approach including formal context, formal 

concept, conceptual lattice, closure operators and Galois connection. In section 3.3 we 

reviewed the conceptual decomposition heuristics and its importance to avoid the 

exponential complexity of constructing the conceptual lattice.  In addition, we discussed 

different FCA learning methods whether they are exhaustive (single classifier) or under a 

certain ensemble learning paradigm and the conceptual decomposition approaches 

adopted by these methods. Finally, we defined the FCA rule induction methods, defining 

the common approach using a toy example. 

As we mentioned earlier, we are going to adopt FCA in order to implement a 
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learning algorithm, alongside an ensemble-learning paradigm to achieve our objectives 

with respect to the learning problem. The function of FCA and ensemble learning will be 

explained with more details in the next chapter. 
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CHAPTER 4: PROPOSED METHOD 

In the previous chapter, we passed through FCA-based learning methods and their 

main properties. Therefore, in this chapter, we introduce a novel approach to induce rules 

using Formal Concept Analysis, in addition a new method that minimizes classification 

rule bias, and we introduce our argument on how we select the suitable ensemble-

learning paradigm for obtaining better classification performance. 

4.1 Random Conceptual Coverage Learner  

The proposed approach is based on random conceptual coverage. Unlike other 

FCA coverage methods that select the best attribute to obtain the conceptual coverage, 

our algorithm performs the selection randomly from a given training data: 𝐷 =

 {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛, 𝑦𝑛)}, where 𝑥𝑖 ∈ 𝑋 a set of features, and 𝑦𝑖 ∈ 𝑌 represents the 

class label associated with set 𝑥𝑖. In the learning phase, the algorithm will iterate over N 

rows randomly selecting random number of features: 𝑎𝑖 ⊆ 𝑥𝑖  without repetition. The 

selected features will not be selected again in the next iterations. The method of selecting 

random numbers of attribute values was to obtain different classification rules by 

utilizing the notion of random coverage in the model aggregation scenario.  In order to 

obtain random values, the algorithm will set a random integer 𝑏; the value of 𝑏 will 

change randomly in each iteration 𝑖 of the training data 𝐷 and vary from one to the length 

of the features set 𝑥𝑖. 

For example, let us assume that we have attributes values describing object 𝑥𝑖 =

{𝐴𝑉1, 𝐴𝑉2, 𝐴𝑉3} with size = 3, and 𝑏 is an integer with random value between 1 and 3 

(size of  𝑥𝑖) for iteration 𝑖, let us say the random integer here is 2 then 𝑎𝑖 ⊆ 𝑥𝑖  is a set of 
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attributes values with size = 𝑏, for example  𝑎𝑖 = {𝑓1, 𝑓3}, and the values in 𝑎𝑖 are 

selected randomly without repetition. 

 

 

Algorithm 1 

 

Random Conceptual Learner (RCL) 

 

INPUT: Training Examples with class labels 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛, 𝑦𝑛)} 

OUTPUT: Set of Classification Rules: 𝑅𝑢𝑙𝑒𝑠 

PROCESS:  

1. 𝑅𝑢𝑙𝑒𝑠 = { } 

2. For 𝒊 = 𝟏, … … , 𝒏: 

3.     Randomly Select without replacement 𝑏 attribute values: 𝑎𝑖 ⊆  𝑥𝑖, 𝑏 random integer: 

𝑎𝑖 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑖, 𝑏), 1 ≤ 𝑏 ≤ |𝑥𝑖| 

4.     Calculate Galois Closure for 𝑎𝑖 to generate a Formal Concept: 𝑐𝑖 =  {𝜆(𝑎𝑖), 𝜆𝑜𝛾(𝑎𝑖)} 

5.     Calculate the majority Class 𝑣𝑜𝑡𝑒 associated with 𝝀(𝑎𝑖)in 𝐷. 

 

6.     Classification Rule: 𝑟𝑢𝑙𝑒𝑖 = (𝜆𝑜𝛾(𝑎𝑖), 𝑣𝑜𝑡𝑒)  

7.     Calculate the confidence 𝑤𝑖 =  
|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝑟𝑢𝑙𝑒𝑖)|

|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖))|
 as a weight for the obtained rule. 

8.     If 𝒘𝒊 = 𝟏. 𝟎 : // rule covers only one category 

9.          𝑅𝑢𝑙𝑒𝑠. 𝑎𝑑𝑑(𝑟𝑢𝑙𝑒𝑖) 

10.   Else :// rule covers more than one category 

11.        Remaining attribute values that are not selected: 𝑟𝑒𝑚 =  𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)) −
𝜆𝑜𝛾(𝑎𝑖) 

12.         𝑅𝑢𝑙𝑒𝑠. 𝑎𝑑𝑑(𝑬𝒏𝒉𝒂𝒏𝒄𝒆𝒅_𝑹𝒖𝒍𝒆(𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)), 𝑟𝑒𝑚) )//execute algorithm-2 

13. End 

CLASSIFICATION: 

 For classification if more than one rule is triggered, the algorithm will assign 

the class value that has the maximum number of votes 
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Selected features will be used to obtain the formal concepts by calculating Galois 

closure 𝜆(𝑎𝑖), 𝜆𝑜𝛾(𝑎𝑖), where 𝜆(𝑎𝑖) is a closed set of objects, and 𝜆𝑜𝛾(𝑎𝑖) is a closed set 

of attributes. The next step is to calculate the class label associated with 𝜆(𝑎𝑖), and this is 

done through majority voting of the class labels associated with the closed set of objects 

𝝀(𝑎𝑖) in the training data. 

