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ABSTRACT

SEWAILEM, MAHA, FAIQ, Masters: June: 2019, Applied Statistics

Title: Inference in the Log-Logistic Distribution Based on an Adaptive Progressive Type-

Il Censoring Scheme

Supervisor of Thesis: Advisor’s Ayman, Suleiman, Bakleezi.

The primary aim of this study is to explore the maximum likelihood estimation
(MLE) and the Bayesian approach to estimate the parameters of log-logistic model and
calculate the approximate confidence interval for the parameters and the survival function
in both methods based on an adaptive progressive type-ll censoring scheme. The
parameters of the probability distribution are estimated via the Newton-Raphson Method
and the Bayes estimators, based on squared error loss function (SELF). The approximate
confidence interval for the reliability function has been calculated using the delta method;
the approximate credible intervals for the unknown parameters and the survival function
using the Bayesian approach have been constructed using Markov Chain Monte Carlo
(MCMC) method. Moreover, a Monte Carlo study has performed to examine the proposed
methods under different situations, based on mean squared error, bias, coverage
probability, and expected length estimated criteria. Application to real life data is included,
in order to view how the proposed methods, work in practice. It is observed that the

Bayesian approach is better than MLE for estimating the log-logistic model parameters.

Key words: Maximum likelihood estimation (MLE), Bayesian estimation, adaptive

progressive type-11 censoring scheme, squared error loss function (SELF)
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CHAPTER 1: INTRODUCTION

This chapter provides the study background by introducing the log-logistic
distribution, the problem statement, justification for the study, the general and specific
objectives, and the definition of a few key terms.

1.1 General Background and key Terms
Balakrishnan N. (1992) stated the probability density function (pdf) of a logistic

distribution with random variable X as the following:
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Let the random variable X have a logistic distribution with mean p, variance o2,
and supposed T=e*; then, T has a log-logistic distribution. Therefore, the corresponding

density function of this distribution is as follows:
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This form of the distribution was used to compare two unknown estimators of the
log-logistic parameters based on censored and un censored samples by AL-Haj Ebrahem
and Baklizi (2005). In statistical approach, the log-logistic distribution which noted in
economics as the Fisk distribution (Fisk, 1961). This distribution is widely used in life
testing experiment. The most common distinctive of this lifetime model is that, the
logarithm of the lifetime variable is logistically distributed due to the specific properties of
this distribution. Also, it has a resembling shape to the log-normal distribution, although it

has heavier tails. It is used in lifetime data analysis as a kind of a parametric model. For
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instance, the mortality rate from cancer resulting medication. Additionally, it has been used
to model the stream flow and precipitation in hydrology and in economics as a simple
model for distributing wealth or income. Moreover, this distribution is useful in
networking, to model the transmission times of data which keeps in mind both the network
and the software. Furthermore, the log-logistic distribution is a highly popular distribution,
which can be considered as a substitute to the Weibull distribution in real-life data analysis.
Moreover, in this distributional model on contrast to the log-normal distribution, the
cumulative distribution function has an explicitly closed written form; this cause it useful
for analysing the real-life or clinical data with censoring such as lung cancer data. In life
testing experiments, we are faced with censored data (Lawless, 1982). However, the
researchers may not often have enough time to observe the life time for all the test units in
the experiment. Decreasing the duration time of the experiment and the relate cost is main
the sense for censoring. For example, in some of real-life applications, the experimenters
must deal with some types of censored sample, due to the time limitation in the experiment
which avoid the experimenter to observe the life time of all units. A censoring scheme,
which make equity between (i) the total experimental duration time; (ii) the number of
experimental units; and (iii) the performance of statistical inference in the experiment result
which is adorable. The most regular censoring schemes are type-1 censoring — where the
experiment stop at a predetermined time T — and type-11 censoring — where the experiment
stop upon the m specified failure times obtained. However, these regular censoring
schemes do not have the ability for removing objects at each failure time except at the last
failure time observed. Due to this absence, a more public censoring scheme has been

imported. The progressive type-I1 censoring scheme has engaged much application in real-
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life testing experiment; however, this censoring scheme may not be applicable in some area
of real-life testing; due to pre-determined values of progressive censoring scheme. Thus,
the continuing censoring scheme of progressive type-Il is a type-Il hybrid progressive
censoring scheme proposed by Kundu and Joarder (2006). According to the primary
objective in life testing experiments, which aim to reducing the test duration time and the
related expenditure of the experiment which yield a high efficiency in statistical inference,
this censoring scheme may not be appropriate or will not be very efficient. Besides, the
complete observed failure times m is not fixed in an advance (random) and an inadequate
observed number m may not be satisfied in statistical inference. This thesis has thus
suggested a combination of type-I censoring and type-Il progressive censoring schemes,
known as an adaptive type-Il progressive censoring scheme, provided for real life studies
that takes in to account a process of adaptation. Consider n an identical, independent units
in a reliability experiment; let m and n are pre-determined early. In addition, let the
progressive censoring scheme R= (R, -++ -+ , R,;,) provided before starting the experiment;
however, some of the removal units during the test may change due to un satisfied m
observed failure times. Additionally, the experimental total time may run over the pre-fixed
time T. According to the research studied by Ng et al. (2009) , the first situation in this
censoring scheme explained in Figure 1(a) below as a pre-determined number of observed
failure time satisfied before time T (i.e. X;.m:n < T), While the second situation explained
below in Figure 1(b) as the experimental total time exceed a pre-determined time T due to
the assured assumption of obtaining m observed failure time (i.e. X;;..m:n > T). If the test

duration time pass the predetermined time T, the duration time of the experiment will not



go far from the previous fixed time due to primary concept of order statistics (David &
Nagaraja, 2003).This concept implies that the experiment speed to terminate by avoiding
removing survival units at points after the experiment pass the predetermined time T
except at the time of the last failure observed. Thus, the expected duration time of the test
will be smaller (Balakrishnan N. , 2007). Assume J represent the number of failure times
observed before the predetermined time T, i.e.,
Xjmn ST < Xji1.mem, J=01,---- ,m

where Xo.;nn = 0and X, 41.m:n = 0 .When the total time has passed the ideal test
time T, we set Ry q = - =R,_1=0andR,, =n—m— Z{zl R; . In this situation,
we do not remove any survival units except at the time of m*"* failure; this allows us to
acceleration the experiment to end as soon as possible and this modification on progressive
censoring scheme is satisfied when (J+1)"" observed failure time exceeds the
predetermined ideal test time for J+1<m. The predetermined value of ideal total test time
T is act as a major factor in determining the progressive censoring scheme and as an
adjustment between a lower experiment time and a higher number of observing failure
times. The first sever situation is occurred when the ideal total test time T approach to
infinity (T — oo); in this case the time is not important in the experiment — we thus have a
normal progressive type-I1 censoring scheme. While the second sever case can occur when
the ideal total test time equal to zero (T = 0); in this case, the experiment end quickly, and
this censoring scheme tends to the familiar type-ll1 (failure) censoring scheme.
Furthermore, if R;=0, i=1, 2, ...... m and m=n, the censoring scheme reduces to no

censoring, i.e., a case of a complete observed sample. Generally, an adaptive progressive



type-11 censoring scheme plays as a major factor in scale down the duration time of the
experiment and the related cost as well as increasing the efficiency in statistical inference
in any experimental design. For extensive knowledge on progressive censoring and real

applications in reliability and quality see Balakrishnan and Cramer (2014).

withdrawn withdrawn withdrawn withdrawn

R’y R Rm 1 Rm
Xiimen Xomn e Xmm—1:mn Xonmn T
Start End

(a) Experiment terminates before time 7" (i.e. Xm0 < 17)
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(b) Experiment terminates after time 7" (i.e. X,nm = 717)

Figure 1: Illustration of an adaptive type-I1 progressive censoring
scheme

1.1.1 Lifetime Analysis
A lifetime is defined as a positive random variable T, referring to the time elapsed
until the occurrence of the event under consideration. Examples of such events are as

follows: death, breakdown, entry into unemployment, or illness. Lifetime analysis is the



study of the delay of the occurrence of the event under study.

1.1.2 Censored Data
It refers to data some of which are only known with a lower or upper bound and not

a precise value.

1.1.3 Type I-Censored Data
Under a type-1 censoring scheme, the test will be terminated upon a pre-determined
time T is reached while the observed sample size m is not provided before the experiment

(random).

1.1.4 Type-1l Censored Data
Under a type -1l censoring scheme, the test will be ended upon the pre-fixed number

m is reached. Thus, the ideal test time of the real-life experiment is random.

1.1.5 Progressive Censoring Scheme
The natural concept of progressive censoring scheme is allowing to remove units

at each observed failure time.

1.1.6 Progressive Type-1 Censored Data

It is a general concept of type-1 (time) censoring scheme and applied in limited area
in real-life test due to the main purpose of censoring. In this censoring scheme the ideal
test times are predetermined in advance and the number of observed sample m are
determined until the experiment is terminated. Thus, the effective sample size m is

considered as random variable as well as the progressive censoring scheme (R;,i =



1.1.7 Progressive Type-11 Censored Data

It is a general concept of type-11 (failure) censoring scheme due to lake of flexibility
of removing survival units during the experiment. In this censoring scheme the effective
sample size m is predetermined in advance and the progressive censoring scheme are
provided previously, but the test duration time of the experiment is random. Suppose n
independent and identical units are put in the test and at each observed failure time, a
predetermined number of survival units is randomly extracted from the test and this manner
will continue until the time of last failure observed based on R,, =R;—m,i =

1, e e m — 1 removals survival units.

1.1.8 Type-Il Progressive Hybrid Censored Data

It is a generalization of type-ll progressive censoring scheme due to the main
purpose of censoring which is a compromise between saving the total test time and
observing many failure times during the experiment. In this censoring scheme, the ideal
duration time as well as a progressive censoring scheme are previously determined, but the
number of observed failure time m is random. Thus, the statistical inference in this

censoring scheme will not gain a high efficiency due to the effective random sample size.

1.1.9 Adaptive Progressive Type-11 Censored Data

It is a combination of type-1 and progressive type-1l censoring schemes which is
useful in many real-life tests. In this censoring scheme, the observed sample size m, the
removal units at each observed failure time, and the ideal total test time T are fixed in
advance by the experimenter. In addition, this censoring scheme called an adaption process

in case of modifying some of the values in the predetermined progressive censoring scheme



based on the pre-determined time T.
1.2 Literature Review

This section focuses on reviewing works by previous researchers relevant to the
study’s problem. The primary goal is to offer an overview of the approaches developed so
far in approximating the estimate of the parameters of log-logistic distribution under an
adaptive progressive type-I1 censored sample. This helps us gain insight in our research

while avoiding repetition.

1.2.1 Inference Based on the Log-Logistic Distribution

Various probability density functions have been proposed as models for lifetime
data. The log-logistic distribution (named in economics the Fisk distribution) is the most
widely used distribution in analysing lifetime’s data. It is suitable substitute for use as a
substitute to the Weibull distribution. It is a combination of the Gompertz and Gamma
distributions with the mean and variance equal to one.

In 2005, it was noticed from the available writers on the subject distribution; a study
considered distinguish between some estimators of the log-logistic model based on
uncensored and censored samples. The authors in this study focused on both un-censored
and censored sample in case of type-I (time) and type-II (failure) censoring schemes. They
derived the maximum likelihood (ML) equations of the two estimators and solving theses
equations simultaneously for the two unknown parameters. Thus, they found that the
equating equations cannot be solved for the two unknown parameters explicitly and finding
the roots need some numerical procedure like Newton-Raphson method. Thus, they

suggested an alternative to the MLE. In their research, they used the least squares



estimators by regressing certain estimators of the linearized distribution function on a
function of the observations themselves, as a first technique to compare between the cases
of data (complete and censored). The second technique applied under the type-11 censoring
scheme based on expanding certain terms in ML equations by using a Taylor series
expansion to get a new system of ML equation whose solution exist in closed form.
Moreover, they exhibited the estimated model parameters under a different situation. Based
on these simulations, some of the estimated criteria are calculated such as bias, mean
squared error, and the ratios of the mean square errors of the MLESs were also obtained.
They conclude that the biases all very small and consequently the estimators were
approximately unbiased. Further, the efficiency of the estimators under type-I1 (failure)
censoring are like to the estimators under type-I (time) censoring (AL-Haj Ebrahem &
Baklizi, 2005). In 2015, a study examined a statistical inference based on the log-logistic
distribution with right censored data. The author provided the Bayesian estimation based
on an informative gamma prior and derived the ML estimators. Additionally, the Bayesian
methods performed based on two types of loss functions. Thus, the ratio of two integrals
cannot be solved explicitly; therefore, the approximated Bayes estimators were estimated
by using the approximation of Lindley technique. The medical life-data set considered as
either randomly or non-informatively censored. In the first approach, the ML equations
cannot be solved explicitly, and the roots of these simultaneous equations estimated by
using an iterative (Newton-Raphson) procedure with a trivial value using a first order
Taylor series. In the Bayesian approach, the author first used the squared error loss function
technique to estimate the unknown parameters and noticed that the equations are not be

solved explicitly. Thereafter, he considered the Lindley approximation procedure to
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compute the ratio of two integrals. Then, he provided the asymmetric loss function with
Lindley’s approach to approximate the estimate of unknown parameters. Finally, a
simulation study was conducted based on three real-life data sets for analysing the proposed

methods. They were concluded that all the estimators are probably sufficient to estimate
the two unknown parameters. Additionally, maximum likelihood and Bayes estimation

based on symmetric loss function according to a Monte Carlo simulation study provide
approximately the same estimate for the scale parameter. Furthermore, the authors noticed
that for the shape parameter, Bayes using squared error loss is estimated well than the
maximum likelihood estimation. However, both estimation methods have the same value
of estimate due to the standard errors which approximately tend to same value in case of
large sample size. Additionally, the Bayes estimate for the shape parameter under the linear
exponential loss function best estimate when the sample size arranges between small to
moderate (Guure, 2015). In 2017, a modified of the ML equations of the log-logistic
distribution situated on progressive type-1l (failure) censoring scheme with binomial
removals was studied. In this study, the modified ML equations were derived due to the
non-closed form solutions. Thus, the solution of ML equations obtained by using a
Newton-Raphson method. The author modified the ML equations for the two unknown
parameters by linearizing some term using the Taylor series expansion. Moreover, the
asymptotic matrix of the inverse of the observed Fisher information matrix has obtained to
approximate the two-sided normal confidence interval for the parameters. Additionally, he
considered the MLEs of the reliability and hazard rate by using the invariance properties

of the MLEs. Moreover, the coverage probabilities of the asymptotic intervals for both
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parameters were derived for purpose of Monte Carlo simulation (Raykundaliya, 2017).

1.2.2 Inference Based on an Adaptive Progressive Type-11 Censoring Scheme

Several researchers have worked on an adaptive progressive type-11 censoring and
different distributions under this censoring scheme have been considered by many authors.

In 2009, a study considered a statistical inference of exponential life times under
adaptive type-Il progressive censoring scheme. A censoring scheme which combine
between type-l and type-1l progressively censoring schemes, known an adaptive type-II
progressively censoring scheme, was used; the authors provided an algorithm to generate
an adaptive progressive type-ll censored data from whatever continue distribution. The
number of observed failure m, initial time T, and a progressive censoring scheme (R;,i =
1, ,m) are needed to predetermine in advance. Additionally, the non-Bayesian
estimator of the lifetime parameter was derived, and the estimate of the variance-
covariance matrix was constructed. Thereafter, they provided various methods for build up
a confidence interval for the parameter. Moreover, they introduced the computational
formula for the expected duration time of the experiment and based on some properties of
the exponential distribution, they obtained the conditional expectation of x,,..,.,forj =
0,1,:--,m — 1. Furthermore, they examined the difference between two types of
progressive censoring schemes — adaptive PT-11 censored scheme and hybrid censoring
scheme — proposed recently by Kundu and Joarder (2006) based on the efficiency of the
MLE using Monte Carlo simulation. According to their results, the mean for point
estimation based on Bayesian approach and the Bayes credible interval are commended

when informative prior knowledge exist corresponding to the parameters; contrary, the
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MLEs and Bayes interval with non-informative prior for interval estimation should be
applied (Ng, Kundu, & Chan, 2009). In 2013, a research of generalized Pareto model based
on adaptive progressive type-11 censoring was introduced. According to this research, the
authors used maximum likelihood, Bayes, and bootstrap estimation techniques. In
Bayesian approach, the Bayes estimate based on non-informative prior of the unknown
parameters under SELF are founded under a simulated sample from the intractable
posterior density by using MCMC algorithm. The comparison between the Bayes
estimators and the ML estimators was performed. Furthermore, a real-life example was
illustrated using a real data to examine the suggested methods. Finally, the comparison
between the different methods were performed using a Monte Carlo simulation study.
According to this, the study concluded that the MLEs were nearly close to the Bayes
estimators (Mahmoud, Soliman, Abd Ellah, & El-Sagheer, 2013). Additionally, in 2016, a
study considered the exponentiated Weibull distribution to estimate based on an adaptive
type-11 progressive censoring scheme. This research focused on estimating the two
unknown parameters of the introduced model, reliability, and hazard functions using
Bayesian and frequentist approaches. The approximate confidence intervals and parametric
bootstrap confidence intervals in case of small effective sample size were according to the
MLEs. Moreover, the Bayes estimate for the unknown estimators under SELF by using
posterior samples which was generated via MCMC algorithm. Thus, the corresponding
approximate Bayes intervals for the unknown parameters were constructed. The authors
also provided a real example to examine the proposed methods of estimation. A Monte
Carlo simulation executed to investigate the proposed methods based on the estimated

criteria. For this purpose, the authors generate 1000 censored values from the introduced
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distribution. Moreover, a simulation study was performed based on various values of n,
different observed sample of m, and different progressive censoring schemes (CS). They
concluded that the achievement of the frequentist estimators was like that of Bayes
estimates under non-informative priors. Furthermore, the MSEs of the maximum
likelihood estimators and Bayes estimators were higher for the censoring scheme R,,, =
n—m,R; =0 fori # m than the censoring scheme Ry =n—m,R; =0,i #1 (AL
Sobhi & Soliman, 2016). Moreover, in 2016, the generalized exponential distribution was
provided to estimate the model parameters using the MLE and Bayesian approach as well
as the survival and hazard functions. Additionally, a study was performed to construct the
confidence intervals for these unknown quantities. The authors provided that; the
introduced model will tend to the exponential distribution when the shape parameter ©6=1.
Based on the ML equations for the two unknown parameters, the observed Fisher
information matrix was constructed. Thus, the inverse of this matrix is constructed.
Consequently, the approximate confidence intervals were constructed for the two unknown
parameters. By using the ML estimators for deriving the survival and hazard functions, the
authors used the delta method to calculate the approximate confidence intervals for these
functions. They created a linear approximation of that functions and then calculated the
variance due to analytically reasons of variance estimation. Additionally, a study
considered a Bayesian approach with informative and non-informative gamma prior for
that quantities under SELF procedure to get the Bayesian estimators. Due to the complicity
for solving the integrals analytically, they considered a numerical technique to approximate

these integrals. In fact, the authors provided the MCMC flexible method as an alternative
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method for Bayesian estimation for parameters and calculating the Bayes intervals via the
Metropolis-Hastings algorithm within Gibbs sampling. Moreover, a Monte Carlo study
was performed to examine the different proposed methods of estimation under different
choices of removal units with different choices of n and m. Finally, an illustrative real-life
example was considered to examine the proposed methods of estimation. Based on the
simulation study, the mean-squared error decreased as n and m increased. Furthermore, the
Bayesian approach with informative gamma priors was considered as the perfect way for
parameters estimation under all cases (Mohie EI-Din M. M., Amein, Shafay, & Mohamed,
2016). Moreover, in 2017, the exponentiated exponential distribution was stayed for an
adaptive progressive type-11 censoring scheme. In this study, the quantities were estimated
under the maximum likelihood and Bayesian estimation procedure. In Bayes approach the
parameters were estimated under two types of loss functions. Additionally, the
corresponding intervals based on both methods of parameters estimation were constructed.
Moreover, the authors provided a comparison study between the Bayesian and MLE
approaches using the estimated risk criterion via a simulation study. Finally, a study
presented a real-life example to examine the proposed methods. The simulation study
concluded that the progressive type-1l censoring scheme was occurred when the ideal total
test time approach to infinity (T — oo ) while the conventional type-11 censoring scheme
was obtained when the ideal total test time approach to zero (T — 0). In addition, the
introduced censoring scheme was reduced to case of un-censored scheme when the ideal
total test time equal to the effective sample size (m = n). Furthermore, this study

considered that, the Bayes estimate based on linear exponential loss function was
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influenced by shape parameter value. However, the Bayesian approach based on squared
error and linear exponential loss functions considered as the best method for estimating the
unknown parameters rather than the frequentist approach. In addition, when the shape
parameter tended to small value (approach to zero), the estimated risks criterion under
Bayesian approach based on both loss functions as nearly close to each other in all
situations. Further, the confidence interval approach to the nominal level under large values
of sample size, but the Bayes intervals tend in most cases (Ateya & Mohammed, 2017).
1.3 Problem Statement

Over the past few years, the log-logistic distribution has extensively been used to
analyse lifetime data, owing to its flexibility. This is a popular distributional model, that
can be used as a substitutional model to the Weibull distribution (a non-monotonic hazard
function) in lifetime or reliability experiments. Moreover, this life distribution has a
characteristic property which is the distribution function can be formed explicitly in closed
form in contrast to the log-normal distribution. This allows us to analyse many types of
censoring data.

Some related works were done based on log-logistic distribution, for instance, by
Guure (2015), the parameters of the log-logistic model were estimated based on right
censored data by using Bayesian and classical estimation methods. In addition, in case of
complete sample there is a study considered by Al-Shomrani et al. (2016) to estimate the
unknown parameters by using numerical MCMC techniques in Bayesian approach.

There is bounded work that can be found under an adaptive progressive type-1I
censored scheme based on different lifetime distributions, for example, the most important

research which was considered early in this filed were performed by Ng et al. (2009) to
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estimate the failure rate based on MLE method under an adaptive progressive type-I1I
censored data. By Mahmoud et al. (2013), the estimation of the unknown parameters of
generalized Pareto was also performed based on this type of censoring scheme by using
MLE method, Bayesian estimation and parametric bootstrap method with constructing the
corresponding intervals for these methods. Additionally, Mohie EI-Din et al. (2016)
discussed in their research the MLE and Bayesian approach to estimate the parameters of
the generalized exponential distribution and other quantities under this type of censored
data. Furthermore, AL Sobhi & Soliman (2016) studied in their research the exponentiated
Weibull model to estimate the parameters and other quantities based on this type of
censoring scheme by using ML and Bayesian methods. The latest study was considered by
Ateya & Mohammed (2017) to estimate the exponentiated exponential model parameters
by using the MLE and Bayesian methods based on this type of censoring scheme. However,
it has been noticed in the available studies that no work has been done based on an adaptive
progressive type-Il censoring scheme in case of log-logistic distribution.

Therefore, due to this work limitation, this study will develop the ML and Bayesian
estimation methods to estimate the parameters, survival function and the associated
intervals under an adaptive progressive type-11 censored data.

1.4 Significance of the Study

The results will make the log-logistic distribution applicable in cases where life
testing experiments are faced with adaptive progressive type-lIl censored data.
Additionally, the study will contribute and augment the usefulness of survival and

reliability analysis.
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1.5 Objective of the Study

The primary aim is to explore the maximum likelihood estimators (MLES) for the
log-logistic distribution parameters and for the survival function and calculate the
approximate confidence intervals for both the parameters and the survival function.
Additionally, the Bayesian method is to be used to approximately estimate the unknown
parameters (u, o) and approximate the Bayes credible interval for the parameters and
survival function based on an adaptive progressive type-11 censored data. Furthermore, a
Monte Carlo simulation is executed to consider their efficiency. To explain the proposed
methods, a data set using a real-life example is analysed.
1.6 Specific Objectives

To achieve the main objective stated above, we have the following specific
objectives:

1. Estimate the parameters of the log-logistic model and the survival function based
on the maximum likelihood method and construct the corresponding confidence
intervals.

2. Estimate the parameters, survival function, and the associated credible intervals
based on Bayesian approach under SELF.

3. Compare between the proposed methods of estimation by using a Monte Carlo
simulation.

4. Apply the estimation procedure under a life-time data.
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1.7 The Scope of the Study
This study considered only the Bayesian and classical approach to estimate the
parameters of the log-logistic distribution together with the survival function, constructing

the corresponding approximate confidence and credible intervals for each quantity.
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CHAPTER 2: MAXIMUM LIKELIHOOD AND BAYES ESTIMATION

2.1 Brief Overview of the Maximum Likelihood Inference

The MLE method is considered as suitable technique for driving estimators. In the
background, the primary concept of the MLE is to maximize the probability (likelihood)
of the observed sample. Additionally, this method yields with good efficiency in statistical
inference. Moreover, the method can be utilized to various distributional model and various
types of data. The Newton-Raphson method is considered as numerical techniques to find
these estimators in case of non-closed form solution of ML equations. The Newton-
Raphson method (also called Newton’s method) is one of the flexible numerical techiques
for solving a non-linear equations and used for optimization. It considered fixed point
iteration scheme for approximating the roots and requires that the function be continuous
and differentiable by using the concept of low-order terms of Taylor series. In general, this
method is need only one initial true value for each parameter and it is different than other
methods such as bisection and false methods which require two initial true values for each
parameter. To explain the method of Newton-Rapson method of solving a Nonlinear
equation, let f(a) be a function and let a a root of the equation f(a) = 0. Suppose x, is
an initial guess of the root, let x, is a next estimate value of the same parameter and we
continue to produce a good estimate until we approach to close estimate of the root. This
procedure in the Newton Raphson method is called an iterative procedure or an iterative
root-finding procedure. In specific, this method is efficient when the initial value is close
to the true value of the parameter and let a = x, + h denoted that the initial value with the

error of estimate the parameter. Thus, let h = a — x,, , where h measures how much the x,
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far from the true value of the parameter. By using the a few low-order terms of the Taylor
series expansion when the value of (a — x,) is quite close to zero, we can write the function
f(a)in (a — x,) as follows:

f@=fl+h~flx)+hf(x)=0

and
f(xo)
let h ~ =—== | then
£ (x0)
a=xy+h = xq— ]’:((x")) and let x; is a first estimate of a which denoted as x; = x, —
0
;((x")) and let x, = x; — e 1)) be a next estimate of the true value and consequently we
X0

continue to performed this procedure until convergence is obtained. Thus, the Newton

Rapson formula can be written as follows:

I (xn)

2.1.1 Log-Logistic Distribution

The log-logistic distribution has been proposed by Bain (1974) via a transformation
of a well-known logistic variate and its characteristic have been handled by Ragab and
Green (1984). Assume that the random variable T of the unit follows the log-logistic
distribution with two unknown parameters g and o. Moreover, the probability function
(pdf), cumulative distribution function (cdf), survival function and hazard rate function of

the log-logistic distribution are respectively as follows:

—n(lnt—p)
m e oVv3
f@) = 5 , 0<t<ow, —o<p<ow, 0<g<ow
—mt(Int—p)

[1+e E
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F(t) = e e , 0<t<o
1+e o3
R()=1- g , 0<t<o
l1+e o3
_fo_~ 1
h(t)_R(t)_at\/E ’ 0<t<oo
1+e ©oV3

—n(lnt—u)}

Where u and o are the location and scale parameters respectively. Figures 2 and 3 below
show the plots of the log-logistic probability density function and the survival function for

some distinct values of the parameters u and o respectively.
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Figure 2: Plots of the log-logistic pdf for some different parameter’s values
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Figure 3: Plots of the log-logistic survival function for some different parameter’s values

2.1.2 Likelihood Based on an Adaptive PT-11 Censored Data

Consider n units on a real life experiment are from a lifetime distribution with cdf

F(x;0), pdf f(x;0) by using the above-mentioned assumptions, the conditional

likelihood function of the vector of parameters © given the vector of observations t with

progressive censoring scheme R=(Ry,

defined on its introduction by Ng et al. (2009) as follows:

L6 1) =d;(TT% £ (t:; 0)) (11X — F(t;5 0))F) (1 — F(t; 0))

0<t1<t2<"'

where

m

o]

i=1

<ty <o

max{i—1,J}
n—i+1- Z Rk]

k=1

,R) under an observed sample. This was

n—m—2{=1Ri
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and the associated conditional likelihood function of log-logistic distribution is as follows:

J

—-m-Y’__R:

—n(int;—p) e Zl:l '
=d, | [, " e DA SN | R S
L(6;t)=d; | TI:Z, P — [, (1 —ae=op ||| 1 —w(ntm—1)

[1+e V3 } 1+e oV3 14e  oV3
Ri n—m—Z{_lRL
—m(Int;—p) -n(lntl n —n'(lntm ) -

\ e
-ﬂ(lnfm D)
1+e V3

S \
L(6;)=d; | T2 75 e_n‘;ftl — || T | —nanr, ol
FE )N

2.1.3 Maximum Likelihood Estimation
The MLEs for the two unknown parameters p and o have very interesting
asymptotic properties, such as Lehmann (1998) derived. Based on this method, the
estimators are consistent, asymptotically unbiased, and best asymptotically normal. Let
timam ,tm:mn denote an adaptive progressive type-lIl censored sample, with
(Ryq, =+ , R,;,) representing the progressive censoring scheme. The maximum likelihood
equation based on this observed data can be obtain by taking In for the likelihood function

as follows:

T n[Z, (int;—w)] _ m —n((lfntl 1w
lnL(e t) ConStant+Z =1 n otiV3 a3 2 Zi:l In{1+e V3

] ]
T —n(Int;—p)
_G_ﬁz R;(Int; — ) —ZRi ln<1 +e o3 )
i=1 =1
. —n(int, — 1) —m(ntm -
+ n—m—ZRi ——ln(1+e oV3 )] 1
[ o3 ey

i=1

The first partial derivatives of equation (1) with respect to p and ¢ are respectively as

follows:
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- 2¢. —n(int;—) 2
do T V3o2t; 11(1+e i ) a2y/3
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Equations (2) & (3) cannot be solved for p, o explicitly. So, these equations required to
solving numerically. The ML estimator for the reliability function by using the invariance
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property of ML estimator is as follows:

== 1
s(t)=1 SR (=) , £>0
14e 0V3

2.2 Asymptotic Confidence Intervals for p and ¢
The Fisher’s changing were discussed by Aldrich (1997) and the consequently

observed Fisher information matrix of the parameters p and o for large n, is given as

follows:
0%inL(6,t) 92InL(6,1)
A B au? ~ udo
I1(f,6) =
@ = 2mL(e,t) a%inL(6,t)
\ dodp do? ==t
where
—n(lnt;—p)\ —-n(lnt;—w —2n(Int;—u)
1+e 0oV3 e o3 L__o 2 =
0% InL(0.4)_ ~21 g ( ) i i
auz o3 <i=l —m(int;-p)\ 2
<1+e av3 >
—n(int;—p) —n(Intm—uw)
J — m — oz =
T ZR e o = nr (n-m—3¥L R)e B P .
O'\/g. L —n(int;—p) 2 O'\/§ ~n(Intm—m- 2 ( )
i=1 <1+e o3 ) <1+e ov3 )
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Regrettably, it is difficult to find the expected Fisher information analytically (it
does not exist). Therefore, by using the concept of large sample theory and the variance-
covariance matrix, which is the inverse of the observed Fisher information matrix
I71(4, 6), the approximate 100(1-a) % normal confidence intervals for the parameters p

and o are given respectively as follows:

(8= 201, 7.1+ 20, 7))
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and

(& ~ zay, /VT&), G+ za, VT&))

Where V(i) and V(&) are the estimate variance of i and &, given by the main diagonal

elements of 171(,4), and za, Tepresent the right tail probability “/2 for standard

distribution.
2.3 Approximate Confidence Interval for Survival Function

The Delta method (Greene, 2010), is applied to evaluate the approximate
confidence intervals for the survival functions (S(t)). This is a natural way for calculating
the confidence interval for functions of the MLEs, in which these functions are intractable
to analytically calculate the variance. Then, by creating linear approximations of this

survival function and then calculating the variance of linear approximation as follows:

= (M 6S(t)>

du do
where,
—n(lnt—p\ -n(int—p) —n(lnt—-p) -n(int—p)
T T
255 <1+e a3 )e V3 5 e V3 ¢ oV3 PG
ow —m(nt—p)\ *
(1+e oV3 )
—n(lnt—p)
T =
s0) _ 5F 7 ™
au —m(int—p)\ 2
<1+e aV3 )
—nt(lnt—p) —nt(lnt—p) _ —n(lnt—p) -—-n(lnt—u) _
RO i e s
o —m(Int—p)y 2
(1 +e o3 )
—nt(lnt—p)
— = n(lnt-p)
os0_¢ " oin ®

ac —m(int-w\ >
<1+e av3 )
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and the approximate estimate of the variance of S(t) is given by the following:
Var(S(6) ~ [T (1, 0)Gl s

Then the approximate confidence interval for S(t) is as follows:

(s’(f) ~ zq, /VEr(st)) ,S() + 2, /VT&(S@)))

2.4 Brief Overview of the Bayesian Approach

In Bayesian analysis, the parameters of interest are considered as some random
variables and follow some prior distributions. The informative prior distribution is
considered when we have previous information about the model parameters. When no
previous information for the parameters accessible, it is more suitable to consider the non-
informative prior for the Bayesian analysis. Additionally, Jeffreys’ prior, is defined as a

d?log(p(y\0))
e

non-informative prior since p(0) « [1(9)]%, where 1(0) = —E, [
Furthermore, a conjugate prior distribution p(68) for a given sampling distribution is one
where the prior density as well as the likelihood density function have the same functional
structure. Moreover, the comfortable analytical results for conjugate prior make it is useful
to use, but it is not desirable to handling for this relaxed. A prior distribution captures all
the known information about the parameters before collecting data and it is updated when
this sample information is collected. The Bayes’ Rule is the behind of this updating which
is called posterior distribution. Before introducing the Bayesian estimation procedure, we
began to state Bayes’ Theorem first, the idea behind Bayesian approach. Bayes’ Theorem
is also known as Bayes’ rule and was introduced by the Thomas Bayes (Casella & Berger
, 2002). Suppose A & B are two events in a sample space and the probability of these events

denoted as P(A) & P(B) , respectively; then, the conditional probability formulas can be
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written as p(A\B) = % and p(B\A) =

%, where p(4) # 0 & p(B) # 0. The
conditional probability formulas are helpful in deriving Bayes’ rule when substituting

p(A N B) = p(B\A)p(A) in the conditional probability formula as p(4\B) = %

P(B\A;)P(4;)
%2, P(B\Aj)p(4))

The Bayes’ rule can be reported as p(A4;\B) = when A; represent a set of

mutually exclusive events. Thus, the Bayes’ rule is considered as posterior =

likelihood x prior
marginal likelihood

2.4.1 Bayesian Estimation

Bayesian method provides substitutional procedure to estimate the parameters,
principally when previous knowledge about p and o is available. Hence, the Bayes
estimates for the unknown parameters (i, o) and the survival function, that represents the
probability for an observation to stay alive at the end of duration test time. Thus, the
corresponding credible intervals for a parameters and survival function based on an
adaptive progressive type-Il censored data under SELF are constructed. Because the
posterior distributions result from more complicated models and cannot be written in
closed form, a MCMC algorithm has been provided in this chapter to simulate samples

from posterior distribution. Therefore, the non-informative priors for both parameters p
and o are considered as 7y ()W) o 1 and m,(o\p) « i . When multiplying 7, (1) by 7, (a\
W), the corresponding prior density of pu and o are considered as follows m(y, o) o
(W1, (a\W), clearly m(y, o) « ai Additionally, an informative conjugate logistic prior

for L is considered and because the scale parameter ¢ of the log-logistic distribution is non-
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negative, the gamma prior for this parameter is taken, which is not necessarily the
conjugate prior; this prior distribution is more applicable in the sense that it is more flexible

and popular (Guure, 2015). The prior density is considered for p asm;(pn) «

)
—[ exp((_£_93)]2 with known hyper parameters(6 = 0,8 = 1) and for parameter o
1+expT

asm,(o\pn) « a“‘lexp(%’), where a and b represent the hyper parameters that are

assumed known (a=1, b = 1). The known hyper parameters are considered in such a way
that the expected value by using these known values equal the initial true value of the
corresponding parameters which known as prior mean of the suggested prior distribution.
Consequently, the joint prior density of p and o are considered as follows:

a-1 —o_(u-0)
o exp(5 T )

7T(Il: U) X o 2
[1+exp(—(“ﬁ e))]

Subsequently, the general form of the posterior density is proportionally to the

likelihood function times the prior density function as the following:

m

p(y, o\t) x 1_[[ likelhood 1{prior}

i=1

and the corresponding joint posterior conditional density function with non-informative

priors is

R; 7
n—m—Zi=1 R;
—n(int;—p) —n(Int;—p) —n(intm—p
|

byaqm _™ e o3 7 e oV3 e oV3 1
p(p., ) Hi:l atiV3 —n(int;—w]? Hi=1 —m(nti—p —(Intm—p) X v
1+807\/§ 1+e 03 [1"'3 a3

while the corresponding joint posterior conditional density function with an informative

prior is
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—n(lntl [ —n(lntl 1) -n(lntm n)
e J e
p(u' O')OC Hl lo‘t‘/— —n(lntl u) l_L=1 —n(lntl u) —n'(lntm ) X
[ e \ +e / 1+e g\/—
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Lexp(GZ btr () ))

(u— 9))]

o.a

[1+exp(

Hence, the Bayes estimates of any function of p and o such as h (u, o), based on
squared error loss function is as follows:

h@) :{Ep,u\t (h(“' 0))}

- f:z_w foo h(wo)X L(t;n0)Xm(wo)dodp
f:f_oo o L(two)xn(wo)dodp

9)

All the Bayesian estimators under the SEL function considered as ratio of two
integrals and it is not possible to compute equation (9) in closed form. MCMC is one of
the best numerical approximation for estimating these unknown parameters and provides
flexibility way for extracting posterior samples from their respective posterior
distributions. Therefore, the MCMC algorithm needs to perform as a numerical method or
we require some approximation techniques (Lindley’s or the Tierney-Kadane method) to
approximate the above integrals for evaluating the approximate Bayes estimates of the
parameters and the reliability function. Using MCMC by choosing Gibbs sampling or the
Metropolis procedure has been used to simulate random values from the intractable
posterior density function, approximate the Bayesian estimator, and build the associated
credible interval for the parameters and reliability function. See Hamada et al. (2008) for
more information about the MCMC techniques and Bayesian reliability examples. Here,

the Metropolis-Hastings algorithm has been considered to simulate samples from the full
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conditional posterior distribution and the proposal proceeds by proposing a joint move on
(u, 0). Thus, the approximate Bayes estimate for the parameters and survival function are
computed, in turn, to construct the associated credible intervals. The Metropolis-Hasting
algorithm is illustrated below; which provides a flexible way for obtaining random values
from a target distribution with the logistic candidate for parameter p and the inverse-
gamma candidate for parameter o; we assume that © is a 2-dimensional, real-valued
parameter vector as follows:

1) Initialize j = 0,pY = 0,600 =1

2)Setj =1

3) Draw u* from a logistic (uU=Y, s2) candidate distribution.