However, relying on voting may produce biased classification rules, as many 

instances that belong to other categories will be neglected. Therefore, the algorithm will 

calculate the confidence of the rule as weighting criteria, which is based on how many 

times the rule appeared in the training data associated with the most voted class over the 

total number of appearances in training data. The cardinality |𝑥|, returns the number of 

instances in 𝑥: 

𝑤𝑖 =  
|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝑟𝑢𝑙𝑒𝑖)|

|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖))|
 

 

(4.1) 

 

The function 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝑥) returns all the instances in the training data D that 

are containing 𝑥. Rules with weight equal to 1.0 will be added directly to the 

classification rule set. On the other hand, rules with weights less than 1.0 will undergo an 

enhancing process that aims to minimize the classification rule bias caused by inadequate 

attribute values that construct the rule. To establish an optimal classification rule, we 

need to construct classification rules with minimal properties that trigger records that are 

belong to only one category. To achieve that, we propose the Rules Optimization 

Method; this method performs recursively to optimize biased classification rules. The 

proposed enhancement method (see Algorithm-2) is also based on FCA; the algorithm 
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will iterate over the remaining (𝑟𝑒𝑚) attributes calculated in Algorithm-1. The remaining 

are the attributes that are not used in the obtained rule: 

𝑟𝑒𝑚 = 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)) − 𝜆𝑜𝛾(𝑎𝑖) (4.2) 

 

The 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)) returns a set of instances in D containing 𝜆𝑜𝛾(𝑎𝑖), the 

remaining 𝑟𝑒𝑚 is a set of attributes that are not used in 𝜆𝑜𝛾(𝑎𝑖). From each remaining 

attribute, the algorithm will generate a formal concept and each concept will be weighted 

using the same weighting approach performed previously. Algorithm-2 will run 

recursively and produces two types of classification rules: The first type of rules—if the 

rule confidence is equal to 1.0 (Optimized Rule), the second type of rules—if the rule 

already has the maximum set of properties and cannot “grow” more. Once the 𝑟𝑒𝑚 = {} 

the algorithm will stop the execution. 

The rules resulting from this operation are optimized; many of them will describe 

only one category.  However, some of the optimized rules may describe more than one 

category, and this is due to overlapping in the features of some datasets, where multiple 

records share the same properties but fall in different categories; these kinds of errors are 

irreducible. Similar to other classification methods like decision tree and naïve Bayesian, 

the proposed FCA-based learner will perform properly when it’s applied to nominal 

attributes or intervals. Therefore, to obtain the best performance, we propose an 

embedded static discretizer, to create intervals from a given continuous attribute as a pre-

learning process. 
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Algorithm 2 

 

Rule Optimization Method (𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑_𝑅𝑢𝑙𝑒) 

 

INPUTS: 𝐷∗ =  𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)) ⊆ 𝐷; 𝑟𝑒𝑚//  𝐷∗ is a sub-context from 𝐷, 𝑟𝑒𝑚 are the 

attributes in  𝐷∗ not used to construct the biased rule 

OUTPUT: Set of Classification Rules: 𝑅𝑢𝑙𝑒𝑠 

PROCESS:  

1. 𝑅𝑢𝑙𝑒𝑠 = { } 

2. For 𝒊 = 𝟏, … … , 𝒏: 

3.     Calculate Galois Closure for 𝑎𝑖 ∈ 𝑟𝑒𝑚 to generate a Formal Concept: 𝑐𝑖 =
 {𝜆(𝑎𝑖), 𝜆𝑜𝛾(𝑎𝑖)} 

5.     Calculate the majority Class 𝑣𝑜𝑡𝑒 associated with 𝝀(𝑎𝑖),  in 𝐷∗ 

 

6.     Classification Rule: 𝑟𝑢𝑙𝑒𝑖 = (𝜆𝑜𝛾(𝑎𝑖), 𝑣𝑜𝑡𝑒)  

7.     Calculate the confidence 𝑤𝑖 =  
|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝑟𝑢𝑙𝑒𝑖)|

|𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖))|
 as a weight for the obtained rule. 

8.     If 𝒘𝒊 = 𝟏. 𝟎 : // rule covers only one category 

9.            𝑅𝑢𝑙𝑒𝑠. 𝑎𝑑𝑑(𝑟𝑢𝑙𝑒𝑖) 

 

10.   Else If 𝒘𝒊 < 1.0 𝒂𝒏𝒅 𝜆𝑜𝛾(𝑎𝑖) contains the maximum number of attributes: 

11.          𝑅𝑢𝑙𝑒𝑠. 𝑎𝑑𝑑(𝑟𝑢𝑙𝑒𝑖) 

12.   Else: 

13.          Remaining attribute values that are not selected: 𝑟𝑒𝑚 =  𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)) −
𝜆𝑜𝛾(𝑎𝑖) 

14.           𝑅𝑢𝑙𝑒𝑠. 𝑎𝑑𝑑(𝑬𝒏𝒉𝒂𝒏𝒄𝒆𝒅_𝑹𝒖𝒍𝒆(𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝜆𝑜𝛾(𝑎𝑖)), 𝑟𝑒𝑚) ) // recursive 

execution 

15. Return(𝑅𝑢𝑙𝑒𝑠) 

 

 

As an example, let us assume that we are learning from the dataset in table 5, and 

Algorithm-1 selects randomly attributes (𝑎3), then it will generate a concept based on the 

selected using Galois Closure 𝑐 = {𝜆(𝑎3), 𝜆𝑜𝛾(𝑎3)}  = {{𝑜1, 𝑜3, 𝑜5}, {𝑎2, 𝑎3}}. The 

majority class associated to the set of objects {𝑜1, 𝑜3, 𝑜5} is class 1, with confidence 0.66; 

which means that the classification rule {𝑎2, 𝑎3} → 𝐶𝑙𝑎𝑠𝑠 1 will be triggered by instances 
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that belongs to other classes, as the confidence of the rule is not equal to 1.0. 

Consequently, this rule will be enhanced using Algorithm-2, which will start the coverage 

from the remaining attributes values 𝑟𝑒𝑚  = {𝑎1, 𝑎4} and the sub-context 𝐷∗ in table 6. 

Algorithm-2 will iterates over 𝑟𝑒𝑚 and generates two classification rules with confidence 

equal to 1.0; {𝑎1, 𝑎2, 𝑎3} → 𝐶𝑙𝑎𝑠𝑠 2 and {𝑎2, 𝑎3, 𝑎4} → 𝐶𝑙𝑎𝑠𝑠 1. Algorithm-2 will be 

executed recursively N times until the stopping conditions satisfied; 𝑟𝑒𝑚 becomes an 

empty set. 