4) Draw ¢*from an inverse gamma( (a(f‘l))2 +2), (cr(f‘l))2 + 1) candidate

distribution.

p(6*/data) f(9(j'1)/9*))
p(0U~V/data) f(8*/6U-D)

5) Compute the acceptance probability r = min (1,
6) Draw u from a uniform (0,1) density.

7)Y Ifu <r,set 800 = 6* Otherwise, set §0) = gU—D
8) Increment j and repeat steps 3 to 7 for N=11000 times.

9) Approximate Bayes estimates of pand o using MCMC samples based on the SEL

function as figg= ﬁZ?’:MH n® and Gzg= ﬁz’i"zml a® where M is burn-in.
10) Substitute x® and ¢ in to equation S(t) = 1 — ——=y 0 <t < oo to
1+e 0V3

compute  SD(6), SA (), -+, SM(¢).

11) An approximate Bayesian estimates of the S(t) , based on the SEL function, can be
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K N ®
found as g, (t) = 2= O

N-M
12) Compute the credible intervals of u and o, order Wy 41, Hpggz, o , Ly and
OM+1)OM+2) """ »ON @S [y, Hp, == e s HUy—ym and gy, 05, - -+ ,0n—um-Then, the 100(1 —

@) % symmetric credible intervals of pu and ¢ constructed as

(“((N—M)(“/z)r “«N—M)(l—“/z))) and (U«N—M)(“/z))(t)' ”((N—M)(l—“/z)))-
13) Compute the credible intervals of S(t), order Sp1(t), Spypa2(t), = -+ ,Sy(t) as

S1(t) < 8,(t) < veveee < Sy_m(t). Then, the 100(1 — a) % symmetric credible intervals

of S(t) as (S -an(a/,)) (B Su-an (-, (®))-
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CHAPTER 3: SIMULATION STUDY, RESULTS AND COMPARISONS

3.1 Simulation Study
A Monte Carlo simulation study was executed to examine the efficiency of different
estimators, comparing the suggested methods of estimates of u, o, and S(t). This simulation
study was implemented using the R program. R is an interactive software application
designed specifically to perform calculations, manipulate data, and produce graphical
displays of data and results. It is a free software project, part on an international effort to
share software without charge (Linder, Seefeld, & Ed, 2015). Generate an adaptive
progressive type-Il censored sample with pre-determined number of n and m and the
progressive censoring schemes with given values of the ideal censoring time T from the
log-logistics distribution is described below using the procedure described by Balakrishnan
and Sandhu (1995) and by Ng et al. (2009) . For illustration, the algorithm to generate an
adaptive progressively type-I1 censored sample from any continuous life time distribution

is considered as follows:

1. Define the values of n, m, u, 6, T and (R4, Ry, ***, Ryp)-

2. Simulate m random variables from uniform (0,1) as W,, W, «-- --- W,.
3 SetV, = WM/ UHRmtRm gt tRM=i+ 0 g
: ; A 2, :

4. SetUi=1-VmV/m—-1...Vm—i+ 1fori = 1,2,...,m.Then
U1,U2,....Um, is the m progressive type-ll observed sample from uniform
distribution.

5. Set Xi = F~}(Ui, 0) for i = 1,2,...,m ,where F~1(.,8) represent the quantile

function of the log-logistic distribution. Thus, X1,X2,...,Xm, is the needed

34



progressive type-I1 observed sample from the specified distribution F(.) by using
inverse transformation method.

6. ldentify the value of J, where x;.,., <T < Xj41.m:n, and discard the sample

xj+2:m:n,------1xm:m:n.
Simulate the first m —J — 1 order random values from a truncated distribution

fx)

considered as ————
[1_F(xj+1:m:n)]

. . ]
with sample size (n—X/_ R —J—1) as
Xj+2:mm Xj+3:mm """ Xmimin-

A Monte Carlo simulation is performed under different numbers of total sample
size n, observed sample size m, and different cases of progressive censoring schemes (CS)

for each choice of m and n which tabulated in Table 1.

Table 1: The Different Progressive Censoring Scheme R with Different Choices of n and
m

Scheme n m CS
1 50 30 (0*29,20)
2 (0*10,2*10,0*10)
3 (20,0*29)
4 50 40 (0*39,10)
5 (0*15,1*10,0*15)
6 (10,0*39)
7 70 40 (0*39,30)
8 (0*10,2*15,0*15)
9 (30,0*39)
10 70 50 (0*49,20)
11 (0*20,2*10,0*20)
12 (20,0*49)
13 90 50 (0*49,40)
14 (0*15,2*20,0*15)
15 (40,0*49)
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16 90 60 (0*59,30)
17 (0%20,2*15,0%25)
18 (30,0*59)

Hence, a simulation study is executed with respect to two distinct values of ideal
total test time T as (1, 1.8) where these censoring times are calculated in the form of
F~1(0.5) =1 and F~1(0.75) = 1.8 by using the quantile function of the log-logistic
distribution as shown in Appendix A. To generate the data, we suppose that the initial true
values of the parameters (u,o) are (0,1) respectively, for the survival function with
different values of ¢ (0.5,1,2) as (0.7784,0.5,0.2215) corresponding respectively to each

value of t. For prior information, the non-informative priors for both parameters are
considered as the flat prior for parameter p and the i Jeffrey prior for parameter o, which

is given as MCMCQO. Additionally, an informative prior (MCMC1) is considered as
u following the logistic distribution with known hyper parameters (6=0, f=1) and ¢
following the gamma distribution with known hyper parameters (a=1, b=1). To find the
Bayesian estimate and the 95% Bayes interval for the unknown parameters, we simulate
11000 MCMC values from the target distribution using the Metropolis-Hastings algorithm.
Generally, successive samples (values) from the target distribution are correlated; however,
this autocorrelation approach to disappear as the MCMC algorithm run for long time. In
detail; For each choice of n and m with each choice of progressive censoring scheme we
replicate the process 2000 times to generate an adaptive progressive type-Il censored
sample.
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3.1.1 Convergence Diagnostic

To use the MCMC samples for inference we must ensure that the Markov chains
have reached stationarity. The convergence diagnostic helps us in determining when this
convergence is achieved and guide us to determine the number of values needs to remove
from the beginning of the chain. However, most diagnostics are designed to verify a
necessary yet insufficient condition for convergence. Moreover, the initial values of the
chains are not simulated from the target distribution, so these simulated values of the
parameters do not represent the required distribution. Thus, after the MCMC run for long
time, the effect of correlated values will die and the distribution after the burn-in period
tends the posterior distribution (target distribution). The simplest path to estimate the
approximate number of values to be removed is to draw the time series plots of MCMC
draws for each parameter against the iteration number. A coda package (Bayesian package)
was used, an R package providing several functions for the plotting and analysis of
generated posterior samples. For these functions to work, we need to transform the MCMC
samples to an object of class “memc” to allow us the available functions in the package
coda. As seen from Figures 2 and 3, the two rows correspond to the i and o parameters,
respectively; thus, there are two plots for each parameter. The left plot in both figures
indicate that a burn-in period is needed; the chains are mixing well because the mean and
variance are relatively constant — this means that the chains have reached stationarity when
MCMC runs for much longer. The word ‘mixing’ connotes how well the algorithm reach
to the parameter’s distribution. The burn-in is considered as M=1000 to generate
independent random values and to try to enter a region with high posterior probability; this

burn-in does not represent samples from the posterior distribution. The right plots for both
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figures are called the marginal density plots for the posterior parameters. Thus, the
marginal plots represent the distribution of values of the parameters in the MCMC chain.
It is clear that, the marginal density plot for parameters u and o are unsmoothed; this is
because the bandwidth function (bwf) in the plot function in the coda package is omitted

and, consequently, the bandwidth is calculated by default as:

-1
bw = 0.9ns . min (sd(x),IQlI;(:)).
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Figure 4: Trace plot and probability density plot of the location parameter
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Figure 5: Trace plot and probability density plot of the scale parameter

Generally, the choice of the bandwidth value controls the smoothness of plotting
the marginal density function. One of the techniques to smooth this density can be done by
using R program. Thus, the correct bandwidth approximately obtained by giving the
density function to an approximately independent subsample of the data. To know where
the autocorrelation is approximately not significant, we draw the autocorrelation plots for
each parameter, as shown in Figures 4 and 5. Moreover, the ‘autocorr function’ in the
package coda provides the output for the lags and the corresponding autocorrelations which
noted as lag 50 gives the nearly uncorrelated data (value near to zero). Thus, we sub-sample
the output at spacing 50; then, we draw again the marginal density plot for both parameters
with the new bandwidth calculated using the R code, as shown below in Figures 6 and 7;

this approach is provided in detailing by Geyer (2012).
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Figure 8: Smooth probability density plot for the location parameter with burn-in=1000
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Figure 9: Smooth probability density plot for the scale parameter with burn-in=1000

Additionally, Figures 8 and 9 show the histograms of the values in the MCMC
chain for parameters p and o, respectively after iteration 1000. In addition, if the chain does

not mix well, we can increase the discard values, increase the simulated sample or changing
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the choice of the proposal function. For more information about convergence diagnostics
with coda package in R, see Hartig (2011). Appendix B presents the R code for generating
an adaptive progressive type-1l censored sample, convergence diagnostic, and a Monte
Carlo simulation study for one choice of n, m, and T, based on one case of progressive

censoring scheme for different methods of estimation.
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Figure 10: Histogram of the random draws of the location parameter with burn-in=1000

42



sigma

Densiy
|

= [ I

T T T T T T 1
oS o 1.0 1.2 1. 4 1. 1.8

sigrmiihat

Figure 11: Histogram of the random draws of the scale parameter with burn-in=1000

3.2 Results and Comparisons

For both methods, maximum likelihood and Bayesian estimation, the process was
replicated 2000 times. For each generated sample, we construct a 95% confidence interval,
determined whether the initial true value fall inside the interval, and compute the width of
the constructed interval. The coverage probability was measured as the count of intervals
contained the initial true value divided by 2000, while the estimated average length of the
confidence and credible intervals were evaluated as the average of lengths for all intervals
over 2000. The mean, bias, and MSE of u, o, and S(t) parameters for each method are
tabulated in Tables 2-5 for the two values of T. From the simulation study, obviously the
MLEs are near to that of the Bayes estimators (MCMCO) in case of non-informative priors.
Thus, it is preferable to use the MLEs in return of the Bayes estimation when no reliable
information is available, since the Bayes estimators are more intractable. Furthermore,

considered from the tables below, the bias was being very small, not presented in all cases
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of the progressive censoring schemes with all methods of estimations; consequently, the
estimators are approximately unbiased. It is obvious that the mean squared errors (MSES)
are reduced in all methods when the values of n and m are increased. Moreover, where n is
fixed and m increases, the MSEs are decreased in all situations with all methods.
Furthermore, the MSEs in non-classical method with informative prior (MCMC1) have the
smallest values in most cases placed on different situations. Besides, the MSEs via different
progressive censoring schemes were compered, it is considerable that the MSE values are
small and near to each other in each different set of n and m, but the progressive censoring
scheme R = (0, ... ... ... ,n—m) is most efficient for all choices and provides
approximately the smallest MSE for all estimators. It is considerable that, there is no big
difference between the two distinct values of ideal total test time based on the estimated

criteria in all cases.

Table 2: Mean, Bias and MSE of Location & Scale Parameters Based on T=1

(n,m) CS MLE MCMCO MCMC1

(50,30) (0%%,20) Tl G Tl c 1] c
Mean —0.0094 0.9789 0.0005 1.0145 0.0018 1.0120
Bias —0.0094 —0.0210 0.0005 0.0145 0.0018 0.0120
MSE 0.0199 0.0261 0.0207 0.0260 0.0212 0.0243

(010 210 010)
Mean —0.0105 0.9815 0.0078 1.0109 -0.0013 1.0069
Bias —0.0105 —0.0184 0.0078 0.0109 -0.0013 0.0069
MSE 0.0240 0.0230 0.0244 0.0239  0.0239 0.0219
(20,0%%)

Mean -0.0038 0.9873 0.0006 1.0092 0.0035 1.0102
Bias -0.0038 -0.0126 0.0006 0.0092 0.0035 0.0102
MSE 0.0291 0.0220 0.0312 0.0221  0.0309 0.0221
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(n,m) CS MLE MCMCO MCMC1
(50,40) (0%%,10) v G v c 1] c
Mean 0.0015 0.9800 0.0005 1.0110 0.0015  1.0079
Bias 0.0015 -0.0199 0.0005 0.0110 0.0015  0.0079
MSE 0.0187 0.0179 0.0181 0.0176 0.0173 0.0171
(015‘ 110' 015)
Mean -0.0022 0.9813 -0.0010 1.0089 -0.0052  1.0057
Bias -0.0022  -0.0186 -0.0010 0.0089 -0.0052  0.0057
MSE 0.0181 0.0176 0.0213 0.0181 0.0198 0.0163
(10,039)
Mean 0.0028 0.9866 0.0050 1.0132 -0.0008 1.0032
Bias 0.0028 -0.0133 0.0050 0.0132 -0.0008  0.0032
MSE 0.0228 0.0169 0.0242 0.0182  0.0227  0.0165
(70,40)  (03°,30)
Mean -0.0098 0.9761 0.0024 1.0109 0.0015  1.0088
Bias -0.0098  -0.0238 0.0024 0.0109 0.0015 0.0088
MSE 0.0148 0.0181 0.0155 0.0200 0.0143  0.0190
(010’ 215, 015)
Mean -0.0080  0.9856 0.0018 1.0073 -0.0016 1.0036
Bias -0.0080  -0.0143 0.0018 0.0073 -0.0016  0.0036
MSE 0.0181 0.0163 0.0183 0.0167 0.0183 0.0151
(30,039
Mean -0.0055 0.9833 0.0026 1.0135 0.0025  1.0065
Bias -0.0055  -0.0166 0.0026 0.0135 0.0025  0.0065
MSE 0.0224 0.0160 0.0229 0.0163 0.0223  0.0163
(7050)  (0%°,20)
Mean -0.0053 0.9844 0.0052 1.0069 -0.0004  1.0046
Bias -0.0053  -0.0155 0.0052 0.0069 -0.0004  0.0046
MSE 0.0125 0.0136 0.0136 0.0141 0.0139  0.0142
(020, 210, 020)
Mean -0.00005  0.9880 0.0006 1.0062 0.0008  1.0048
Bias -0.00005 -0.0119 0.0006 0.0062 0.0008  0.0048
MSE 0.0144 0.0143 0.0156 0.0146 0.0146  0.0130
(20,0%)
Mean -0.0011 0.9939 0.0005 1.0050 -0.0009  1.0042
Bias -0.0011  -0.0060 0.0005 0.0050 -0.0009  0.0042
MSE 0.0186 0.0138 0.0185 0.0135 0.0176  0.0136
(90,50)  (0%°,40)
Mean -0.0083 0.9829 0.00008  1.0032 0.0036  1.0106
Bias -0.0083  -0.0170  0.00008 0.0032 0.0036  0.0106
MSE 0.0116 0.0152 0.0116 0.0155 0.0116  0.0159
(015,220, 015)
Mean -0.0040 0.9869 -0.0018 1.0048 0.0009  1.0019
Bias -0.0040  -0.0130 -0.0018 0.0048 0.0009 0.0019
MSE 0.0142 0.0131 0.0142 0.0143 0.0140 0.0132
(40,0%9)
Mean 0.0026 0.9973 -0.0027 1.0069 -0.0046 1.0032
Bias 0.0026 -0.0026 -0.0027 0.0069 -0.0046 0.0032
MSE 0.0183 0.0134 0.0180 0.0132 0.0183  0.0126
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(90,60)  (0%,30)
Mean -0.0048 09873 00042 09983 -0.0009  1.0029
Bias -0.0048 00126  0.0042  0.0016 -0.0009  0.0029
MSE 00110 00119 00107 00114 00114 0.0119
(020 215 025)
Mean -0.0064  0.9918 00020 10039 -0.0005 0.9991
Bias -0.0064 -0.0081 00020  0.0039 -0.0005 -0.0008
MSE 00121 00109 00123 00114 00122 00113
(30,0%%)
Mean 00018 09923 00027 10018 0.0004  1.0062
Bias 0.0018  -0.0076 ~ 0.0027  0.0018 0.0004  0.0062
MSE 00156 00116 00153 00108 00151 0.0115
Table 3: Mean, Bias and MSE of S(t) Based on T=1
(n,m) CSs MLE MCMCO MCMC1
(50,30)  (02°,20) S(0.5) S(@1) S () S(0.5) S (1) S(2) S(0.5) sQ) S @)
Mean 0.7800 0.4937 0.2133 0.7750 0.4958 0.2234 0.7756 0.4970 0.2237
Bias 0.0015 —0.0062 —0.0081 -0.0034 —0.0041 0.0018 -0.0027 -0.0029  0.0022
MSE 0.0027 0.0044 0.0036 0.0024 0.0043  0.0035 0.0025 0.0044  0.0034
(010, 210, 010)
Mean 0.7779 0.4926 0.2146 0.7762 0.4984 0.2262 0.7740 0.4945 0.2230
Bias —0.0005 —0.0073 —0.0069 —0.0021 —0.0015 0.0047 -0.0043  -0.0054 0.0014
MSE 0.0027 0.0052  0.0040 0.0026 0.0049  0.0039 0.0026 0.0050  0.0037
(20,02
Mean 0.7782 0.4974 0.2190 0.7728 0.4989 0.2269 0.7736 0.5004 0.2280
Bias —0.0001 -0.0025 —0.0024 -0.0055 —0.0010 0.0053 -0.0048 0.0004  0.0064
MSE 0.0036 0.0060  0.0040 0.0037 0.0061  0.0040 0.0037 0.0060  0.0040
(50,40) (0%°,10)
Mean 0.7825 0.4998  0.2181 0.7753 0.4997  0.2247 0.7762 0.4998  0.2243
Bias 0.0040 -0.0001 —0.0034 -0.0030 —0.0002 0.0032 -0.0022  -0.0001 0.0028
MSE 0.0024 0.0040  0.0029 0.0024 0.0036  0.0025 0.0022 0.0035  0.0025
(015’ 110’ 015)
Mean 0.7811 0.4983 0.2171 0.7742 0.4980 0.2243 0.7737 0.4962 0.2223
Bias 0.0026 —0.0016 —0.0044 -0.0041 —0.0019 0.0028 -0.0047 -0.0037  0.0008
MSE 0.0024 0.0038  0.0027 0.0026 0.0043  0.0029 0.0024 0.0040  0.0027
(10,0%%)
Mean 0.7808 0.5008 0.2207 0.7746 0.5021 0.2283 0.7749 0.4993 0.2243
Bias 0.0024 0.0008 —0.0007 —0.0037 0.0021  0.0067 -0.0034  -0.0006 0.0028
MSE 0.0029 0.0047  0.0031 0.0030 0.0048  0.0031 0.0028 0.0045  0.0029
(70,40) (0%9,30)
Mean 0.7803 0.4939  0.2130 0.7766 0.4975  0.2233 0.7768 0.4972  0.2227
Bias 0.0018 —0.0060 —0.0085 —0.0018 —0.0024 0.0017 -0.0015 -0.0027 0.0011
MSE 0.0018 0.0033  0.0027 0.0018 0.0032  0.0027 0.0017 0.0030  0.0025
(010’ 215‘ 015)
Mean 0.7779 0.4943 0.2162 0.7754 0.4966 0.2239 0.7749 0.4954 0.2223
Bias —0.0004 -0.0056 —0.0052 —0.0030 —0.0033 0.0023 -0.0034  -0.0045 0.0008
MSE 0.0020 0.0039  0.0030 0.0019 0.0037  0.0029 0.0019 0.0037  0.0028
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(n,m) CS MLE MCMCO MCMC1
(30,0%%) S (0.5) s@) O) S(05) S @) S @) S(05) S s@
Mean 0.7788 0.4969  0.2175 0.7735 0.5002  0.2276 0.7751 0.5004  0.2261
Bias 0.0003 —0.0030 —0.0040 —0.0049 0.0002  0.0060 -0.0032 0.0048 0.0045
MSE 0.0028 0.0047 0.0030 0.0027 0.0045  0.0030 0.0027 0.0044 0.0029
(7050)  (0%,20)
Mean 0.7799 0.4970  0.2165 0.7780 0.5015  0.2247 0.7766 0.4987  0.2225
Bias 0.0014 -0.0029 —0.0049 —0.0003 0.0015  0.0032 -0.0017  -0.0012  0.0009
MSE 0.0017 0.0026 0.0020 0.0018 0.0027  0.0019 0.0018 0.0028 0.0020
(020 210 020)
Mean 0.7804 0.4990  0.2190 0.7759 0.4981  0.2235 0.7763 0.4985  0.2234
Bias 0.0020 —0.0009 —0.0024 -0.0025 —0.0018 0.0019 -0.0021  -0.0014  0.0018
MSE 0.0018 0.0030 0.0023 0.0018 0.0032  0.0024 0.0017 0.0030 0.0022
(20,0%%)
Mean 0.7782 0.4991 0.2208 0.7753 0.4998  0.2247 0.7753 0.4993 0.2239
Bias —0.0001  -0.0008 —0.0007 -—0.0030 —0.0001 0.0031 -0.0030  -0.0006  0.0024
MSE 0.0023 0.0038  0.0025 0.0023 0.0037  0.0024 0.0022 0.0035  0.0023
(90,50) (0*9,40)
Mean 0.7794 0.4944  0.2147 0.7776 0.4970  0.2211 0.7772 0.4987 0.2238
Bias 0.0009 —0.0055 -0.0067 -—0.0007 —0.0029 -0.0004 -0.0012 -0.0013  0.0022
MSE 0.0013 0.0025  0.0023 0.0014 0.0024  0.0021 0.0014 0.0024  0.0021
(015 220 015)
Mean 0.7791 0.4963 0.2176 0.7753 0.4954  0.2218 0.7769 0.4972 0.2222
Bias 0.0007 —0.0036 —0.0039 -0.0030 —0.0045 0.0003 -0.0015  -0.0027  0.0007
MSE 0.0015 0.0030  0.0024 0.0014 0.0029  0.0024 0.0015 0.0029  0.0023
(40,0*%)
Mean 0.7787 0.5009  0.2228 0.7739 0.4979  0.2240 0.7740 0.4976  0.2229
Bias 0.00027 0.0009  0.0012 —0.0045 —0.0020 0.0025 -0.0043  -0.0023  0.0013
MSE 0.0022 0.0038  0.0024 0.0021 0.0036  0.0024 0.0023 0.0037  0.0022
(90,60) (05 30)
Mean 0.7793 0.4967  0.2172 0.7797 0.5005  0.2223 0.7770 0.4982  0.2217
Bias 0.0009 —0.0032 —0.0042 0.0012 0.0005  0.0008 -0.0014  -0.0017  0.0002
MSE 0.0013 0.0023  0.0019 0.0013 0.0022  0.0017 0.0014 0.0023  0.0018
(020 215 025)
Mean 0.7775 0.4959  0.2179 0.7770 0.4990  0.2233 0.7772 0.4976  0.2215
Bias —0.0008 —0.0040 —0.0035 -0.0013 —0.0009 0.0018 -0.0011  -0.0023  0.0002
MSE 0.0013 0.0025  0.0019 0.0014 0.0025  0.0018 0.0013 0.0025  0.0019
(30,05%)
Mean 0.7797 0.5004  0.2212 0.7771 0.5008  0.2244 0.7756 0.5000 0.2245
Bias 0.0012 0.0004 —0.0002 -—0.0013 0.0008  0.0028 -0.0028 0.0001  0.0030
MSE 0.0019 0.0032  0.0021 0.0018 0.0030  0.0020 0.0019 0.0030  0.0019
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Table 4: Mean, Bias and MSE of Location & Scale Parameters Based on T=1.8