 

 

Table 5 

 

Dataset Example (𝑫) 
 

𝑂|A 𝑎1 𝑎2 𝑎3 𝑎4 𝐶𝑙𝑎𝑠𝑠 

𝑜1 0 1 1 1 1 

𝑜2 1 1 0 0 1 

𝑜3 1 1 1 0 2 

𝑜4 0 0 0 1 2 

𝑜5 0 1 1 1 1 

 

 

Similar to other classification methods, such as Decision Tree and Naïve 

Bayesian, RCL will performs better when applied to scaled attributes. Therefore, it is 

important to discretize continuous values and transform them into intervals before 
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applying RCL. Therefore, we embedded a Gini-Based discretizer to be used alongside 

our algorithm; this method will be discussed with more details in the next section. 

 

 

Table 6 

 

Sub-context 𝑫∗generated by Algorithm-1 

 

𝑂|A 𝑎1 𝑎2 𝑎3 𝑎4 𝐶𝑙𝑎𝑠𝑠 

𝑜1 0 1 1 1 1 

𝑜3 1 1 1 0 2 

𝑜5 0 1 1 1 1 

 

 

4.2 Gini-Based Discretizer 

Supervised discretization involves the processes of scaling the continuous values 

into ranges/intervals with respect to class values. These intervals might be labeled to form 

categories, which will be used for learning. The importance of discretization of 

continuous values is reflected in many aspects of supervised learning, mainly boosting 

the classification performance, and cutting down processing costs by acting as a 

reduction method. In addition, some of the learning algorithms deal only with scaled 

features or perform better in the presence of scaled attributes [48]. Industry literature is 

rich with various supervised discretization techniques; all are targeting the minimal 

information loss and the maximum selection accuracy. However, generating the best 
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intervals has been labeled an NP-complete problem. Discretizes may be static, in which 

they perform the scaling before classification forming, or dynamic, where the process 

occurs at the same time of classification model creation, such as CART. In addition, 

some algorithms perform discretization on each attribute separately (univariate) or by 

considering all the attributes each time it looks for the best split point (multivariate). 

In general, supervised discretization algorithms involve sorting, split point 

evaluation mechanisms, and stopping conditions. There are many evaluation 

mechanisms, however, the most popular and effective techniques are derived from 

information theory, such as entropy and Gini index, followed by Chi-Square and 

ChiMerge statistical techniques.  

As mentioned previously, FCA-based classifiers require scaled attributes to 

perform properly. In this section, we propose an embedded supervised Gini-Gain 

discretizer (Algorithm-3), which is based on the Gini index evaluation metric. The 

reasoning supporting this measure will be discussed later in this section. The proposed 

approach is static, as it does not involve with in the learning procedures and will be 

executed before the learning phase. The main characteristic of this approach is that it 

simultaneously considers multiple features (multivariate). The method utilizes Gini index 

of impurity as an evaluation measure for creating intervals from given data. These 

intervals allow the model to be more predictive in the presence of continuous data, also 

acting as a data reduction mechanism and reducing the size of the training data. Though it 

is not easy to decide which evaluation measure is more effective than others; each of 

them has its own characteristics and applications. However, a comparative study by 

García[48] shows that evaluation measures based on information theory, such as entropy 
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and Gini index, are among the best, based on empirical studies that involve other 

measures. Moreover, a theoretical comparison conducted by Raileanu[49] found that 

there are slight differences between Shannon entropy and Gini index, in terms of finding 

the best split points, as they suggest that differences will not achieve more than 2% by 

experimenting with the frequency of disagreement between the two approaches. 

However, the Gini evaluation method performs faster as it does not involve any 

logarithmic calculation. Moreover, choosing evaluation criteria is not an objective by 

itself for this study; thus, any approach with acceptable performance is also applicable. 

With the given training data, 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛, 𝑦𝑛)}, the discretizer 

will operate recursively until the stopping conditions are satisfied, and it returns a set of 

bins that will be used later for creating intervals in the training data. The algorithm starts 

with all attribute values, and greedily checks for the best split point over all possible split 

points in the training data. For all possible split points, the algorithm will split the data 

into two groups using the function𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔(), which returns binary groups, 𝐺𝑟𝑜𝑢𝑝𝑠 =

{𝑔1, 𝑔2}, and evaluate each group using the Gini evaluation measure: 

Gini(𝑔𝑗) = 1 − ∑ (𝑃𝑔𝑗

𝑘 )𝟐
𝒍

𝒌=1
 

𝑤ℎ𝑒𝑟𝑒, 𝑃𝑔𝑗
𝑘 =  

𝑐𝑜𝑢𝑛𝑡(𝑦𝑘)

𝑠𝑖𝑧𝑒𝑔𝑗

 

(4.3) 

 

 

(4.4) 

 

The evaluation is based on how many distinct class values are in each group. The 

best Gini indication is achieved when each group contains one class value, where the 

function Gini(𝑔𝑗) = 0 for the two groups. Consequently, it will minimize the gain 

function: 
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𝐺𝑎𝑖𝑛 = ∑ Gini(𝑔𝑗).
𝑠𝑖𝑧𝑒𝑔𝑗

𝑠𝑖𝑧𝑒𝐷

𝑚

𝑗=1

 

(4.5) 

 

 

Also, consequently, each group that contains more than one class value will be 

divided again until satisfying the stopping condition. All selected split points with 

minimal gain will be added to the bins list to be used later to create intervals on the 

training data.  

To explain the discretizer with more details, we will take the dataset in Table 7. 

This dataset contains 4 attributes; two of them are numeric while the other two attributes 

are categorical, with 2 class values. Before feeding the data to the Gini-Discretizer, the 

categorical attributes (outlook, windy) will be labeled to numerical coefficients (i.e. the 

attribute value overcast will be labeled as 1.0, rainy as 2.0 and sunny as 3.0), and the 

same for windy. The discretizer will start by evaluating all the attributes values in the 

dataset to find the first split point; this is done by calculating the Gini-Gain (equation-4.5) 

for each unique attribute value. The binary discretizer will search for the point that can 

split the dataset into two groups where each group belongs to one class category; in the 

ideal scenario, it will return zero as a score. The value with minimal Gini-Gain will be 

selected as the best split point, in this scenario the algorithm selected Outlook value = 1.0 

(overcast) as the first split point and this is done through the following process: 

 Grouping the data into two groups; where group-1 contains instances with outlook 

value less than or equal to 1.0, group-2 with instances with outlook values larger 

than 1.0. 