(n,m) cS MLE MCMCO MCMC1
(50,30) (0%°,20) vl c v G v c
Mean -0.0150 0.9751 0.0056 1.0138 0.0038 1.0138
Bias -0.0150 -0.0248 0.0056 0.0138 0.0038 0.0138
MSE 0.0198 0.0245 0.0217 0.0259 0.0205 0.0244
(010‘ 210' 010)
Mean -0.0116 0.9772 0.0004 1.0071 0.0040 1.0041
Bias -0.0116 -0.0227 0.0004 0.0071 0.0040 0.0041
MSE 0.0242 0.0227 0.0252 0.0234 0.0247 0.0219
(20,02%)
Mean -0.0088 0.9904 0.0061 1.0082 0.0044 1.0107
Bias -0.0088 -0.0095 0.0061 0.0082 0.0044 0.0107
MSE 0.0297 0.0207 0.0300 0.0222 0.0306 0.0195
(50,40) (03°,10)
Mean -0.0018 0.9802 -0.0022 1.0061 -0.0024 1.0081
Bias -0.0018 -0.0197 -0.0022 0.0061 -0.0024 0.0081
MSE 0.0185 0.0174 0.0193 0.0180 0.0184 0.0171
(015’ 110, 015)
Mean 0.0011 0.9867 0.0055 1.0034 0.0020 1.0064
Bias 0.0011 -0.0132 0.0055 0.0034 0.0020 0.0064
MSE 0.0206 0.0182 0.0212 0.0169 0.0198 0.0175
(10,03%)
Mean -0.0032 0.9873 0.0032 1.0077 -0.0068 1.0029
Bias -0.0032 -0.0126 0.0032 0.0077 -0.0068 0.0029
MSE 0.0220 0.0169 0.0239 0.0176 0.0241 0.0160
(70,40) (0%°,30)
Mean -0.0094  0.9823  -0.0021  1.0036  -0.0042  1.0011
Bias -0.0094 -0.0176 -0.0021 0.0036 -0.0042 0.0011
MSE 0.0150 0.0184 0.0151 0.0185 0.0153 0.0188
(010' 215’ 015)
Mean -0.0063 0.9838 0.0026 1.0094 0.0050 1.0070
Bias -0.0063 -0.0161 0.0026 0.0093 0.0050 0.0070
MSE 0.0187 0.0166 0.0193 0.0163 0.0186 0.0169
(30,039)
Mean -0.0016 0.9858 -0.0052 1.0054 0.0037 1.0024
Bias -0.0016 -0.0141 -0.0052 0.0054 0.0037 0.0024
MSE 0.0228 0.0153 0.0225 0.0159 0.0215 0.0153
(70,50) (0%°,20)
Mean -0.0015 0.9850 0.0036 1.0053 -0.0001 1.0096
Bias -0.0015 -0.0149 0.0036 0.0053 -0.0001 0.0096
MSE 0.0134 0.0139 0.0136 0.0140 0.0137 0.0139
(020’ 210’ 020)
Mean -0.0043 0.9903 0.0006 1.0106 0.0037 1.0033
Bias -0.0043 -0.0096 0.0006 0.0106 0.0037 0.0033
MSE 0.0145 0.0141 0.0150 0.0144 0.0175 0.0133
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(n,m) CS MLE MCMCO MCMC1
(20,0%%) u G u c u °
Mean -0.0016 0.9855 0.0041 1.0033 -0.0004 1.0030
Bias -0.0016 -0.0144 0.0041 0.0033 -0.0004 0.0030
MSE 0.0176 0.0135 0.0184 0.0127 0.0178 0.0131
(90,50) (0%9, 40)
Mean -0.0073 0.9827 0.0048 1.0054 0.0036 1.0048
Bias -0.0073 -0.0172 0.0048 0.0054 0.0036 0.0048
MSE 0.0117 0.0154 0.0127 0.0155 0.0118 0.0148
(015' 220‘ 015)
Mean 0.0016 0.9887 -0.0016 1.0073 0.0032 1.0068
Bias 0.0016 -0.0112 -0.0016 0.0073 0.0032 0.0068
MSE 0.0136 0.0016 0.0142 0.0133 0.0146 0.0137
(40,0%9)
Mean -0.0047 0.9950 0.0030 1.0036 -0.0003 1.0103
Bias -0.0047 -0.0049 0.0030 0.0036 -0.0003 0.0103
MSE 0.0179 0.0132 0.0179 0.0131 0.0189 0.0133
(90,60) (05°,30)
Mean -0.0008 0.9906 0.0004 1.0031 0.0021 1.0072
Bias -0.0008 -0.0093 0.0004 0.0031 0.0021 0.0072
MSE 0.0111 0.0119 0.0110 0.0121 0.0108 0.0120
(020' 215’ 025)
Mean -0.0054 0.9866 -0.0012 1.0003 -0.0009 1.0051
Bias -0.0054 -0.0133 -0.0012 0.0003 -0.0009 0.0051
MSE 0.0118 0.0116 0.0130 0.0116 0.0126 0.0114
(30,0%9)
Mean -0.0020 0.9929 -0.0045 1.0069 -0.0022 1.0046
Bias -0.0020 -0.0070 -0.0045 0.0069 -0.0022 0.0046
MSE 0.0152 0.0110 0.0159 0.0117 0.0157 0.0104
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Table 5: Mean, Bias and MSE of S(t) Based on T=1.8

nm CS MLE MCMCO MCMC1
(nm)
(50,30) (0%°,20) S©05 S O) S (05) O S@ s(05 s S @)

Mean 0.7788  0.4909  0.2111 0.7767 0.4984  0.2248  0.7760  0.4978  0.2246
Bias 0.0003  -0.0090 —0.0104 -0.0017 —0.0015 0.0033  0.0024 -0.0021  0.0030
MSE 0.0025  0.0045  0.0036 0.0026 0.0044  0.0036 0.0024 0.0043  0.0034

(010 210 010)

Mean 0.7784  0.4918  0.2132 0.7745 0.4950  0.2234 0.7761 0.4966  0.2241
Bias —0.0000 -0.0081 —0.0082 -0.0038 —0.0049 0.0018 —0.0023 -0.0033  0.0025
MSE 0.0027  0.0051  0.0041 0.0027 0.0051  0.0039  0.0026  0.0051  0.0038

(20,02%)

Mean 0.7757  0.4953  0.2185 0.7749 0.5016  0.2283 0.7734 0.5006  0.2286
Bias —0.0026 -0.0046 —0.0029 -0.0035 0.0016  0.0067 -0.0049 0.0006  0.0070
MSE 0.0037  0.0061  0.0039 0.0036 0.0060 0.0039  0.0035 0.0060  0.0039

(50,40) (032,10)

Mean 0.7815  0.4987  0.2172 0.7754 0.4983  0.2229 0.7748 0.4983  0.2233
Bias 0.0031 -0.0012 —0.0043 -0.0030 -0.0016 0.0013  -0.0035 -0.0016 0.0017
MSE 0.0025  0.0039  0.0027 0.0025 0.0038  0.0027  0.0024  0.0037  0.0025

(015’ 110’ 015)

Mean 0.7806  0.4996  0.2196 0.7772 0.5004  0.2252 0.7759 0.4991  0.2245
Bias 0.0022  -0.0003 —0.0019 -0.0011 0.0004 0.0036  -0.0025 -0.0008 0.0029
MSE 0.0026  0.0043  0.0030 0.0024 0.0043  0.0030  0.0024  0.0039  0.0029

(10,0%9)

Mean 0.7788  0.4981  0.2189 0.7751 0.5007  0.2265 0.7728 0.4964  0.2227
Bias 0.0003 -0.0018 —0.0026 -0.0032 0.0007  0.0049 -0.0055 -0.0035 0.0011
MSE 0.0028  0.0046  0.0030 0.0029 0.0047  0.0031  0.0029  0.0048  0.0030

(70,40) (0%,30)

Mean 0.7791  0.4938  0.2143 0.7766 0.4956  0.2205 0.7765 0.4945 0.2194
Bias 0.0007 -0.0061 —0.0072 -0.0017 -0.0043 -0.0009 -0.0019 -0.0054 —0.0021
MSE 0.0018  0.0032  0.0028 0.0018 0.0032  0.0026  0.0018 0.0032  0.0027

(010’ 215’ 015)

Mean 0.7788  0.4949  0.2164 0.7749 0.4968  0.2247 0.7764 0.4980  0.2248
Bias 0.0003  -0.0050 —0.0050 -0.0034 -0.0031  0.0031 -0.0019 -0.0019  0.0033
MSE 0.0020  0.0040  0.0031 0.0020 0.0038  0.0030  0.0019  0.0038  0.0030

(30,0%9)

Mean 0.7794  0.4987  0.2194 0.7728 0.4966  0.2234 0.7763 0.5008  0.2255
Bias 0.0010 -0.0012 —0.0021 -0.0055 -0.0033 0.0019  -0.0020  0.0008  0.0040
MSE 0.0028  0.0047  0.0030 0.0027 0.0044  0.0029  0.0026  0.0043  0.0028

(70,50) (0%°,20)

Mean 0.7808  0.4986  0.2179 0.7778 0.5003  0.2239  0.7757  0.4989  0.2237
Bias 0.0024 -0.0013 —0.0035 -0.0006 0.0003  0.0023 -0.0027 -0.0010  0.0022
MSE 0.0017  0.0028  0.0021 0.0017 0.0028 0.0021  0.0018  0.0028  0.0020

(020 210 020)

Mean 0.7786  0.4970  0.2183 0.7750 0.4980 0.2243  0.7768  0.5013  0.2252
Bias 0.0001  -0.0029 —0.0031 -0.0033 -0.0019 0.0027  -0.0015 0.0013  0.0036
MSE 0.0018  0.0031  0.0023 0.0017 0.0030  0.0023  0.0022  0.0035  0.0023

(20,0%%)

Mean 0.7800  0.4991  0.2188 0.7767 05014  0.2256  0.7756  0.4995  0.2239
Bias 0.0016  -0.0008 —0.0026 -0.0016 0.0014  0.0040  -0.0027 -0.0004  0.0023
MSE 0.0023  0.0037  0.0023 0.0022 0.0037  0.0024  0.0022  0.0035 0.0023
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(n,m) CS MLE MCMCO MCMC1

(90,50) (0%, 40) S(©05 S O) S(05) O S@ S5 s S @)
Mean 0.7798  0.4949  0.2150 0.7785 0.4989  0.2231  0.7782  0.4986  0.2227
Bias 0.0014 -0.0050 —0.0065 0.0008 -0.0010 0.0016  -0.0001 -0.0013 0.0011
MSE 0.0014  0.0025 0.0023 0.0014 0.0026  0.0023 0.0013 0.0024 0.0021
(015' 220' 015)
Mean 0.7805 0.4989 0.2197 0.7748 0.4956  0.2226 0.7764 0.4978 0.2239
Bias 0.0020 -0.0010 —0.0017 -0.0035 -0.0043  0.0010  -0.0020 -0.0021  0.0024
MSE 0.0016  0.0031  0.0025 0.0015 0.0029  0.0023  0.0015 0.0029  0.0024
(40,0%%)
Mean 0.7770 0.4976 0.2200 0.7763 0.5004  0.2251 0.7738 0.4991 0.2256
Bias -0.0014 -0.0023 —0.0015 -0.0020 0.0004 0.0035 -0.0046 -0.0008 0.0041
MSE 0.0023 0.0037 0.0024 0.0021 0.0036  0.0024 0.0023 0.0037 0.0024
(90,60) (0°,30)
Mean 0.7799 0.4987 0.2192 0.7775 0.4988  0.2221 0.7772 0.4995 0.2234
Bias 0.0014 -0.0012 —0.0022 -0.0008 -0.0011 0.0005 -0.0012 -0.0004 0.0019
MSE 0.0014  0.0023  0.0018 0.0014 0.0022  0.0017  0.0013 0.0022  0.0017
(020 215 025)
Mean 0.7791  0.4963  0.2170 0.7766 0.4970  0.2215  0.7757  0.4972  0.2226
Bias 0.0006  -0.0036 —0.0045 -0.0017 -0.0029 0.0001 -0.0026 -0.0027  0.0010
MSE 0.0014  0.0025  0.0020 0.0014 0.0026 ~ 0.0021  0.0014  0.0025  0.0020
(30,05%)
Mean 0.7783  0.4987  0.2202 0.7737 0.4976  0.2232  0.7748  0.4985  0.2236
Bias —0.0005 -0.0012 —0.0013 -0.0047 -0.0023 0.0017 -0.0035 -0.0014  0.0020
MSE 0.0019  0.0031  0.0020 0.0020 0.0032  0.0020  0.0019  0.0031  0.0020

Additionally, a simulation study is executed to consider the coverage probability
and average length as shown below in Tables 6-9 for the two distinct values of T. From
these tables, it is considerable that the expected width of the confidence interval (CI) and
the credible interval decrease for all estimators in all methods as n and m increase as well
as n is fixed and m increases. Furthermore, it is clear that the values of average length are
small in all methods with different cases which means that the better performance of the
confidence and Bayes intervals. The coverage probabilities of the estimate confidence
intervals in the MLEs are close to the nominal level of 0.95 for u, ¢, and S (t=0.5, 1, 2) as
n become large, but fail to reach to the desired level as n become small. Alternately, it is
clear that in most cases the coverage probabilities of the credible intervals are approach to

the nominal level of 0.95 for u, ¢, and S (t=0.5, 1, 2). In addition, it is obvious that there is
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no big difference between the two distinct values based on estimated criteria.

Table 6: Expected Length of 95% CI. & Coverage Probability for Location & Scale
Parameters Based on T=1

(n,m) CS MLE MCMCO MCMC1
(50,30) (0%°,20) Tl c 1] c sl c
EL. 0.5467 0.6056 0.5821 0.6459 0.5765 0.6320
CP. 0.9375 0.9155 0.9465 0.9405 0.9365 0.9515
(010’ 210[ 010)
EL. 0.5925 0.5788 0.6207 0.6089 0.6128 0.5991
CP. 0.9275 0.9200 0.9460 0.9475 0.9415 0.9555
(20,0%%)
EL. 0.6719 0.5630 0.6940 0.5823 0.6908 0.5773
CP. 0.9475 0.9275 0.9485 0.9495 0.9470 0.9390
(50,40) (0%°,10)
EL. 0.5225 0.5083 0.5428 0.5327 0.5390 0.5255
CP. 0.936 0.926 0.9480 0.9515 0.9550 0.9455
(015’ 110[ 015)
EL. 0.5397 0.5051 0.5588 0.5271 0.5547 0.5214
CP. 0.9485 0.927 0.9385 0.9440 0.9410 0.9525
(10,039)
EL. 0.5835 0.5013 0.6051 0.5214 0.5946 0.5114
CP. 0.9445 0.9275 0.9380 0.9420 0.9505 0.9525
(70,40) (0%, 30)
EL. 0.4677 0.5262 0.4926 0.5536 0.4898 0.5462
CP. 0.9405 0.9275 0.9380 0.9460 0.9410 0.9450
(010' 215’ 015)
EL. 0.5213 0.4962 0.5378 0.5143 0.5307 0.5076
CP. 0.9340 0.9325 0.9460 0.9520 0.9460 0.9530
(30,039)
EL. 0.5793 0.4869 0.6004 0.5046 0.5940 0.4972
CP. 0.9410 0.9280 0.9490 0.9465 0.9490 0.9415
(70,50) (0%9,20)
EL. 0.4482 0.4619 0.4607 0.4763 0.4581 0.4724
CP. 0.9500 0.9385 0.9450 0.9505 0.9395 0.9495
(020, 210’ 020)
EL. 0.4755 0.4543 0.4864 0.4667 0.4824 0.4623
CP. 0.948 0.9345 0.9455 0.9425 0.9430 0.9485
(20,0%9)
EL. 0.5250 0.4489 0.5314 0.4554 0.5290 0.4513
CP. 0.9425 0.9300 0.9440 0.9470 0.9435 0.9475
(90,50) (0%9,40)
EL. 0.4194 0.4756 0.4324 0.4902 0.4349 0.4882
CP. 0.9435 0.9325 0.9480 0.9450 0.9490 0.9420
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(015' 220‘ 015)

EL.
CP.

(40,0%%)

EL.
CP

(90,60) (0%, 30)

EL.
CP.

(020‘ 215' 025)

EL.
CP.

(30,059)

EL.
CP.

0.4574 0.4484
0.9285 0.9385
0.5259 0.4422
0.9405 0.9390
0.4007 0.4266
0.9390 0.9415
0.4349 0.4132
0.9430 0.9445
0.4787 0.4078
0.9395 0.9350

0.4666
0.9385

0.5313
0.9465

0.4059
0.9420

0.4398
0.9435

0.4826
0.9425

0.4609
0.9390

0.4480
0.9490

0.4335
0.9500

0.4202
0.9490

0.4130
0.9400

0.4630
0.9420

0.5258
0.9455

0.4074
0.9310

0.4367
0.9405

0.4825
0.9400

0.4546
0.9485

0.4418
0.9445

0.4332
0.9490

0.4141
0.9420

0.4120
0.9400

Table 7: Expected Length of 95% CI. & coverage Probability for S(t) Based on T=1

(n,m) cS MLE MCMCO MCMC1
(50,30)  (0%°,20) S(05) S() S(@ S(05 S@O) S@ S05 s@ S@
EL. 0.1955 0.2523 0.2303 0.1946 0.2487 0.2321 0.1927 0.2471 0.2298
CP. 0.9245 0.9405 0.9145 0.9500 0.9465 0.9440 0.9405 0.9365 0.9490
(010' 210’ 010)
EL. 0.1984 0.2724 0.2420 0.1957 0.2668 0.2425 0.1954 0.2653 0.2393
CP. 0.9335 0.9345 0.9090 0.9455 0.9460 0.9420 0.9485 0.9415 0.9460
(20,029)
EL. 0.2358 0.3041 0.2440 0.2322 0.2962 0.2432 0.2302 0.2950 0.2419
CP. 0.9305 0.943 09170 0.9395 0.9485 0.9465 0.9445 0.9470 0.9435
(50,40)  (0%,10)
EL. 0.1931 0.2399 0.1997 0.1918 0.2354 0.1996 0.1909 0.2349 0.1985
CP. 0.9315 0.9345 09170 0.9510 0.9480 0.9550 0.9545 0.9550 0.9495
(015' 110’ 015)
EL. 0.1929 0.2478 0.2075 0.1917 0.2430 0.2067 0.1912 0.2423 0.2054
CP. 0.9335 0946 0.9285 0.9410 0.9385 0.9365 0.9450 0.9410 0.9490
(10,039)
EL. 0.2088 0.2652 0.2127 0.2073 0.2600 0.2124 0.2059 0.2586 0.2100
CP. 0.9305 0.9420 0.9330 0.9395 0.9380 0.9480 0.9420 0.9505 0.9490
(70,40) (039,30)
EL. 0.1659 0.2170 0.2028 0.1641 0.2135 0.2033 0.1638 0.2131 0.2023
CP. 0.9285 0.9435 0.9300 0.9380 0.9380 0.9380 0.9505 0.9410 0.9490
(010’ 215, 015)
EL. 0.1705 0.2387 0.2145 0.1690 0.2349 0.2134 0.1678 0.2331 0.2113
CP. 0.9360 0.9370 0.9190 0.9465 0.9460 0.9430 0.9375 0.9460 0.9500
(30,039
EL. 0.2054 0.2641 0.2116 0.2031 0.2586 0.2122 0.2017 0.2577 0.2106
CP. 0.9350 0.9390 0.922 0.9465 0.9490 0.9440 0.9440 0.9490 0.9490

53



(n,m) CS MLE MCMCO MCMC1
(70,50) (0,200 S(05) S(@) S@ S@O5 SO S@ S(05) S@) S
EL. 0.1654 0.2056 0.1782 0.1628 0.2018 0.1784 0.1629 0.2012 0.1766
CP. 0.9415 0.9480 0.9380 0.9420 0.9450 0.9475 0.9380 0.9395 0.9470
(020’ 210’ 020)
EL. 0.1646 0.2171 0.1892 0.1633 0.2133 0.1878 0.1624 0.2125 0.1861
CP. 0.9380 0.9455 0.9325 0.9350 0.9455 0.9395 0.9480 0.9430 0.9445
(20,09
EL. 0.1873 0.2373 0.1910 0.1847 0.2329 0.1892 0.1838 0.2319 0.1877
CP. 0.9400 0.9390 0.9320 0.9440 0.9440 09475 09415 0.9435 0.9455
(90,50) (0%, 40)
EL. 0.1468 0.1934 0.1837 0.1450 0.1904 0.1830 0.1449 0.1897 0.1827
CP. 0.9380 0.9445 0.9235 0.9415 0.9480 0.9465 0.9320 0.9490 0.9495
(015' 220’ 015)
EL. 0.1495 0.2096 0.1919 0.1482 0.2064 0.1895 0.1468 0.2048 0.1888
CP. 0.9385 0.9370 0.9195 0.9455 0.9385 0.9315 0.9345 0.9420 0.9475
(40,0%%)
EL. 0.1848 0.2368 0.1918 0.1828 0.2323 0.1889 0.1818 0.2309 0.1869
CP. 0.9305 0.9345 0.9285 0.9530 0.9465 0.9435 0.9405 0.9455 0.9475
(90,60)  (0%,30)
EL. 0.1466 0.1835 0.1636 0.1440 0.1804 0.1627 0.1442 0.1801 0.1619
CP. 0.9455 09410 0.925 0.9395 0.9420 0.9505 0.9355 0.9310 0.9375
(020’ 215’ 025)
EL. 0.1475 0.1981 0.1751 0.1449 0.1941 0.1737 0.1448 0.1939 0.1722
CP. 0.9520 0.9435 0.9285 0.9400 0.9435 0.9440 0.9405 0.9405 0.9395
(30,0%9)
EL. 0.1706 0.2170 0.1749 0.1686 0.2127 0.1729 0.1677 0.2118 0.1722
CP. 0.9355 0.9370 0.9230 0.9440 0.9425 0.9465 0.9425 0.9400 0.9460
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Table 8: Expected Length of 95% CI. & Coverage Probability of Location & Scale

Parameters Based on T=1.8

(n,m) CS MLE MCMCO MCMC1
(50,30) (0%°,20) Tl G v G 1] c
EL. 0.5446 0.6033 0.5804 0.6445 0.5765 0.6334
CP. 0.9350 0.9140 0.9430 0.9440 0.9455 0.9555
(010‘ 210' 010)
EL. 0.5942 0.5771 0.6212 0.6098 0.6163 0.5986
CP. 0.9345 0.9190 0.9430 0.9500 0.9440 0.9520
(20,029
EL. 0.6738 0.5652 0.6942 0.5831 0.6897 0.5769
CP. 0.9455 0.9315 0.9495 0.9445 0.9430 0.9570
(50,40) (0%9,10)
EL. 0.5226 0.5085 0.5410 0.5308 0.5414 0.5255
CP. 0.9385 0.9285 0.9425 0.9515 0.9500 0.9475
(015’ 110, 015)
EL. 0.5460 0.5098 0.5614 0.5267 0.5592 0.5216
CP. 0.9380 0.9210 0.9340 0.9475 0.9445 0.9465
(10,039)
EL. 0.5836 0.5019 0.6009 0.5179 0.5932 0.5110
CP. 0.9450 0.9280 0.9390 0.9370 0.9365 0.9505
(70,40) (0%9,30)
EL. 0.4707 0.5293 0.4889 0.5507 0.4856 0.5399
CP. 0.9420 0.9265 0.9455 0.9450 0.9445 0.9495
(010' 215’ 015)
EL. 0.5219 0.4962 0.5410 0.5162 0.5355 0.5100
CP. 0.9365 0.9340 0.9430 0.9555 0.9440 0.9440
(30,039)
EL. 0.5810 0.4877 0.5960 0.5004 0.5914 0.4945
CP. 0.9380 0.9335 0.9450 0.9485 0.9420 0.9480
(70,50) (0%°,20)
EL. 0.4484 0.4623 0.4614 0.4778 0.4609 0.4752
CP. 0.9430 0.9340 0.9430 0.9515 0.9385 0.9510
(020’ 210, 020)
EL. 0.4782 0.4564 0.4896 0.4693 0.5292 0.4519
CP. 0.9465 0.9385 0.9480 0.9445 0.9475 0.9425
(20,0%9)
EL. 0.5207 0.4450 0.5322 0.4547 0.5290 0.4513
CP. 0.9505 0.931 0.9445 0.9520 0.9410 0.9475
(90,50) (0%9,40)
EL. 0.4193 0.4754 0.4332 0.4923 0.4330 0.4872
CP. 0.9370 0.9265 0.9310 0.9405 0.9455 0.9510
(015, 220’ 015)
EL. 0.4616 0.4508 0.4719 0.4635 0.4697 0.4597
CP. 0.9420 0.937 0.9455 0.9485 0.9425 0.9360
(40,0%°)
EL. 0.5246 0.4411 0.5323 0.4466 0.5337 0.4467
CP. 0.9470 0.9330 0.9445 0.9440 0.9445 0.9415
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(90,60)
EL.
CP.

(020‘ 215' 025)

EL.
CP.

EL.
CP.

(059, 30)

(30,059)

0.4021
0.9350

0.4332
0.9460

0.4788
0.9450

0.4279
0.9420

0.4113
0.9230

0.4082
0.9390

0.4071
0.9370

0.4377
0.9360

0.4851
0.9335

0.4356
0.9495

0.4185
0.9400

0.4141
0.9440

0.4095
0.9430

0.4392
0.9450

0.4813
0.9470

0.4352
0.9455

0.4179
0.9425

0.4104
0.9490

Table 9: Expected Length of 95% CI. & Coverage Probability of S(t) Based on T=1.8

(n, m) cSs MLE MCMCO MCMC1
(50,30)  (02°,20) S (0.5) S(1) S S@O5 S@) S@ S@O5 S@O S@
EL. 0.1960 0.2526  0.2296 0.1935 0.2482 0.2320 0.1927 0.2473 0.2295
CP. 0.9280 0.9425 0.9095 09435 0.9430 0.9370 0.9465 0.9455 0.9435
(010' 210’ 010)
EL. 0.1980 0.2738  0.2437 0.1963 0.2682 0.2434 0.1941 0.2663 0.2420
CP. 0.9310 0.9380 0.9125 0.9405 0.9430 0.9455 0.9430 0.9440 0.9460
(20,029)
EL. 0.2371 0.3039  0.2437 0.2317 0.2968 0.2441 0.2303 0.2943 0.2419
CP. 0.9360 0.9430 09210 0.9465 0.9495 0.9485 0.9445 0.9430 0.9470
(50,40)  (0%°,10)
EL. 0.1933 0.2399 0.1996 0.1920 0.2353 0.1988 0.1916 0.2351 0.1980
CP. 0.9270 0.9385 0.9250 0.9405 09425 0.9450 0.9490 0.9500 0.9475
(015' 110’ 015)
EL. 0.1923 0.2486  0.2107 0.1909 0.2444 0.2098 0.1903 0.2432 0.2078
CP. 0.9215 0.9350 0.9245 0.9465 0.9340 0.9380 0.9435 0.9445 0.9420
(10,03%)
EL. 0.2093 0.2651 0.2122 0.2070 0.2599 0.2117 0.2061 0.2579 0.2090
CP. 0.9320 0.9415  0.9295 0.9440 0.9390 0.9390 0.9450 0.9365 0.9445
(70,40) (0%%,30)
EL. 0.1662 0.2170  0.2031 0.1645 0.2142 0.2031 0.1633 0.2128 0.2005
CP. 0.9325 0.9430 0.9230 0.9440 0.9455 0.9450 0.9420 0.9445 0.9420
(010’ 215' 015)
EL. 0.1701 0.2390 0.2154 0.1690 0.2353 0.2149 0.1675 0.2334 0.2129
CP. 0.9300 0.9365 0.9245 09375 09430 0.9490 0.9495 0.9440 0.9490
(30,03%)
EL. 0.2051 0.2641  0.2125 0.2033 0.2591 0.2107 0.2013 0.2577 0.2103
CP. 0.9305 0.9325 09285 09475 09450 0.9520 0.9510 0.9420 0.9485
(7050)  (0%°,20)
EL. 0.1650 0.2055 0.1785 0.1635 0.2022 0.1782 0.1630 0.2018 0.1772
CP. 0.9330 0.9400 0.9275 09475 09430 0.9445 0.9395 0.9385 0.9435
(020, 210, 020)
EL. 0.1649 0.2178  0.1903 0.1634 0.2141 0.1890 0.1834 0.2318 0.1886
CP. 0.9375 0.9455  0.936 0.9530 0.9480 0.9420 0.9415 0.9475 0.9490
(20,09
EL. 0.1867 0.2374  0.1903 0.1845 0.2329 0.1898 0.1839 0.2323 0.1883
CP. 0.9355 0.9475 09385 09480 0.9445 0.9430 0.9415 0.9410 0.9415
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(90,50)
EL.
CP.

EL.
CP.

EL.
CP.
(90,60)
EL.
CP.

EL.
CP.

EL.
CP.

(0%, 40)

(015' 220’ 015)

(40,0%°)

(05°,30)

(020’ 215’ 025)

(30,05%)

0.1467
0.9400

0.1488
0.9290

0.1854
0.9400

0.1463
0.9420

0.1470
0.9395

0.1712
0.9375

0.1933
0.9440

0.2103
0.939

0.2369
0.9440

0.1834
0.9375

0.1983
0.9465

0.2170
0.9405

0.1838
0.9245

0.1945
0.9245

0.1909
0.9300

0.1642
0.9265

0.1752
0.9315

0.1745
0.9260

0.1445
0.9460

0.1483
0.9445

0.1824
0.9480

0.1437
0.9415

0.1450
0.9400

0.1695
0.9325

0.1899
0.9310

0.2077
0.9455

0.2332
0.9445

0.1798
0.9370

0.1944
0.9360

0.2129
0.9335

0.1833
0.9340

0.1924
0.9505

0.1904
0.9445

0.1623
0.9440

0.1731
0.9350

0.1729
0.9340

0.1447
0.9515

0.1472
0.9370

0.1827
0.9430

0.1442
0.9430

0.1452
0.9505

0.1684
0.9430

0.1904
0.9455

0.2059
0.9425

0.2322
0.9445

0.1806
0.9430

0.1940
0.9450

0.2117
0.9470

0.1830
0.9435

0.1910
0.9420

0.1893
0.9425

0.1629
0.9435

0.1724
0.9395

0.1717
0.9390
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CHAPTER 4: REAL DATA ANALYSIS

The data set was found originally by Nichols and Padgett (2006). It has been
analyzed by Lemonte (2014) and by AL Sobhi and Soliman (2016) . The uncensored data
on breaking stress of carbon fibers (in Gpa) is composed of 100 observations as shown
below in Table 10. Carbon fiber is composed of carbon atoms bounded together to form
along chain. Carbon fibers are extremely stiff, strong, and light. Although carbon fiber has
many significant benefits over other materials, it is more expensive than traditional
materials such as steel, aluminum, and plastic. It is used in many processes to create
excellent building materials such as solid carbon sheets and carbon tubes. The most

common uses for carbon fiber in applications are in sports equipment and robotics.