 Calculating the probability score 𝑃 for each group by counting the number of 
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class values of a certain class in each group over the size of the group: 

o Group-1: 𝑃𝑔1
0 =  

𝑐𝑜𝑢𝑛𝑡(𝑦=0)

𝑠𝑖𝑧𝑒𝑔1

=
0

4
= 0, 𝑃𝑔1

1 =  
𝑐𝑜𝑢𝑛𝑡(𝑦=0)

𝑠𝑖𝑧𝑒𝑔1

=
4

4
= 1 

o Group-2: 𝑃𝑔2
0 =  

𝑐𝑜𝑢𝑛𝑡(𝑦=0)

𝑠𝑖𝑧𝑒𝑔2

=
5

10
= 0.5  , 𝑃𝑔2

1 =  
𝑐𝑜𝑢𝑛𝑡(𝑦=0)

𝑠𝑖𝑧𝑒𝑔2

=
5

10
= 0.5 

 Calculating the Gini score for each group using equation (4.4): 

o Group 1: Gini(𝑔1) = 1 − (0)𝟐 + (1)𝟐 = 0 

o Group 2: Gini(𝑔2)= 1 − (0.5)𝟐 + (0.5)𝟐 = 0.5. 

 Calculating the Gain using equation (4.5): 

o 𝐺𝑎𝑖𝑛 = Gini(𝑔1).
𝑠𝑖𝑧𝑒𝑔1

𝑠𝑖𝑧𝑒𝐷
+  Gini(𝑔2).

𝑠𝑖𝑧𝑒𝑔2

𝑠𝑖𝑧𝑒𝐷
= 0.

4

14
+ 0.5.

10

14
= 0.357. 

The discretizer will continue iterating over the rest of attributes value searching 

for the best split point. For this scenario the best split point is outlook value = 1.0 

(overcast), with minimal gain against others, and this point will be added to the bins list 

to be used later for creating intervals in the dataset. 
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Algorithm 3 

 

Gini-embedded discretizer 

 
Gini_Evaluation(𝐺𝑟𝑜𝑢𝑝𝑠, 𝑌): 

PROCESS:  

 // Calculate the score for each group: 

1.     For 𝒈𝒋 ∈ 𝑮𝒓𝒐𝒖𝒑𝒔: 

2.            For each class value 𝒚𝒌 ∈ 𝒀: 

3.                    𝑃𝑔𝑗
𝑘 =  

|𝒚𝒌|

𝒔𝒊𝒛𝒆𝑔𝑗

 

4.                   Gini(𝒈𝒋) = 1 − ∑ (𝑃𝑔𝑗
𝑘 )𝟐

𝒍

𝒌=1
 

          // Calculate Gini Gain: 

5.       𝐺𝑎𝑖𝑛 = ∑ Gini(𝒈𝒋).
𝒔𝒊𝒛𝒆𝑔𝑗

𝒔𝒊𝒛𝒆𝐷

𝒎

𝒋=1
 

6. RETURN(𝐺𝑎𝑖𝑛) 

Binary_Splitter(𝐷): 

PROCESS:  

1.Gini_Gain = {} 

2. For 𝒊 = 𝟏, … … , 𝒏: 

3.        For each attribute value 𝒂𝒌 ∈ 𝒙𝒊: 

4.              // perform binary grouping based on split point  𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡 =  𝑎𝑘;  𝑖𝑛𝑑𝑒𝑥 = 𝑘 :  

                    Groups𝑎𝑘
=  𝐆𝐫𝐨𝐮𝐩𝐢𝐧𝐠(𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡 , 𝑖𝑛𝑑𝑒𝑥, 𝐷) // binary grouping data on 𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡 

5.               Gini_Gain. 𝑎𝑑𝑑(𝐆𝐢𝐧𝐢_𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧 (Groups𝑎𝑘
, 𝑌)): 

     // Return the groups and split point that minimizes Gain function: 

6. RETURN(Groups𝑎𝑣𝑘
, 𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡) 

Gini_Discretizer: 

INPUTS: Training Examples with class labels 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛 , 𝑦𝑛)} 

OUTPUT: Set of bins: 𝑏𝑖𝑛𝑠 

PROCESS: 

1. bins = {} 

2. 𝐺𝑟𝑜𝑢𝑝𝑠, 𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡  = Binary_Splitter(𝐷) 

3. 𝑏𝑖𝑛𝑠. 𝑎𝑑𝑑(𝑆𝑝𝑙𝑖𝑡𝑃𝑜𝑖𝑛𝑡) 

 // Check if each group contains only one class: 

4. For 𝑔𝑖 ∈ 𝐺𝑟𝑜𝑢𝑝𝑠: 

5.       IF |𝑌𝑔𝑖
| > 1.0: 

6.             𝑏𝑖𝑛𝑠 += Gini_Discretizer(𝑔𝑖) 

7. RETURN(𝑏𝑖𝑛𝑠) 
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Table 7 

 

Golf dataset before scaling. 

 

Outlook  Temperature  Humidity  Windy  Play  

overcast  83  86  TRUE yes  

overcast  64  65  TRUE  yes  

overcast  72  90  False yes  

overcast  81  75  TRUE yes  

rainy  70  96  TRUE yes  

rainy  68  80  TRUE yes  

rainy  65  70  TRUE  no  

rainy  75  80  TRUE yes  

rainy  71  91  TRUE  no  

sunny  85  85  TRUE no  

sunny  80  90  TRUE  no  

sunny  72  95  TRUE no  

sunny  69  70  TRUE yes  

sunny  75  70  FALSE yes  
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Table 8 

 

Golf dataset after scaling. 

 

Outlook  Temperature  Humidity  Play  

Outlook <= 1 Temperature >70  Humidity >80 yes  

Outlook <= 1 Temperature <=65  Humidity <=80  yes  

Outlook <= 1 Temperature >70 Humidity <=80   yes  

Outlook > 1 Temperature <=70  Humidity >80  yes  

Outlook > 1 Temperature <=70   Humidity <=80   yes  

Outlook > 1 Temperature <=65   Humidity <=80   no 

Outlook > 1 Temperature >70   Humidity <=80 yes 

Outlook > 1 Temperature >70 Humidity >80  no 

 

 

The obtained bins will be used to create intervals (see table 9) in the datasets 

before the learning process carried on. There is no split points found in windy attribute as 

it is not containing useful split information for the algorithm, and it will be neglected in 

the intervals generation process.  Finally, the dataset will be reduced after merging the 

attributes value inside these intervals as we can see in table 8 cases, the dataset is reduced 

from 14 instances to only 8 instances after dropping the duplicates. RCL will benefit 
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from this phase as it allows the learner to perform faster, removing the unnecessary 

attributes and scale the data so it can be used effectively for learning. Now we have a 

group of instances that belong to one category, this is meaning that group-1 satisfies the 

stopping condition and no longer involved in the searching process. The algorithm will be 

executed recursively on Group-2 to create more sub groups until it satisfies the stopping 

condition, and on each execution, the best split point will be added to the bins list.   

 

 

Table 9 

 

Bins obtained by the discretizer. 
 

Attributes Outlook Temperature  Humidity  Windy 

Bins 1.0 (overcast) 70.0, 65.0 80.0 n/a 

 

 

 The proposed methods (Algorithms: 1, 2, 3), are designed to minimize the error 

caused by biased classification rules. Algorithm-2 enhances the conceptual coverage in 

order to produce rules with minimal bias by adding more properties, while creating 

intervals on the training data. This reduces the chance of a rule becoming too focused on 

a specific value. However, as we mentioned in Chapter 1, the learning error is not limited 

to the model bias; the variance may produce a high error rate in the presence of a model 

that learns deeply from the training data, reducing the model’s ability to perform in the 

presence of new data. Therefore, in the next section, we are going to explain the proposed 
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method for variance averaging.  

4.4 RCL Ensemble Paradigm 

 In much of the literature, there are many techniques proposed for variance 

reduction, such as rule pruning, tree pruning, data partitioning, scaling, and ensemble 

learning. The last of these options was found to be more effective in different scenarios, 

as previously discussed in chapters 1, 2, and 3.  However, it exists in multiple paradigms. 

Arbitrarily selecting the ensemble paradigm for a certain learner might be tricky, and may 

lead to a drop in the classification performance. Sequential ensemble methods aim to 

boost the accuracy of weak learning algorithms, which tends to under-fit the data and 

produce biased classification hypotheses. Conversely, parallel ensembles tend to reduce 

the variance of unstable learning algorithms, which over-fit and produce complex 

hypotheses, while producing high error rates when it comes to unforeseen instances.  

In order to choose the best ensemble paradigm, it is essential to measure the 

stability of the base learner. Unstable classifiers have a high variance, as they over-fit the 

training data. The training error of the unstable classifiers is very low, while the 

validation error tends to be high. On the other hand, stable classifiers, have low variance 

and will probably exhibit high bias. In the model aggregation scenario, unstable 

classifiers produce different results if small changes occur in the data, while stable 

classifiers tend to agree in general, even if some changes are applied to the training 

examples. Sequential ensemble methods are used to boost the weak classifiers and reduce 

the bias, but parallel ensembles average the variance of the unstable classifiers.  

Therefore, to ideally utilize ensemble-learning paradigms and to decide which ensemble 

method best fits our objectives; we have to verify which category the proposed method 
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falls within. The stability of the learning algorithm can be experimented by using various 

techniques, such as the variance/standard deviation in classification errors, training data 

injection, or simply by verifying the effect of sampling on the accuracy when aggregating 

multiple models together. Empirically, bagging was found to be effective for variance 

reduction. Therefore, to reduce the variance caused by RCL’s expected tendency to over-

fit the training data, we propose fusing RCL with Bagging paradigm (see algorithm-4) to 

utilize its ability to average the variance. To verify its efficiency in reducing the variance 

of RCL we would show the experiment results of the effect of bagging in chapter-5. 

Using Bagging averages the variance by generating multiple samples from the 

training data; the samples are generated using bootstrap sampling. Each of the generated 

samples will be used to produce a different classification model. The discretizer will be 

used locally (see Figure 7) to further enforcing the diversity between the produced 

classifiers and to reduce the effects of noise on the discretization process. 

 

 

Algorithm-4: RCL-Bagging Paradigm 

INPUT: Training Examples with class labels 𝐷 =  {(𝑜1, 𝑦1), (𝑜2, 𝑦2), … (𝑜𝑛, 𝑦𝑛)}; 

               N: Number of base classifiers 

OUTPUT: 𝐻(𝑥) = 𝑎𝑟𝑔 max
𝑦 ∈ 𝑌

∑ 𝕀(ℎ𝑖(𝑥)
𝑁

𝑖=0
= y) 

PROCESS: 

1. For i = 1,….N: 

2.       Randomly Select with Replacement 𝑀 instances from 𝐷, and create 𝐷∗
𝑖 bootstrap sample;    

          M = size(𝐷); 𝐷∗
𝑖 ≠ 𝐷. 

3.       ℎ𝑖 = 𝑹𝑪𝑳(𝐷∗
𝑖) // ith classification model generated using random conceptual learner. 

4. End 
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Sampling reduces the correlation between the produced models, which allows the 

learner to produce a different hypothesis with minimal correlation based on the sampled 

data.  Each sample size is equal to the size of the original training set; however, it only 

contains two-thirds of the training instances of the original training set because of the 

repetition chances. 

 

 

 

 

Figure 7. Bagged RCL learning schema 

 

 

In the classification phase (see Figure 8), the same validation data will be tested 

by each classifier and the final decision is based on aggregating various decisions made 
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by individual models using majority voting. 