Table 10: Real Data Set on Breaking Stress of Carbon Fibers (in Gpa)

Real Data Set on Breaking Stress of Carbon Fibers (in Gpa)

0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25
1.36 1.41 1.47 1.57 1.57 1.59 1.59 161 161 1.69
1.69 1.71 1.73 1.80 1.84 1.84 1.87 1,89 1.92 2.00
2.03 2.03 2.05 2.12 2.17 2.17 2.17 2.35 2.38 241
2.43 2.48 2.48 2.50 2.53 2.55 2.55 2.56 2.59 2.67
2.73 2.74 2.76 2.77 2.79 2.81 2.81 2.82 2.83 2.85
2.87 2.88 2.93 2.95 2.96 2.97 2.97 3.09 3.11 3.11

3.15 3.15 3.19 3.19 3.22 3.22 3.27 3.28 3.31 3.31

58



3.33 3.39 3.39 3.51 3.56 3.60 3.65 3.68 3.68 3.68

3.70 3.75 4.20 4.38 4.42 4.70 4.90 491 5.08 5.56

In this illustrative example, the data set was used to simulate an adaptive
progressive type-1l censored sample with m=60 with two distinct values of ideal total test
time T as (1.60,3.66); the progressive censoring scheme was considered asR =
(30,0%°8,10). For clarity R = (1,0*4, 3)is a short form of R = (1,0,0,0,0,3). Moreover,
the function sample in the R program was used to remove randomly 30 survival units from
99 patients at the first failure; then, the remaining 10 survival units at the last failure were
removed. Thus, the observed adaptive progressive type-11 censored samples are shown
below in Table 11 for two different number of T and two distinct number of J. Since J=13
represents that only 13 observed failure times were observed before time T=1.60 and J=60
represents that all the observed failure times were observed before time T=3.66, this

implies that the experiment ends before time T.
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Table 11: An Adaptive Progressive Type-Il Censored Samples of Real Data Based on T=

(1.60,3.66)

An Adaptive Progressive Type-I1 Censored Samples of Real Data Based on

T=(1.60,3.66)
T=1.60, J=13
0.39 0.81 0.85 0.98 1.12 1.17
1.22 1.25 1.36 141 1.57 1.59
1.59 1.61 1.69 1.69 171 1.73
1.80 1.84 1.84 1.89 1.92 2.00
2.03 2.05 212 2.17 2.17 2.35
241 2.43 2.48 2.48 2.50 2.55
2.59 2.76 2.79 2.81 2.81 2.81
2.83 2.85 2.87 2.93 2.95 2.96
2.97 3.09 3.11 3.15 3.19 3.19
3.22 3.31 3.31 3.33 3.39 3.51
T=3.66, J=60
0.39 0.85 1.08 1.17 1.22 1.25
1.36 1.57 1.59 1.59 1.61 1.71
1.73 1.80 1.84 1.84 1.87 1.89
1.92 2.03 2.03 2.05 2.12 2.17
2.17 2.38 241 2.43 2.48 2.53
2.55 2.55 2.67 2.73 2.74 2.76
2.77 2.79 2.81 2.81 2.82 2.83
2.87 2.95 2.96 2.97 3.09 3.11
3.11 3.15 3.19 3.19 3.22 3.27
3.28 3.31 3.39 3.51 3.60 3.65
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The MLE’s for the unknown quantities are computed for the complete sample (un
censored) ie.(n=m =100) as (fiyy, Ou.)=(0.9156,0.4404) and (S(t = 0.5)) =
(0.9986) . To know if a sample follow a log-logistic distribution, we need to apply the
Kolmogorov-Smirnov test for one sample, the estimate of the parameters for the complete
sample was used to standardize the data and transform it to logistic distribution namely
x=(m/sqrt(3))*(log(y)-u)/o, since the non-standard form of the parameters in the log-
logistic model is different from that adopted in R. It was noted that under the significance
level (0.05), the p-value=0.3927, is greater than the significance level and the test statistics
value equal 0.090001, which is too small. This implies that, the proposed log-logistic model
fits the sample data fully and this sample followed a log-logistic distribution. Based on the
observed samples, corresponding respectively to predetermined ideal test times and
according to the proposed MCMC algorithm described above in the previous chapter,
different estimators and the related 95% confidence intervals of p, o, S (0.5) are computed
to describe the provided methods of estimation. Since, there are no previous knowledge
available for the unknown parameters, the diffuse priors for both p and o were used to
generate 11000 MCMC samples as ((y;, 67),i = 1,2, ...... ,11000) and then discard the
first 1000 random values according to the convergence diagnostic procedure explained in
the previous chapter. The trace plot is shown below on the left side of Figures 10 and 11
for each parameter, which indicates the successive draw for (L and ¢ at each iteration,
respectively. Moreover, as it is clear from the figures on the right, the marginal posterior

density plot from both parameters were unsmoothed.
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Figure 12: Trace plot and probability density plot of the location parameter based on a
real data
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data



Therefore, based on autocorrelation plots shown below in Figures 12 and 13 the
modified plots for the marginal density for both parameters are those shown in Figures 14
and 15 after removing the first 1000 values from the chains, taking the same approach as

explained in the previous chapter.
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Figure 14: Autocorrelation plot of the location parameter based on a real data
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Figure 15: Autocorrelation plot of the scale parameter based on a real data
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Figure 16: Smooth probability density plot for the location parameter based on a real data
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Figure 17: Smooth probability density plot for the scale parameter based on a real data

Table 12 summaries the MLEs for parameters y, ¢, and S (0.5) via the censored
sample, which provides a close estimate to the estimate of the same parameters’ by using
the complete sample. This implies that the experiments ending at time x,,,..p., = 3.65 or
Xmmn = 3.51 provide close estimates for the parameters where the experiment ends at
time x,,....n = 5.56, which is desirable for obtain a highly efficient of estimation in cases
of time reduction. Furthermore, from this table, the Bayes estimates under the MCMCO

prior and the MLE are near to each other assuming two distinct ideal total test times.
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Table 12: Point Estimations of the Location & Scale Parameters & S (0.5) Based on a
Real Data Set

T=1.60 T=3.66
MLE MCMCO MLE MCMCO
H 0.8814 0.8810 0.9425 0.9508
c 0.4846 0.4959 0.4448 0.4523
S (0.5) 0.9972 0.9964 0.9987 0.9983

The approximate 95% confidence intervals have been computed, as well as the
corresponding length for each interval as reported below in Table 13. It is obvious that the
length of the MLE method is nearly as short as the MCMCO method, which means that the
realization of the confidence interval is better and this illustrative example in a real data set
is approximately consistent with the results obtained in the simulation study. The R code

for the illustrative real-life example is given in full in Appendix C.
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Table 13: 95% Confidence Intervals and Length of the Location & Scale Parameters & S
(0.5) Based on Real Data Set

MLE

MCMCO

S (0.5)

S (0.5)

T=1.60 T=3.66

Interval Length Interval Length
(0.7731,0.9897) 0.2166 (0.8436,1.0414) 0.1977
(0.3827,0.5866) 0.2038 (0.3503,0.5393) 0.1890
(0.9936,1.0008) 0.0072 (0.9968,1.0006) 0.0037
(0.7947,0.9868) 0.1921 (0.8370,1.0470) 0.2100
(0.3708,0.5946) 0.2237 (0.3508,0.5605) 0.2096
(0.9911,0.9995) 0.0084 (0.9946,0.9997) 0.0051
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CHAPTER 5: SUMMARY, CONCLUSION AND SUGGESTIONS FOR

FURTHER STUDY

5.1 Summary

This study provided the maximum likelihood and Bayesian approach to estimate
the parameters of the log-logistic model and survival function under an adaptive
progressive type-11 censored data. The approximate MLEs of the parameters and the
survival function were computed using the Newton-Raphson numerical method (owing to
the non-closed form equations). Additionally, the asymptotic confidence intervals for p
and o parameters Vvia the variance-covariance matrix (I~1(f4,8)) were constructed.
Moreover, the Delta method was considered to approximate the confidence interval for the
reliability function. Furthermore, the Bayesian approach presented was based on non-
informative priors for both the unknown parameters and, in another case, for an informative
logistic conjugate prior for p and gamma prior for . The Bayes estimates under the SELF
cannot be solved analytically, due to the complexity of the ratio of two integrals. Thus, the
Metropolis Hastings algorithm was provided to generate 11000 samples and then the first
1000 draws was removed as discarded values based on a convergence diagnostic via the
coda package. The two unknown parameters are approximated using Bayesian approach
and, consequently, the corresponding credible intervals for these quantities and for the
reliability function were computed. Next, a simulation study examined a case of 2000,
replicated to investigate the realization of the derived methods for various values of sample
sizes n, effective sample sizes m, and the three different progressive censoring schemes for

each different choice of n and m. The proposed methods were examined on the basis of
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real-life example.
5.2 Conclusion

Based on results, the non-classical method (Bayesian approach) for the parameters
and credible intervals is recommended when informative prior information exist for the
unknown parameters; else, the classical method (MLE) for estimating the parameters and
Bayes interval according to non-informative prior for interval estimation is better to
perform. In addition, based on the estimated coverage probability, it was obvious that the
intervals based on MLE were consequently reached to the nominal level by increasing the
sample size and the effective sample size while the credible intervals approach to the
nominal level based on different choices of sample size n and m. Moreover, the Biases
were small in all situations based in all methods which tends to approximately unbiased
estimators. Furthermore, from comparing the effect of different progressive censoring
schemes according to the estimated criteria, it has been noted that the MSEs were close for
the three progressive chosen censoring schemes in each choice of n and m. However, it is
suggested to avoid using censoring schemes with (n-m) removal units at time of the first
failure of the experiment, because if we remove more units at the beginning, we will lose
more information and the MSE will be high. Additionally, the duration total test time will
be large based on the behaviour of order statistics. Based on this study, it was clear that the
MSEs have the smallest values in MCMC1 method in most situations with various sample
sizes n and different effective sample sizes m. In addition, the expected width under all
choices were small. Also, the coverage probability estimated criterion indicated that the
credible intervals based in all cases were approach to near to the nominal level in MCMC1

better than ML estimation method. As a result, we can conclude that the Bayesian approach
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based on the suggested informative prior is a good substitutional to the MLE. Application
to the real data set was also considered to estimate the parameters and survival function.
Therefore, the data was used to simulate two samples based on an adaptive progressive
type-11 censored scheme according to two various of ideal test time to explain the two
situations mentioned in the chapter introduction for this censoring scheme. Then, the point
and interval estimated were computed based on this simulated samples. Hence, the results
were consistent approximately with that results obtained in the simulation study which is
the MLE method is quite close to the estimate using Bayesian approach under non
informative prior.
5.3 Suggestions for Further Study

Owing to time limitations, further study is suggested as follows. First, the same
study could be repeated with any other loss function, such as the linear exponential
(LINEX) loss function; another different informative prior distribution might also be tried.
Second, getting the ideal experimental structure for predetermined ideal total test time (T),
the effective sample size (m), and the total sample size (n) would be interesting for further
study. Third, it might be helpful to repeat this study with other estimations of the
characteristics of the distribution, such as hazard function or cumulative hazard function,
quantile function ...etc. and constructing other types of confidence intervals, such as the
parametric bootstrap confidence interval, likelihood ratio-based confidence interval, and
highest posterior density interval...etc. In addition, it might be useful to fit the real data set
in the illustrative example with any life distribution model to compare the adequacy with

other continuous life time distribution. Finally, the value of total test time(T) act an
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important base in determining the values of progressive censoring schemes (R) and
intermediary between a shorter experimental time and a larger number of units used in the
test. This indicates that the expected duration test time is affected by the value of the
removal units; further studies should calculate the same, aiming to significantly reduce the

experimental time taking in order the efficiency of statistical inference.
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APPENDIX A: QUANTILE FUNCTION OF LOG-LOGISTIC

DISTRIBUTION

1
F(t) = —m(lnt—p)
1+e o3

1
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APPENDIX B: R CODE FOR A MONTE CARLO SIMULATION
STUDY

# Convergence Diagnostic for n=50, m=30 & T=1.

nsim=11000
muhat=c()
sigmhat=c()
mmubhat=rep(0,nBoot)
ssigmhat=rep(0,nBoot)
Low1=rep(0,nBoot)
Upperl=rep(0,nBoot)
Exactl=rep(0,nBoot)
Low2=rep(0,nBoot)
Upper2=rep(0,nBoot)
Exact2=rep(0,nBoot)
S11=rep(0,nBoot)
S22=rep(0,nBoot)
S33=rep(0,nBoot)
LowS1=rep(0,nBoot)
UpperS1=rep(0,nBoot)
LowS2=rep(0,nBoot)
UpperS2=rep(0,nBoot)
LowS3=rep(0,nBoot)
UpperS3=rep(0,nBoot)
ExactS1=rep(0,nBoot)
ExactS2=rep(0,nBoot)
ExactS3=rep(0,nBoot)
count1=0;count2=0;countS1=0;countS2=0;countS3=0
T=1.8

n=50

m=30

mu=0

sigm=1

pi=3.14

t1=0.5

t2=1

t3=2

w=c()

w=runif(m)  #step 1
w

r=rep(0,m) # empty vector
#progressive censored scheme
p=rep(0,m)
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v=rep(0,m)

x=c()

u=rep(0,m)

y=rep(0,m)
r=c(20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
length(r)

p=r[m]

p

for(i in 1:m)

{
V[i]=w[i]*(1/(i+p))
p:p+r[m'i]

}

x=v[m] #step?2
X

for(i in 1:m){ #step 3
u[i]=1-x
X=xX*v[m-i]

ky

u  # progressive Type Il censored sample from the uniform.

# The required progressive Type-11 censored sample from the quantile function of log-
logistic distribution is
for(i in 1:m){
y[i]= exp(mu)*(1/u[i]-1)(-sigm*sqrt(3)/pi)
}
y  # the required sample from the quantile function of log-logistic distribution
d=c()
for(i in 1:m ){

if(y[il<T){
d[i]=yfi]

} else {d[i]==0}
}

d

j=length(d) # Determine the value of j (j is the number of failure observation before
time T)
j
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if(j+1<m){
rs=c()
for(i in 1:))

{
rs[i]=r[i]
}

rs #progressive censored scheme for J

R=sum(rs)
R
#using invers transformation method to get sample from truncated distribution.
g=c()
U=c()
a=y[j+1]

aa=1/(1+a”(-pi/(sigm*sqrt(3)))*exp(mu*pi/(sigm*sqrt(3)))) #CDF for Log logistic

dist. F(a)=1/(1+exp(-pi*log(a)+mu*pi)/sigm*sqrt(3))

bb=1
U=runif(n-R-j-1,aa,bb)
U
A=sort(U)

for(i in 1:n-R-j-1){

gli]=exp(mu)*(1/A[i]-1)(-sigm*sqrt(3)/pi)

# quantile function with specific range instead of U(0,1)to generated r.v

}

g
f=c() #the first order statistics m-j-1

for(i in 1:m-j-1)
{

fi]=qli]
}

ds=c()
for(i in 1:)){
d;ﬁ]=yU]

ds

dss=c()

for(i in 0:j+1){

dss[i]=y[i]

}

dss
D=c()
D=c(dss,f) # use function combine to add the two vectors together
D #The adaptive progressive type Il censored data according to the algorithm
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dm=D[m] # last value in an adaptive progressive type Il censored data
dm
RR=(n-m-sum(rs)) #or R=sum(rs)
RR
da=D
da
#MCMC(MH): Bayesian method
muhat[1]=mu
sigmhat[1]=sigm
posterior=function(muu,sigmm){
exp(m*log(pi)-(m*log(sigmm)+sum(log(da))+m*log(sqrt(3)))-
sum(log(da))*pi/(sigmm*sqrt(3))+(m*muu*pi)/(sigmm*sqrt(3))-2*sum(log(1+exp((-
pi*log(da)+pi*muu)/(sigmm*sqgrt(3)))))-pi/(sigmm*sqrt(3))*sum(rs*(log(ds)-muu))-
sum(rs*log(1+exp((-pi*log(ds)+pi*muu)/(sigmm™*sqrt(3)))))+RR*(-
pi*log(dm)+muu*pi)/(sigmm*sqrt(3))-RR*log(1+exp((-
pi*log(dm)+pi*muu)/(sigmm*sqgrt(3))))-log(sigmm))
}

dcand = function(muu,sigmm) {
dlogis(muu,mu,1)*dgamma(1/sigmm,sigm”"2+2 rate=sigm*(sigm”2+1))/sigmm”2

}

for (i in 2:nsim) {
cand = c(rlogis(1,muhat[i-1],1),1/rgamma(1,sigmhat[i-1]*2+2,rate=(sigmhat[i-
1]72+1))) #generate samlpe from candidate or proposal (not prior) ,need to install
package of inverse gamma

accep = min(posterior(cand[1], cand[2])*dcand(muhat[i-1],sigmhat][i-
1])/(posterior(muhat[i-1], sigmhat[i-1])*dcand(cand[1],cand[2])), 1)

dad=runif(1)

rho = (dad < accep)
muhat[i] = cand[1] * rho + muhat[i - 1] * (1 - rho)
sigmhat[i] = cand[2] * rho + sigmhat[i - 1] * (1 - rho)

¥

Yelse{if((G==m)||G+1==m)K
da=y
dm=y[m] # last value in an adaptive progressive type Il censored data
dm
rs=c()

for(i in 1:j)

79



{
rs[i]=r[i]
}

rs #progressive censored scheme for J

R=sum(rs)

R

RR=(n-m-sum(rs)) #or R=sum(rs)
RR

ds=c()

for(i in 1:){
ds[i]=y[i]

}
ds

#MCMC(MH) : Bayesian method

muhat[1]=mu
sigmhat[1]=sigm
posterior=function(muu,sigmm){
exp(m*log(pi)-(m*log(sigmm)+sum(log(da))+m*log(sqrt(3)))-
sum(log(da))*pi/(sigmm*sqrt(3))+(m*muu*pi)/(sigmm*sqgrt(3))-2*sum(log(1+exp((-
pi*log(da)+pi*muu)/(sigmm*sqgrt(3)))))-pi/(sigmm*sqrt(3))*sum(rs*(log(ds)-muu))-
sum(rs*log(1+exp((-pi*log(ds)+pi*muu)/(sigmm*sqgrt(3)))))+RR*(-
pi*log(dm)+muu*pi)/(sigmm*sqrt(3))-RR*log(1+exp((-
pi*log(dm)+pi*muu)/(sigmm*sqrt(3))))-log(sigmm))
}

dcand = function(muu,sigmm) {
dlogis(muu,mu,1)*dgamma(1/sigmm,sigm”"2+2,rate=sigm*(sigm”2+1))/sigmm”2

}
for (i in 2:nsim) {
cand = c(rlogis(1,muhat[i-1],1),1/rgamma(1,sigmhat[i-1]*2+2,rate=(sigmhat[i-
1]72+1))) #generate samlpe from candidate or proposal (not prior) ,need to install
package of inverse gamma

accep = min(posterior(cand[1], cand[2])*dcand(muhat[i-1],sigmhat][i-
1])/(posterior(muhat[i-1], sigmhat[i-1])*dcand(cand[1],cand[2])), 1)

dad=runif(1)
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rho = (dad < accep)
mubhat[i] = cand[1] * rho + muhat[i - 1] * (1 - rho)
sigmhat[i] = cand[2] * rho + sigmhat[i - 1] * (1 - rho)

}

¥
k

muhat

sigmhat

HiHHHHHH USe coda package

cm=as.mcmc(muhat)

cs=as.mcmc(sigmhat)

plot(cm,main="p")

plot(cs,main="sigma")

summary(cm)

autocorr(cm)# indicate at what lag the autocorrelation decrease
autocorr(cs)

autocorr.plot(cm,main="p") #plot the autocorrelation
autocorr.plot(cs,main="sigma")

##HH##R code to draw again the marginal density plot with correct bandwidth and with
burn in

M=1000

muhat=mubhat[-1:-M]

muhat

sigmhat=sigmhat[-1:-M]

sigmhat

HHHEHEHHHHEHEHEHH A HEHUSe R code after burn-in
i=seq(1,length(muhat),by=50)

out.sub=density(muhat[i])

out=density(muhat,bw=out.sub$bw)

plot(out,main=" ")

ii=seq(1,length(sigmhat),by=50)

out.sub=density(sigmhat[ii])

out=density(sigmhat,bw=out.sub$bw)

plot(out,main="sigma’’)

HHHHEHHHHEH A hist after burn-in
hist(muhat,main="u",freq = FALSE)

hist(sigmhat,main="sigma",freq = FALSE)

HHHHHHH R

# A Monte Carlo Simulation Study for n=50,m=30 & T=1 based on MLE method .
#ML case 1
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nBoot=2000
nn=array(0,dim=c(nBoot,1))
mul=array(0,dim=c(nBoot,1))
sigml1=array(0,dim=c(nBoot,1))
Sl=array(0,dim=c(nBoot,1))
S2=array(0,dim=c(nBoot,1))
S3=array(0,dim=c(nBoot,1))
varl=array(0,dim=c(nBoot,1))
var2=array(0,dim=c(nBoot,1))
Lowl=array(0,dim=c(nBoot,1))
Low2=array(0,dim=c(nBoot,1))
Uppl=array(0,dim=c(nBoot,1))
Upp2=array(0,dim=c(nBoot,1))
ExactL1=array(0,dim=c(nBoot,1))
ExactL2=array(0,dim=c(nBoot,1))
count1=0;count2=0;countS1=0;countS2=0;countS3=0
varS1=array(0,dim=c(nBoot,1))
varSle=array(0,dim=c(nBoot,1))
LowS1=array(0,dim=c(nBoot,1))
UppS1=array(0,dim=c(nBoot,1))
varS2=array(0,dim=c(nBoot,1))
varS2e=array(0,dim=c(nBoot,1))
LowS2=array(0,dim=c(nBoot,1))
UppS2=array(0,dim=c(nBoot,1))
varS3=array(0,dim=c(nBoot,1))
varS3e=array(0,dim=c(nBoot,1))
LowS3=array(0,dim=c(nBoot,1))
UppS3=array(0,dim=c(nBoot,1))
ExactLS1=array(0,dim=c(nBoot,1))
ExactLS2=array(0,dim=c(nBoot,1))
ExactLS3=array(0,dim=c(nBoot,1))
for(ii in 1:nBoot){