 

  

 
 

 

Figure 8. Bagged RCL classification schema 

 

 

4.5 Bagged RCL vs. other FCA-based Ensemble Learning Methods 

 Previously in chapter 3, we highlighted some of the learning methods that are 

based on FCA and utilize certain ensemble paradigm, each learning method has its own 

characteristics in terms of the conceptual structure they use, the conceptual coverage 

method, type of inputs and the classification method. Base learners in BFC[11], 

BNC[42], and DNC[10]start the conceptual coverage by selecting certain attribute/s that 

satisfy a specific quality measure such as Shannon entropy, in addition these approaches 

only constructs and utilize part of the conceptual lattice.  
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RMCS meta-learner[12] performs the conceptual coverage based on distance 

measure (Euclidean Distance), in addition, RCMS constructs the complete conceptual 

lattice. Our proposed method Bagged RCL (B-RCL), only constructs and uses part of the 

lattice and performs the coverage in random fashion as explained previously, in addition 

it utilize an embedded static Gini-gain discretizer. Table 10 highlights the main 

characteristics of the reviewed FCA-based learners. 

 

 

Table 10 

 

FCA-Based Learners main characteristics 

 
Learning 

Method 

Conceptual 

Structure 

Inputs Coverage Method Classification Discretization 

Method 

B-RCL Sub-lattice Nominal Random 

Coverage 

Majority Vote Embedded Gini-

gain discreteizer 

RMCS Lattice top 

concepts 

Binary Euclidean 

Distance  

Defined by base 

classifier. 

Depends on the 

used set of base 

classifiers 

BFC Sub-lattice Nominal Shannon Entropy Weighted Vote n/a – external  

BNC Sub-lattice Nominal Information Gain Weighted Vote n/a – external 

DNC Sub-lattice Nominal Information Gain Majority Vote n/a – external 
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4.6 Chapter Summary 

In this chapter, we introduced new method for learning using FCA. The first 

algorithm proposed to mine the concepts in a random fashion to improve the diversity 

between the generated classifiers. The second method is proposed to reduce the bias of 

the classification rules obtained through the process of random conceptual coverage. In 

addition, we exploited a scaling method based on Gini Index evaluation criteria, the 

reasons behind using this approach stated earlier. In addition, we proposed our argument 

regarding the selection of the best ensemble-learning paradigm, which will be verified in 

the following chapter. Based on that, in chapter 5, we will experiment the stability of the 

proposed learning algorithm to verify our choice. In addition, we will conduct an 

empirical comparative study to compare our proposed method against other classification 

approaches. 
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CHAPTER 5: EXPERIMENTS  

 Next, we compare our proposed method against other traditional ensemble 

methods, Bagging, Random Forests and Adaboost. The experiments would demonstrate 

the performance of our method and its validity. The comparison illustrates the differences 

between our method and traditional algorithms. In section 5.1 we present the used 

datasets properties to have an overview of what datasets are used and their suitability for 

use in experiments. In section 5.2, we will experiment the stability of the RCL, in section 

5.3 we will define the experiments setup of the comparative study, including the testing 

environment, and we will explain the reasons behind the used configurations for each 

experimented algorithm. In section 5.4 we will show and discuss the results obtained 

from the comparative experiments. 

5.1 Datasets Characteristics 

In order, to test our method we will use (23) datasets as illustrated in Table-11, 

these datasets are downloaded from UCI-Repository[50] and from other sources[51], 

[52].  The characteristics of the used datasets are vary, where some of them are 

containing only categorical attributes, others are continuous and some of them contain 

different types of features. Two reasons behind using these datasets: the first reason is the 

popularity and the usability of these datasets; in literature they have been commonly used 

to validate classifiers accuracy such in[7], [10], [12], [16], [20], [42], [53]. The second 

reason is the variance between these datasets in terms of features types (categorical, 

continues, or both), number of classes in each dataset and the total number of instances. 

In addition, this allows us to experiment our work with many options to see how they 

reflect on the performance of our algorithm. 
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Table 11 

 

Datasets Characteristics 

 
Dataset Features Instances Data Types Classes 
Iris 4 150 Continuous 3 

Breast Cancer 9 683 Continuous 2 

Sonar 60 208 Continuous 2 

Glass 9 214 Continuous 6 

Vowel 10 990 Hybrid  11 

Ionosphere 34 351 Hybrid 2 

German credit  24 1000 Hybrid 2 

Ecoli 7 336 Continuous 8 

Hayes-Roth 4 160 Categorical 3 

Car 6 1728 Categorical 4 

Zoo 16 101 Categorical 7 

Liver 6 345 Hybrid 2 

Wine 13 178 Continuous 3 

Heart 13 270 Hybrid 2 

Balance 4 625 Categorical 3 

MPG 11 234 Hybrid 7 

Immunotherapy 7 90 Continuous 2 

Cryotherapy 6 90 Continuous 3 

Waveform 40 5000 Continuous 3 

Twonorm 20 7400 Continuous 2 

Letters 16 20000 Continuous 26 

Sat-image 36 6435 Continuous 6 

Ringnorm 20 7400 Continuous 2 

 

 

Table 11 illustrates the used datasets and their properties, based on the number of 

features, the size of each dataset and the data types; whether it is continuous or 

categorical or a combination of both. 

5.2 The Stability of the RCL 

To measure the stability of RCL, we set up an experiment using 5 datasets from 

UCI-Repository[50]. The experiment is executed using a single training set (80% of the 

data) and 4 testing sets; 3 of them are sampled from the remaining 20% of the data that 

was not used in training, the 4th is the same data used for training. We preferred this 

scenario rather than cross-validation because we are interested to see whether bootstrap 
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sampling enhance the accuracy in all cases as well as to run the experiment in a 

before/after fashion. The first stage is to learn the model in the training data and test the 

training error using the same training data for validation giving an apparent error. 

 

 

Table 12 

 

Training Error vs. Testing Error using RCL (%) 

 

Dataset 𝑇𝑟𝑎𝑖𝑛𝑒𝑟𝑟 𝑇𝑒𝑠𝑡𝑒𝑟𝑟
1 𝑇𝑒𝑠𝑡𝑒𝑟𝑟

2 𝑇𝑒𝑠𝑡𝑒𝑟𝑟
3 

Iris 0.0 26.0 6.67 20.0 

Hayth-Roth 12.5 31.25 37.5 34.37 

Ecoli 0.0 33.8 35.29 35.29 

Wine 0.0 13.88 19.44 22.22 

IMtherapy     0.0 11.1 5.5 38.8 

 

 

Then, we run the tests using the three sample testing sets to verify the variance in 

prediction errors. The obtained results (see table 12) show that the RCL has a very low 

training error in most of the used datasets. However, the error increases dramatically 

when the generated model is validated using unseen data. These results suggest that the 

RCL is unstable as it tends to over-fit the training data, and this is due to complexity in 

the learning procedures. Consequently, we propose bagging as an approximation for this 

problem. In the next subsection, we are going to explain how to utilize the parallel 
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paradigm to average the variance produced by RCL. 

The experiment is executed using the same training data and the same 3 sampled 

test sets from the previous experiment without any changes. The algorithm is setup with 

N = 10; generating 10 samples with replacements from the training data and feeding them 

to RCL to produce 10 classifiers. In the testing phase, the same testing samples are used 

to validate the aggregated model. Table 13 shows the training/testing errors for each 

dataset. Empirically, bagging was found to be effective for variance reduction. Therefore, 

to verify its efficiency in reducing the variance of RCL we will repeat the previous 

experiment, using B-RCL (see algorithm-4). 

 

 

Table 13 

 

Effect of Bagging-RCL on Training/Testing Errors (%) 

 

Dataset 𝑇𝑟𝑎𝑖𝑛𝑒𝑟𝑟 𝑇𝑒𝑠𝑡𝑒𝑟𝑟
1 𝑇𝑒𝑠𝑡𝑒𝑟𝑟

2 𝑇𝑒𝑠𝑡𝑒𝑟𝑟
3 

Iris 1.25 6.67 3.33 6.67 

Hayth-Roth 9.45 12.5 18.75 21.87 

Ecoli 0.34 17.64 20.58 20.58 

Wine 1.06 5.5 11.1 11.1 

IMtherapy   0.69 11.1 5.5 11.1 

 

 

 



  
   

67 
 

  

  

  
  

 

Figure 9. The stability of RCL. 

 

 

Results from the bagging experiments show that the testing errors are averaged in 

most of the testing samples (see figure 9), while few testing errors remain the same, as 

with IM therapy 𝑻𝒆𝒔𝒕𝒆𝒓𝒓
𝟏 and 𝑻𝒆𝒔𝒕𝒆𝒓𝒓

𝟐. However, we can notice a slight increase in the 

training error, and this is due to the absence of some representative examples from the 
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training data because of the sampling. In general, these results verify the instability of the 

base learner; therefore, it will perform better with the parallel ensemble-learning 

paradigm. Moreover, it is important to state that the randomness in conceptual covering 

also contributes to producing less correlated classifiers. 

5.3 Comparative experiments setup 

The experiments setup is unified among all the ensembles; we use 10-folds cross 

validation for each dataset, in addition each experiment was repeated 10-times and the 

performance will be averaged from the 10 executions. We experiment our algorithm 

against scikit-learn[54] implementations of Bagging Predictors, Random Forests, 

Gradient Boosting and AdaBoost. To experiment Bagged-RCL ability to learn from small 

proportion of the data, we setup the experiment on the large datasets to use 1 out of 10 

folds to train the learner, and the 9 folds to be used for testing only. These datasets are: 

Sat-image, Letters, Ringnorm, Twonorm and Waveform.  

For Bagged-RCL (B-RCL) we adjust the ensemble parameters to produce 40 

classifiers and there are two reasons to select this number. The first reason comes from 

verifying the effect of the number of classifiers on the average accuracy (see figure 10). 

This experiment is conducted using train/test split approach and the reason is to hold the 

exact train and test data without changes while adjusting the number of classifiers 

parameter incrementally. For each parameter, repeat the training and testing 10 times to 

reduce the effect of randomness on the results. The second reason is to reduce the 

learning time by not going very far to a large number while there are no significant 

changes on the accuracy. Figure 10 shows the experiment results on 4 datasets, 

representing the variation on accuracy with respect to the number of classifiers. We can 
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see that the accuracy level stabilizes at 20 classifiers or earlier, which indicates that 40 

classifiers is suitable to run the comparative experiment. 

 In addition, we configure the Gini-Discretizer to its default configuration; where 

it will perform recursively until it satisfies the stopping condition; the maximum number 

of classes in the last interval should equal to one. In addition, the feature selection 

method is based on sampling with replacement each instance (row); where the sample 

size varies from instance to another, starting from one and limited to the number of 

features in each instance. On the other hand, we are interested in unifying the experiment 

against the other approaches, therefore all other ensemble methods are trained using the 

same parameter (40 classifiers). With different tuning possibilities, we will have a very 

large number of possible combinations for all datasets, and each possible combination 

might generate different accuracy with respect to others.  

Bagging and Random forests are based on CART approach, in addition, each of 

the trees are grown to limit, without pruning to ensure the minimum bias the can be 

produced by each tree as well as to have a fair comparison against our approach. We used 

the default features selection method for Random Forests; where each node split is based 

on sampled number of features given by the square root of the possible number of 

features to split on. Furthermore, bagging configuration only varies from Random Forests 

in term of feature selection; bagging algorithm uses the whole features to define the best 

split point. Gradient Boosting and Multi-Class AdaBoost(SAMME) parameters are set to 

default with learning rates equal to 0.1 and 1.0 respectively; constructing and testing 40 

trees for each of them. 

All experiments executed in DELL and Macintosh Notebooks, with Core-i7, 8 
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GB RAM,and Core-i5, 4 GB RAM respectively. We used Anaconda Navigator Python 

3.6 to implement Bagged-RCL and for testing B-RCL against others. 