T=1

n=50

m=30

mu=0

sigm=1

pi=3.14

t1=0.5

t2=1

t3=2

w=c()

w=runif(m)  #step 1

w

r=rep(0,m) # empty vector



p=rep(0,m)

v=rep(0,m)

x=c()

u=rep(0,m)

y=rep(0,m)
r=c¢(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20)
p=r[m]

p

for(i in 1:m)

{
VIi]=w[i]*(1/(i+p))
p:p+r[m'i]

x=v[m] #step?2
X

for(i in 1:m){ #step 3
u[i]=1-x
X=xX*v[m-i]

ky

u  # progressive type Il censored sample from the uniform.

for(i in 1:m){# exp(mu)*(2/u[i]-1)"(-sigm*sqrt(3)/pi)# y[i]=exp((sigm*sqrt(3)/-
pi)*log(1/u[i]-1)+mu)
y[i]= exp(mu)*(1/u[i]-1)(-sigm*sqrt(3)/pi)
}

y  #the required sample from the quantile function of log-logestic distribution
d=c()
for(i in 1:m ){

if(y[il<T){
d[i]=yfi]

} else {d[i]==0 }
d
j=length(d) #Determine the value of j (j is the number of failure observation before

time T)
j

if(j+1<m){

rs=c()
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for(i in 1:))
{

rs[i]=r[i]
}

rs #progressive censored scheme for J

R=sum(rs)

R

#using invers transformation method to get sample from truncated distribution.

g=c()

U=c()

a=y[j+1]

aa=1/(1+a”(-pi/(sigm*sqrt(3)))*exp(mu*pi/(sigm™*sqrt(3)))) #CDF for Log logestic dist
F(a)=1/(1+exp(-pi*log(a)+mu*pi)/sigm*sqrt(3))

bb=1

U=runif(n-R-j-1,aa,bb)

U

A=sort(U)

for(i in 1:n-R-j-1){
gli]=exp(mu)*(1/A[i]-1)*(-sigm*sqrt(3)/pi)
# quntile function with spcific range instead of U(0,1)to generated r.v from uniform
}

g
f=c()#the first order statistics m-j-1

for(i in 1:m-j-1)
{
flil=gli]

¥

ds=c()

for(i in 1:){
ds[i]=y[i]

}
ds
dss=c()
for(i in 0:j+1){
dss[i]=y[i]
b
dss
D=c()
D=c(dss,f) # use function combine to add the two vectors together
D #The adaptive progressive type Il censored data according to the both
algorithms
dm=D[m] # last value in the adaptive progressive type Il censored data)
dm
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RR=(n-m-sum(rs)) #or R=sum(rs)

RR

da=D

da

like=function(b)

{-(m*log(pi)-(m*log(b[2])+sum(log(da))+m*log(sqrt(3)))-
sum(log(da))*pi/(b[2]*sqrt(3))+(m*b[1]*pi)/(b[2]*sqrt(3))-2*sum(log(1+exp((-
pi*log(da)+pi*b[1])/(b[2]*sqrt(3)))))-pi/ (b[2]*sqrt(3))*sum(rs*(log(ds)-b[1]))-
sum(rs*log(1+exp((-pi*log(ds)+pi*b[1])/(b[2]*sqrt(3)))))+RR*(-
pi*log(dm)+b[1]*pi)/(b[2]*sqrt(3))-RR*log(1+exp((-
pi*log(dm)+pi*b[1])/(b[2]*sqrt(3)))))}

nn=nIm(like,c(mu,sigm),hessian=TRUE)

mul[ii]=nn$estimate[1]
sigml[ii]=nn$estimate[2]

S1[ii]=1-1/(1+exp(-pi*(log(t1l)-mul[ii])/(sigm1[ii]*sqrt(3))))
S2[ii]=1-1/(1+exp(-pi*(log(t2)-mul[ii])/(sigm1[ii]*sqrt(3))))
S3[ii]=1-1/(1+exp(-pi*(log(t3)-mul[ii])/(sigm1[ii]*sqrt(3))))

#95% (alpha=0.05)CI (100(1-alpha)% two sided approx.CI for the parameters mu &
sigma)or gnorm(alpha/2)=qnorm(0.025)

inv=solve(nn$hessian)

varl[ii]=inv[1]# mu

varl

var2[ii]=inv[4]#sigma

var2
Low1[ii]=mul[ii]-qnorm(0.975)*sqrt(varl[ii])

Upp1[ii]J=mul[ii]+gnorm(0.975)*sqrt(varl[ii])
Low2[ii]=sigm1[ii]-gnorm(0.975)*sqrt(var2[ii])

Upp2[ii]=sigm1[ii]+gnorm(0.975)*sqrt(var2[ii])
HiHHHHEHHH#CI for survival function S1(0.5)

Gl=c(((pi/(sigml[ii]*sqrt(3)))*exp(-pi*(log(tl)-mul[ii])/(sigml[ii]*sqrt(3))))/(1+exp(-

pi*(log(tL)-mu[ii])/(sigm1[ii*sqrt(3))))*2,((pi*(log(tl)-

mull[ii])/((sigml[ii]))*2*sqrt(3)))*exp(-pi*(log(t1)-mulfii])/(sigml[ii]*sqrt(3))))/(1+exp(-

pi*(log(tl)-mullii])/(sigm1[ii]*sqrt(3))))"2)
G11=rbind(G1)
varS1=G11%*%inv
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varSle[ii]=varS1%*%t(G11)
LowS1[ii]=S1[ii]-gnorm(0.975)*sqrt(varS1e[ii])

UppS1[ii]=S1[ii]+gnorm(0.975)*sqrt(varSle[ii])

HiHHHHEHEHEHHA#CI for survival function S2(1)

G2=c(((pi/(sigm1[ii]*sqrt(3)))*exp(-pi*(log(t2)-mullii])/(sigm1[ii]*sqrt(3))))/(1+exp(-
pi*(log(t2)-mullii])/(sigm1[ii]*sqrt(3))))"2,((pi*(log(t2)-
mul[ii])/((sigm1[ii])*2*sqrt(3)))*exp(-pi*(log(t2)-mul[ii])/(sigm1[ii]*sqrt(3))))/(1+exp(-
pi*(log(t2)-mullii])/(sigm1[ii]*sqrt(3))))"2)

G22=rbind(G2)

varS2=G22%*%inv

varS2e[ii]=varS2%*%t(G22)
LowS2[ii]=S2[ii]-gnorm(0.975)*sqrt(varS2e[ii])

UppS2[ii]=S2[ii]+gnorm(0.975)*sqrt(varS2e[ii])

HHH

G3= G1=c(((pi/(sigm1[ii]*sqrt(3)))*exp(-pi*(log(t3)-
mul[ii])/(sigm1[ii]*sqrt(3))))/(1+exp(-pi*(log(t3)-
mul[ii])/(sigm1[ii]*sqrt(3))))"2,((pi*(log(t3)-mul[ii])/((sigm1[ii])*2*sqrt(3)))*exp(-
pi*(log(t3)-mullii])/(sigml[ii]*sqrt(3))))/(1+exp(-pi*(log(t3)-
mul[ii])/(sigm1[ii]*sqrt(3))))"2)

G33=rbind(G3)

varS3=G33%*%inv

varS3e[ii]=varS3%*%t(G33)
LowS3[ii]=S3[ii]-gnorm(0.975)*sqrt(varS3el[ii])
UppS3[ii]=S3[ii]+qnorm(0.975)*sqrt(varS3e[ii])

HEHHH BB

ExactL1[ii]=Upp1[ii]-Low1[ii]#Average length (AL) is the summation of all length of
confdence intervals divided by total number of iteractons

ExactL2[ii]=Upp2[ii]-Low2]ii]
HHTHEHHEHHEHHHE

ExactLS1[ii]=UppS1[ii]-LowS1[ii]#Average length (AL) is the summation of all
length of confidence intervals divided by total number of iterations

ExactLS2[ii]=UppS2[ii]-LowS2[ii]
ExactLS3[ii]=UppS3[ii]-LowS3[ii]
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Yelse{if ((==m)||(+1==m)){
da=y
dm=y[m] # last value in the adaptive progressive type Il censored data)
dm
rs=c()

for(i in 1:))
{

rs[i]=r[i]
}

rs #progressive censored scheme for J

R=sum(rs)

R

RR=(n-m-sum(rs)) #or R=sum(rs)
RR

ds=c()

for(i in 1:)){
ds[i]=y[i]

}
ds

like=function(b)

{-(m*log(pi)-(m*log(b[2])+sum(log(da))+m*log(sqrt(3)))-
sum(log(da))*pi/(b[2]*sqrt(3))+(m*b[1]*pi)/(b[2]*sqrt(3))-2*sum(log(1+exp((-
pi*log(da)+pi*b[1])/(b[2]*sqrt(3)))))-pi/(b[2]*sqrt(3))*sum(rs*(log(ds)-b[1]))-
sum(rs*log(1+exp((-pi*log(ds)+pi*b[1])/(b[2]*sqrt(3)))))+RR*(-
pi*log(dm)+b[1]*pi)/(b[2]*sqrt(3))-RR*log(1+exp((-
pi*log(dm)+pi*b[1])/(b[2]*sqrt(3)))))}

nn=nlm(like,c(mu,sigm),hessian=TRUE)

mul[ii]=nn$estimate[1]
sigm1[ii]=nn$estimate[2]

#no need to store matrix because outside the loop print the last hessian of nBoot=2000
S1ii]=1-1/(1+exp(-pi*(log(tl)-mullii])/(sigm1[ii]*sqrt(3))))
S2[i]=1-1/(1+exp(-pi*(log(t2)-mullii])/(sigm1[ii]*sqrt(3))))

S3[i]=1-1/(1+exp(-pi*(log(t3)-mullii])/(sigml1[ii]*sqrt(3))))
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#95% (alpha=0.05)CI (100(1-alpha)% two sided approx.Cl for the parameters mu &
sigma)or gnorm(alpha/2)=qnorm(0.025)

inv=solve(nn$hessian)

varl[ii]=inv[1]# mu

varl

var2[ii]=inv[4]#sigma

var2
Low1[ii]=mul[ii]-gnorm(0.975)*sqrt(varl[ii])

Uppl[ii]J=mul[ii]+gnorm(0.975)*sqrt(varl[ii])
Low2[ii]=sigm1[ii]-gnorm(0.975)*sqrt(var2[ii])

Upp2[ii]=sigm1[ii]+gnorm(0.975)*sqrt(var2[ii])

HiHHHHEHAHEHHA#CI for survival function S1(0.5)

Gl=c(((pi/(sigm1[ii]*sqrt(3)))*exp(-pi*(log(t1l)-mul[ii])/(sigm1[ii]*sqrt(3))))/(1+exp(-
pi*(log(tl)-mullii])/(sigm1[ii]*sqrt(3))))"2,((pi*(log(tl)-
mulfii])/((sigm1[ii])*2*sqrt(3)))*exp(-pi*(log(t1)-mul[ii])/(sigm1[ii]*sqrt(3))))/(1+exp(-
pi*(log(tl)-mullii])/(sigm1[ii]*sqrt(3))))"2)

G11=rbind(G1)

varS1=G11%*%inv

varSle[ii]=varS1%*%t(G11)
LowS1[ii]=S1[ii]-gnorm(0.975)*sqrt(varS1e[ii])

UppS1[ii]=S1[ii]+gnorm(0.975)*sqgrt(varSle[ii])

HiHHHEHH###C for survival function S2(1)

G2=c(((pi/(sigm1[ii]*sqrt(3)))*exp(-pi*(log(t2)-mul[ii])/(sigm1[ii]*sqrt(3))))/(1+exp(-
pi*(log(t2)-mullii])/(sigm1[ii]*sgrt(3))))"2,((pi*(log(t2)-
mullii])/((sigml[ii])*2*sqrt(3)))*exp(-pi*(log(t2)-mull[ii])/(sigm1[ii]*sqrt(3))))/(1+exp(-
pi*(log(t2)-mullii])/(sigm1[ii]*sqrt(3))))"2)

G22=rbind(G2)

varS2=G22%*%inv

varS2e[ii]=varS2%*%t(G22)
LowsS2[ii]=S2[ii]-gnorm(0.975)*sqrt(varS2e[ii])
UppS2[ii]=S2[ii]+gnorm(0.975)*sqrt(varS2e[ii])
M

G3= G1=c( ((pi/(sigm1[ii]*sqrt(3)))*exp(-pi*(log(t3)-
mul[ii])/(sigm1[ii]*sqrt(3))))/(1+exp(-pi*(log(t3)-
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mul[ii])/(sigm1[ii]*sqrt(3))))"2,((pi*(log(t3)-mul[ii])/((sigm1[ii])*2*sqrt(3)))*exp(-
pi*(log(t3)-mullii])/(sigml[ii]*sqrt(3))))/(1+exp(-pi*(log(t3)-
mul[ii])/(sigm1[ii]*sqrt(3))))"2)

G33=rbind(G3)

varS3=G33%*%inv

varS3e[ii]=varS3%*%t(G33)
LowS3[ii]=S3[ii]-gnorm(0.975)*sqrt(varS3e[ii])

UppS3Jii]=S3[ii]+gnorm(0.975)*sqrt(varS3e[ii])
HHH R
ExactL1[ii]=Upp1[ii]-Low1[ii]
ExactL2[ii]=Upp2[ii]-Low2[ii]
B e e ey
ExactLS1[ii]=UppS1[ii]-LowS1[ii]
ExactLS2[ii]=UppS2[ii]-LowS2Jii]

ExactLS3[ii]=UppS3[ii]-LowS3]ii]
}

¥
}#end of loop

T

#CII for mu
Cl1=c(mean(Lowl),mean(Uppl))
cll

#CII for sigm
Cl2=c(mean(Low2),mean(Upp2))
Cl2

M
AL1=sum(ExactL1)/nBoot

AL1

AL2=sum(ExactL2)/nBoot

AL2

R R R R R T R R R R R R R R R
#coverage prob. for mu

for(i in 1:nBoot){

if(Lowl[i]<=mu & Uppl[i]>=mu){
countl=countl+1}

¥

countl
propl=sum(countl)/nBoot



propl
HiHHHHHHEHEHHH COverage prob. for sigma
for(i in 1:nBoot){

if(Low2[i]<=sigm & Upp2[i]>=sigm)
count2=count2+1

ks

count2
prop2=sum(count2)/nBoot
prop2

HHHHHHEHEH R E Stimate of parameters

mull=mean(mul)

mull

sigmll=mean(sigml)

sigm11

S1ll=mean(S1)

S11

S22=mean(S2)

S22

S33=mean(S3)

S33

#compute /bias

Bm=mull-mu #or Bm=sum(mul-mu)/nBoot
Bm

Bs=sigm11-sigm

Bs

S01= 1-1/(1+exp(-pi*(log(t1)-mu)/(sigm*sqrt(3))))
S02=1-1/(1+exp(-pi*(log(t2)-mu)/(sigm*sqrt(3))))
S03=1-1/(1+exp(-pi*(log(t3)-mu)/(sigm*sqrt(3))))
BS1=S11-S01

BS1

BS2=S522-S02

BS2

BS3=S33-S03

BS3

HHHHHHHHHEHHEHHE (M SE)
MSEm=sum((mul-mu)"2)/nBoot

MSEm

MSEs=sum((sigm1-sigm)”~2)/nBoot

MSEs

MSES1=sum((S1-S01)"2)/nBoot

MSES1

MSES2=sum((52-S02)"2)/nBoot

MSES2
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MSES3=sum((S3-S03)"2)/nBoot
MSES3

#approximate C.I for Survival function
#C.1 for s1,t=0.5
CIS1=c(mean(LowS1),mean(UppS1))
ClIs1

#approximate C.I for Survival function
#C.I for s2,t=1

CIS2=c(mean(LowS2),mean(UppS2))
CIS2

#approximate C.I for Survival function
#C.1 for s3,t=2

CIS3=c(mean(LowS3),mean(UppS3))

CIS3

IR

#average length #the shorter average length is the better performance of the confidence
interval

ALS1=sum(ExactLS1)/nBoot

ALS1

ALS2=sum(ExactLS2)/nBoot

ALS2

ALS3=sum(ExactLS3)/nBoot

ALS3

HHHHHH A
#covarge prob.for S1

for(i in 1:nBoot){

if(LowS1[i]<=S01 & UppS1[i]>=S01)
countS1=countS1+1

by

countS1

propS1=sum(countS1)/nBoot

propS1l

HiHHHHEHEHEHEHAH COverage prob. for S2
for(i in 1:nBoot){

if(LowS2[i]<=S02 & UppS2[i]>=S02)
countS2=countS2+1

¥

countS2
propS2=sum(countS2)/nBoot



propS2

HiHHHHEHEHEHHAH COverage prob. for S3
for(i in 1:nBoot){

if(LowS3[i]<=S03 & UppS3[i]>=S03)
countS3=countS3+1

}

countS3
propS3=sum(countS3)/nBoot
propS3

# A Monte Carlo Simulation Study for n= 50, m=30 & T=1 based on MCMC method by
using non-informative priors.
#case 1
nBoot=2000
nsim=11000
muhat=c()
sigmhat=c()
mmubhat=rep(0,nBoot)
ssigmhat=rep(0,nBoot)
Low1=rep(0,nBoot)
Upperl=rep(0,nBoot)
Exactl=rep(0,nBoot)
Low2=rep(0,nBoot)
Upper2=rep(0,nBoot)
Exact2=rep(0,nBoot)
S11=rep(0,nBoot)
S22=rep(0,nBoot)
S33=rep(0,nBoot)
LowS1=rep(0,nBoot)
UpperS1=rep(0,nBoot)
LowS2=rep(0,nBoot)
UpperS2=rep(0,nBoot)
LowS3=rep(0,nBoot)
UpperS3=rep(0,nBoot)
ExactS1=rep(0,nBoot)
ExactS2=rep(0,nBoot)
ExactS3=rep(0,nBoot)
count1=0;count2=0;countS1=0;countS2=0;countS3=0
for(ii in 1:nBoot){

print(ii)

T=1

n=50
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m=30

mu=0

sigm=1

pi=3.14

t1=0.5

t2=1

t3=2

w=c()

w=runif(m)  #step 1

w

r=rep(0,m) # empty vector
#progressive censored scheme
p=rep(0,m)

v=rep(0,m)

x=c()

u=rep(0,m)

y=rep(0,m)
r=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20)
length(r)

p=r[m]

p

for(i in 1:m)

{
V[i]=w[i]*(1/(i+p))
p=p+r[m-i]
}
x=v[m] #step2
X

for(i in 1:m){ #step 3
u[i]=1-x
X=xX*v[m-i]

ky

u  # progressive type Il censored sample from the uniform.