 

 

  

Number of classifiers Number of classifiers 

  

Number of classifiers Number of classifiers 

 

Figure 10. Effect of classifiers number on Bagged-RCL 
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5.4 Results 

In Table 14, we show the experiments results based on the configurations stated in 

the previous section. For each ensemble method, we report the average accuracy of the 

repeated 10 * 10-folds cross-validation. The reported accuracy indicates the number of 

correctly classified records over the total number of validation records. Generally, we can 

see that the obtained results are varies between different classification models; where 

some models performs better in certain dataset(s) and others perform poorly in some 

datasets. Therefore, to decide in which datasets B-RCL outperforms other models, not 

just an artifact of randomness is by decomposing the average score into the score of the 

10 executions, and then we draw line diagrams to observe the variance over the results 

during the execution. We can see that B-RCL achieves higher results in Iris, 

Breastcancer, Glass, Hayes-Roth, Heart and MPG; consequently, we perform comparison 

between B-RCL and the nearest competitor based on the behaviors over multiple 

executions of the algorithms in these datasets to determine the significance of the 

obtained results.  As shown in figure 11, we can observe that B-RCL outperforms 

Random Forests in 9 out of 10 iterations in Breast Cancer dataset, as well as for 7 runs 

out of 10 against Bagging Predictors using Hayes-Roth data set. In addition, it 

outperforms Gradient Boosting in 9 iterations on MPG dataset. For Iris, Glass, Heart we 

can observe that there is overlapping over the iterations; this means that the results are 

very close and we cannot judge the performance for these datasets over finite iterations. 

Further, we can see that AdaBoost have the least performance among others where it only 

outperforms other methods in one scenario shared with Bagging Predictors, while 

Random Forests preserves the highest performance in 4 out of 5 datasets.  
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Table 14 

 

Experiments Results (Accuracy %) 

 
Dataset SAMME Bagging Gradient  

Boosting 
Random Forests B-RCL 

Iris 94.6 94.8 94.7 94.7  95.1 

Breast Cancer 93.6* 95.5* 95.5* 96.4 96.9 

Sonar 70.6* 78.7 82.1* 81.5* 78.3 

Glass 65.9* 75.1 74.1* 76.6 77.3 

Vowel 78.1* 91.0 84.7* 95.2* 90.4 

Ionosphere 88.8* 91.5 92.3 93.1 92.5 

German credit  69.1* 74.4* 75.1* 74.9* 72.0 

Ecoli 79.3* 84.1 84.9 86.4* 84.4 

Hayes-Roth 81.8* 82.4 80.1* 81.6* 84.3 

Car 98.1* 98.1* 92.6* 97.7* 94.9 

Zoo 95.2 95.7 95.3 95.3 95.2 

Liver 62.6* 70.2 73.0* 71.9* 68.7 

Wine 91.0* 96.6 93.8* 98.0* 96.1 

Heart 73.2* 80.7* 81.5 82.7 83.0 

Balance 77.5* 80.1* 87.0* 82.6  82.4 

MPG 90.6* 93.6* 94.0* 89.8* 95.7 

Waveform 70.5* 80.7* 82.3* 82.7 82.6 

Twonorm 80.5* 94.5* 94.3* 95.6* 96.0 

Letters 70.7 82.7* 79.2* 84.7* 70.7 

Sat-image 79.9* 86.4 86.0* 87.5* 86.4 

Ringnorm 83.0* 92.5* 93.3* 93.9* 92.2 

Immunotherapy 80.9 84.7 84.6 84.6 84.1 

Cryotherapy 87.2* 90.6 89.3 92.5 91.2 

* B-RCL is significantly worse, * B-RCL is significantly better, level of significance 0.05 

 

 

For the largest datasets (Sat-image, Letters, Ringnorm, Twonorm and Waveform), 

we used only 10% (1-fold) of the data to train each classifiers, while using the remaining 

90% (9-folds) of the data in testing. From the obtained results, we can see that B-RCL is 

able to learn successfully from small portions of data and obtain good results. In order to 

analyze the obtained result and we performed two-tailed unpaired t test[55]. The reason 

behind using this method is to make sure that the discrepancies in accuracies are not from 

the same distribution and there are significant differences between them; therefore, this 

test is used to reject the null hypotheses of equal means. In this test we used the raw 

results from the experiments, 100 accuracy samples from each dataset as a result of 10 × 
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10 folds. In table 14, we indicate the significant differences with character (*), and the 

mean (cross-validation average) with bold font. Finally, we summarized the results from 

significance test in table 15. Generally, we can assume that our results fall in the same 

ranges compared to the other ensemble methods with these configurations. 

 

 

  
  

  
  

  

Figure 11. Performance of B-RCL against the nearst competitor. 
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Table 15 

 

Significance test results  
 

 RCL is Better RCL is Worse No significant 

difference 

SAMME 18 1 4 

Bagging Predictors 6 4 13 

Gradient Boosting 10 6 7 

Random Forests 3 10 10 

 

 

5.5 Chapter Summary 

In this chapter, we verified the usability of our new method and how it performs 

compared to others. We mainly conducted 3 experiments, the first experiment to test the 

stability of our proposed method in order to identify the most suitable ensemble method 

to be used alongside. The second experiment was conducted mainly to tune the ensemble 

hyper parameter, and to validate our selection to a certain number of classifiers in 

ensemble. The comparative study in section 5.4 confirms that we satisfied our main 

objective, by showing results that are within the range as other methods and in many 

cases, it outperforms other methods. Additional verification is performed through 

unpaired t test, and the reason is to stand on the significance of the obtained results. 

Moreover, the experiments performed on the largest datasets reveals the method ability to 

learn from small proportion of the data.  
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CONCLUSION AND FUTURE WORK 

 The main objective of this study was to design, implement and evaluate 

classification system based on randomized conceptual coverage, with exceptions to 

produce a model that able to predict with acceptable and comparable performance. 

Therefore, we started from the state of the art of machine learning by focusing on the 

ensemble learning approaches. Through this study, we discussed various ensemble-

learning methods, identifying the objectives and characteristics of each method, and to 

what extent they contribute to the learning problem. Then, we studied several 

implementations of ensemble learning using Formal Concept Analysis. Consequently, we 

designed and implemented our method while taking into account the notion of 

randomness in machine learning, and then we introduced it to ensemble learning by 

verifying which ensemble paradigm is suitable with our approach. From the obtained 

results, we conclude that: our method benefits from random conceptual coverage and 

randomized parallel ensemble learning, in addition achieved acceptable and comparable 

performance, and outperforms other methods in certain scenarios. 

 Future work will involve scaling the algorithm implementation to run in parallel, 

which will allow additional experiments to be carried on in short period of time, with 

significantly larger datasets. Additional enhancements might be introduced to the 

learning algorithm, such as embedding a specialized data reduction method in order to 

reduce the running time.  
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