for(i in 1:m){
y[i]= exp(mu)*(1/u[i]-1)(-sigm*sqrt(3)/pi)
}

y  #the requried sample from the quantile function of log-logestic distribution
d=c()

for(i in 1:m ){

if(y[il<T{



d[il=yfi]

} else {d[i]==0}
}

d

j=length(d) #Determine the value of j (j is the number of failure observation before
time T)
i

i (Now generate adaptive progressive Type Il censored sample )
#step B
if(j+1<m){

rs=c()

for(i in 1:))
{

rs[i]=r[i]
}

rs #progressive censored scheme for J

R=sum(rs)

R

#using invers transformation method to get sample from truncated distribution.
g=c()

U=c()

a=y[j+1]
aa=1/(1+a"(-pi/(sigm*sqrt(3)))*exp(mu*pi/(sigm*sqrt(3))))
bb=1

U=runif(n-R-j-1,aa,bb)

U

A=sort(U)

for(i in 1:n-R-j-1){

gli]l=exp(mu)*(1/A[i]-1)*(-sigm*sqrt(3)/pi)
# quantile function with specific range instead of U(0,1)

¥

# (g is the generated sample from)

g
HEHHH BB R R

f=c()#the first order statistics m-j-1
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for(i in 1:m-j-1)
{

fi]=gli]
}

ds=c()

for(i in 1:)){
ds[i]=y[i]

}
ds

dss=c()

for(i in 0:j+1){
dss[i]=y[i]

ks

dss

D=c()

D=c(dss,f) # use function combine to add the two vectors together

D

HHHHHH R

dm=D[m] # last value in the adaptive progressive type Il censored data)
dm

RR=(n-m-sum(rs)) #or R=sum(rs)
RR

da=D

da

#MCMC(MH):Bayeian method

muhat[1]=mu

sigmhat[1]=sigm

posterior=function(muu,sigmm){
exp(m*log(pi)-(m*log(sigmm)+sum(log(da))+m*log(sqrt(3)))-

sum(log(da))*pi/(sigmm*sqgrt(3))+(m*muu*pi)/(sigmm*sqrt(3))-2*sum(log(1+exp((-

pi*log(da)+pi*muu)/(sigmm*sqgrt(3)))))-pi/(sigmm*sqrt(3))*sum(rs*(log(ds)-muu))-

sum(rs*log(1+exp((-pi*log(ds)+pi*muu)/(sigmm*sqgrt(3)))))+RR*(-

pi*log(dm)+muu*pi)/(sigmm*sqrt(3))-RR*log(1+exp((-

pi*log(dm)+pi*muu)/(sigmm*sqrt(3))))-log(sigmm))

}
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dcand = function(muu,sigmm) {
dlogis(muu,mu,1)*dgamma(l/sigmm,sigm”2+2,rate=sigm™*(sigm”2+1))/sigmm”2

ks

for (i in 2:nsim) {
cand = c(rlogis(1,muhat[i-1],1),1/rgamma(1,sigmhat[i-1]"2+2,rate=(sigmhat][i-
1]72+1))) #generate samlpe from candidate or proposal (not prior) ,need to install package
of inverse gamma

accep = min(posterior(cand[1], cand[2])*dcand(muhat[i-1],sigmhat][i-
1])/(posterior(muhat[i-1], sigmhat[i-1])*dcand(cand[1],cand[2])), 1)

dad=runif(1)

rho = (dad < accep)
muhat[i] = cand[1] * rho + muhat[i - 1] * (1 - rho)
sigmhat[i] = cand[2] * rho + sigmhat[i - 1] * (1 - rho)

}

n=1000

muhat=muhat[-1:-n]
mmuhat[ii]J=mean(muhat)
sigmhat=sigmhat[-1:-n]

sigmhat

ssigmhat[ii]=mean(sigmhat)

#credible interval for mu
Srl=sort(muhat)
Low1[ii]=Sr1[0.025*(nsim-n)]
Upperl[ii]=Sr1[0.975*(nsim-n)]
Exactl[ii]=Upperl[ii]-Low1[ii]
#credible interval for sigm
Sr2=sort(sigmhat)
Low2[ii]=Sr2[0.025*(nsim-n)]
Upper2[ii]=Sr2[0.975*(nsim-n)]

#EL for mu
Exact2[ii]=Upper2[ii]-Low2[ii]

HHH R R
t1=0.5
S1=1-1/(1+exp(-pi*(log(tl)-muhat)/(sigmhat*sqrt(3))))
S11[ii]=mean(S1)

t2=1
S2=1-1/(1+exp(-pi*(log(t2)-muhat)/(sigmhat*sqgrt(3))))
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S22[ii]l=mean(S2)
t3=2
S3=1-1/(1+exp(-pi*(log(t3)-muhat)/(sigmhat*sqgrt(3))))
S33[ii]=mean(S3)
HUHH R
#Credible interval for S1
Srsl=sort(S1)
LowS1[ii]=Srs1[0.025*(nsim-n)]
UpperS1[ii]=Srs1[0.975*(nsim-n)]
#EL for S1
ExactS1[ii]=UpperS1[ii]-LowS1[ii]
#Credible interval for S2
Srs2=s0rt(S2)
LowS2[ii]=Srs2[0.025*(nsim-n)]
LowS2
UpperS2[ii]=Srs2[0.975*(nsim-n)]
UpperS2
#EL for S2
ExactS2[ii]=UpperS2[ii]-LowS2([ii]
#Credible interval for S3# 95% ClI
Srs3=sort(S3)
LowS3[ii]=Srs3[0.025*(nsim-n)]
LowS3
UpperS3[ii]=Srs3[0.975*(nsim-n)]
UpperS3
#EL for S3
ExactS3[ii]=UpperS3[ii]-LowS3[ii]
Jelse{if(G==m)[|(+1==m){
da=y

dm=y[m] # last value in the adaptive progressive type Il censored data)

dm
rs=c()

for(i in 1:))
{
rs[i]=r[i]
}
rs #progressive censored scheme for J

R=sum(rs)

R

RR=(n-m-sum(rs)) #or R=sum(rs)
RR

ds=c()
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for(i in 1:)){
ds[i]=y[i]

}
ds

#MCMC(MH): Bayesian method

muhat[1]=mu

sigmhat[1]=sigm

posterior=function(muu,sigmm){

exp(m*log(pi)-(m*log(sigmm)+sum(log(da))+m*log(sqrt(3)))-

sum(log(da))*pi/(sigmm*sqrt(3))+(m*muu*pi)/(sigmm*sqrt(3))-2*sum(log(1+exp((-
pi*log(da)+pi*muu)/(sigmm*sqrt(3)))))-pi/(sigmm*sqrt(3))*sum(rs*(log(ds)-muu))-
sum(rs*log(1+exp((-pi*log(ds)+pi*muu)/(sigmm*sqgrt(3)))))+RR*(-
pi*log(dm)+muu*pi)/(sigmm*sqrt(3))-RR*log(1+exp((-
pi*log(dm)+pi*muu)/(sigmm*sqrt(3))))-log(sigmm))

}

dcand = function(muu,sigmm) {
dlogis(muu,mu,1)*dgamma(l/sigmm,sigm”2+2,rate=sigm™*(sigm”2+1))/sigmm~"2

}

for (i in 2:nsim) {
cand = c(rlogis(1,muhat[i-1],1),1/rgamma(1,sigmhat[i-1]*2+2,rate=(sigmhat[i-
1]72+1))) #generate samlpe from candidate or proposal (not prior) ,need to install package
of inverse gamma

accep = min(posterior(cand[1], cand[2])*dcand(mubhat[i-1],sigmhat[i-
1])/(posterior(muhat[i-1], sigmhat[i-1])*dcand(cand[1],cand[2])), 1)

dad=runif(1)

rho = (dad < accep)
muhat[i] = cand[1] * rho + muhat[i - 1] * (1 - rho)
sigmhat[i] = cand[2] * rho + sigmhat[i - 1] * (1 - rho)

¥

n=1000
muhat=muhat[-1:-n]
muhat
mmubhat[ii]=mean(muhat)
sigmhat=sigmhat[-1:-n]
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sigmhat

ssigmhat[ii]=mean(sigmhat)

#credible interval for mu
Srl=sort(muhat)
Low1[ii]=Sr1[0.025*(nsim-n)]
Upperl[ii]=Sr1[0.975*(nsim-n)]
Exact1[ii]=Upperl[ii]-Low1[ii]
#credible interval for sigm
Sr2=sort(sigmhat)
Low?2[ii]=Sr2[0.025*(nsim-n)]
Upper2[ii]=Sr2[0.975*(nsim-n)]

#EL for mu
Exact2[ii]=Upper2[ii]-Low2[ii]
T
t1=0.5
S1=1-1/(1+exp(-pi*(log(tl)-muhat)/(sigmhat*sqrt(3))))
S11Jii]J=mean(S1)

t2=1
S2=1-1/(1+exp(-pi*(log(t2)-muhat)/(sigmhat*sqgrt(3))))
S22[ii]=mean(S2)

t3=2
S3=1-1/(1+exp(-pi*(log(t3)-muhat)/(sigmhat*sqrt(3))))
S33[ii]=mean(S3)
T
#Credible interval for S1

Srsl=sort(S1)
LowS1[ii]=Srs1[0.025*(nsim-n)]
LowS1
UpperS1[ii]=Srs1[0.975*(nsim-n)]
UpperS1

#EL for S1
ExactS1[ii]=UpperS1[ii]-LowS1[ii]
#Credible interval for S2

Srs2=so0rt(S2)
LowS2[ii]=Srs2[0.025*(nsim-n)]
LowS2
UpperS2[ii]=Srs2[0.975*(nsim-n)]
UpperS2

#EL for S2
ExactS2[ii]=UpperS2[ii]-LowS2[ii]
#Credible interval for S3# 95% ClI
Srs3=sort(S3)
LowS3[ii]=Srs3[0.025*(nsim-n)]
LowS3
UpperS3[ii]=Srs3[0.975*(nsim-n)]
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UpperS3
#EL for S3
ExactS3[ii]=UpperS3[ii]-LowS3[ii]

¥
k
ki

#end of loop

HUHH
mbO=mean(mmuhat) #Bayesian estimate for mu
mb0

sbO0=mean(ssigmhat)# Bayesian estimate for sigma
sb0

A Bias for mu & sigma
Bm=mb0-mu

Bm

Bs=sb0-sigm

Bs

SRR R AR R R R R e e R
# an approximate Bayesian estimate of S(t) based on SEL function is the posterior mean
SS11=mean(S11)#estimate for S1

SS11

SS22=mean(S22)#estimate for S2

SS22

SS33=mean(S33)#estimate for S3

SS33

HHHHHHH AR

#need intial value for S1,S2,S3 by sub. mu & sigm
S01=1-1/(1+exp(-pi*(log(tl)-mu)/(sigm*sqrt(3))))
S02=1-1/(1+exp(-pi*(log(t2)-mu)/(sigm*sqrt(3))))
S03=1-1/(1+exp(-pi*(log(t3)-mu)/(sigm*sqrt(3))))
HHHHHHHHHHHHEH A baIs survival function
S1b=SS11-S01#bais for S1

Sib

S2b=SS22-S02#bais for S2

S2b

S3b=SS33-S03#bhais for S3

S3b

HHHHHHHHH R HHH#HMSE for mu & sigma
MSEm=sum((mmuhat-mu)”2)/nBoot

MSEm

MSEs=sum((ssigmhat-sigm)"2)/nBoot
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MSEs

HHHHHHHHHHHEHAHAHH#MSE for S1,52,S3
MSEs1=sum((S11-S01)"2)/nBoot

MSEs1

MSEs2=sum((S22-S02)"2)/nBoot

MSEs2

MSEs2=sum((S33-S03)"2)/nBoot

MSEs2
HIHHHHEHEHHHHHHAH AR E X pected Length. for mu ,sigma,S1,S2 ,S3
AL1=sum(Exactl)/nBoot

ALl

AL2=sum(Exact2)/nBoot

AL2

ALS1=sum(ExactS1)/nBoot

ALS1

ALS2=sum(ExactS2)/nBoot

ALS2

ALS3=sum(ExactS3)/nBoot

ALS3
T
#CII for mu
Cl1=c(mean(Lowl),mean(Upperl))

cll

#CII for sigma
Cl2=c(mean(Low2),mean(Upper2))

Cl2

#CII for S1
CIS1=c(mean(LowS1),mean(UpperS1))
ClIs1

#CII for S2
CIS2=c(mean(LowS2),mean(UpperS2))
CISs2

#CII for S3
CIS3=c(mean(LowS3),mean(UpperS3))
CIS3

HIHHHHEHEHEHHHHHEHE cOverage prob. for mu ,sigma,S1,S2 | S3##HHHIHH
# cv.prob.for mu

for(i in 1:nBoot){

if(Low1[i]<=mu & Upperl[i]>=mu) # check with equal or not
countl=countl+1

¥

countl
propl=sum(countl)/nBoot
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propl

HHHHH T
# cv.prob.for sigm

for(i in 1:nBoot){

if(Low2[i]<=sigm & Upper2[i]>=sigm)
count2=count2+1

}

count2
prop2=sum(count2)/nBoot
prop2
B e e e e
# cv.prob.for S1

for(i in 1:nBoot){

if(LowS1[i]<=S01 & UpperS1[i]>=S01)
countS1=countS1+1

ky

countS1
prop3=sum(countS1)/nBoot
prop3
T
# cv.prob.for S2

for(i in 1:nBoot){

if(LowS2[i]<=S02 & UpperS2[i]>=S02)
countS2=countS2+1

by

countS2
prop4=sum(countS2)/nBoot
prop4
T
# cv.prob.for S3

for(i in 1:nBoot){

if(LowS3[i]<=S03 & UpperS3[i]>=S03)
countS3=countS3+1

¥

countS3
prop5=sum(countS3)/nBoot
prop5
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# A Monte Carlo Simulation Study for n=50, m=30 & T=1 based on MCMC method by

using an informative prior.
#case 1
nBoot=2000
nsim=11000
muhat=c()
sigmhat=c()
mmubhat=rep(0,nBoot)
ssigmhat=rep(0,nBoot)
Low1=rep(0,nBoot)
Upperl=rep(0,nBoot)
Exactl=rep(0,nBoot)
Low2=rep(0,nBoot)
Upper2=rep(0,nBoot)
Exact2=rep(0,nBoot)
S11=rep(0,nBoot)
S22=rep(0,nBoot)
S33=rep(0,nBoot)
LowS1=rep(0,nBoot)
UpperS1=rep(0,nBoot)
LowS2=rep(0,nBoot)
UpperS2=rep(0,nBoot)
LowS3=rep(0,nBoot)
UpperS3=rep(0,nBoot)
ExactS1=rep(0,nBoot)
ExactS2=rep(0,nBoot)
ExactS3=rep(0,nBoot)
count1=0;count2=0;countS1=0;countS2=0;countS3=0
for(ii in 1:nBoot){

print(ii)

T=1

n=50

m=30

mu=0

sigm=1

pi=3.14

t1=0.5

t2=1

t3=2

w=c()

w=runif(m)  #step 1

w

r=rep(0,m) # empty vector

#progressive censored scheme
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p=rep(0,m)

v=rep(0,m)

x=c()

u=rep(0,m)

y=rep(0,m)
r=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20)
length(r)

p=r[m]

p

for(i in 1:m)

{
V[i]=w[i]*(1/(i+p))
p=p+r[m-i]
}
x=v[m] #step?2
X

for(i in 1:m){ #step 3
u[i]=1-x
X=xX*v[m-i]

}

u  # progressive type Il censored sample from the uniform.

for(i in 1:m){
y[i]= exp(mu)*(1/u[i]-1)(-sigm*sqrt(3)/pi)
}

y  #the required sample from the quantile function of log-logestic distribution
d=c()
for(iin 1:m ){

if(y[il<T)}{
d[i]=yfi]

} else {d[i]==0 }

d

j=length(d) #Determine the value of j (j is the number of failure observation before
time T)
j

if(j+1<m){
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rs=c()
for(i in 1:))
{
rs[i]=r[i]
}
rs #progressive censored scheme for J

R=sum(rs)
R
#using invers transformation method to get sample from truncated distribution.

g=c()
U=c()

:a:i/?/zll-]lra"(-pi/(sigm*sqrt(3)))*exp(mu*pi/(sigm*sqrt(3)))) #CDF for Log logestic dist
" bb=1

U=runif(n-R-j-1,aa,bb)

,LAJ\:sort(U)

for(i in 1:n-R-j-1){

gli]l=exp(mu)*(1/A[i]-1)*(-sigm*sqrt(3)/pi)
# quantile function with specific range instead of U(0,1)
}
g
f=c()#the first order statistics m-j-1
for(i in 1:m-j-1)

{
flil=gli]
k

ds=c()

for(i in 1:)){
ds[i]=yIi]

}
ds

dss=c()

for(i in 0:j+1){
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dss[i]=y[i]

}

dss

D=c()

D=c(dss,f) # use function combine to add the two vectors together

D #The adaptive progressive type Il censored data according to both algorithms

dm=D[m] # last value in the adaptive progressive type Il censored data)
dm

RR=(n-m-sum(rs)) #or R=sum(rs)
RR

da=D
da

#MCMC(MH):Bayeian method
muhat[1]=mu
sigmhat[1]=sigm

posterior=function(muu,sigmm){
exp(m*log(pi)-(m*log(sigmm)+sum(log(da))+m*log(sqrt(3)))-

sum(log(da))*pi/(sigmm*sqrt(3))+(m*muu*pi)/(sigmm*sqgrt(3))-2*sum(log(1+exp((-
pi*log(da)+pi*muu)/(sigmm*sqgrt(3)))))-pi/(sigmm*sqrt(3))*sum(rs*(log(ds)-muu))-
sum(rs*log(1+exp((-pi*log(ds)+pi*muu)/(sigmm*sqgrt(3)))))+RR*(-
pi*log(dm)+muu*pi)/(sigmm*sqrt(3))-RR*log(1+exp((-
pi*log(dm)+pi*muu)/(sigmm*sqrt(3))))-(sigmm)-(muu)-2*log(1+exp(-muu)))

}

dcand = function(muu,sigmm) {
dlogis(muu,mu,1)*dgamma(1/sigmm,sigm”2+2,rate=sigm*(sigm”2+1))/sigmm”2
}
for (i in 2:nsim) {
cand = c(rlogis(1,muhat[i-1],1),1/rgamma(1,sigmhat[i-1]*2+2,rate=(sigmhat[i-

1]72+1))) #generate samlpe from candidate or proposal (not prior) ,need to install package
of inverse gamma

accep = min(posterior(cand[1], cand[2])*dcand(muhat[i-1],sigmhat][i-
1])/(posterior(muhat[i-1], sigmhat[i-1])*dcand(cand[1],cand[2])), 1)

dad=runif(1)
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rho = (dad < accep)
mubhat[i] = cand[1] * rho + muhat[i - 1] * (1 - rho)
sigmhat[i] = cand[2] * rho + sigmhat[i - 1] * (1 - rho)

ks

n=1000

muhat=muhat[-1:-n]
mmuhat[ii]=mean(muhat)
sigmhat=sigmhat[-1:-n]

sigmhat

ssigmhat[ii]=mean(sigmhat)

#credible interval for mu
Srl=sort(muhat)
Low1[ii]=Sr1[0.025*(nsim-n)]
Upperl[ii]=Sr1[0.975*(nsim-n)]
Exactl[ii]=Upperl[ii]-Low1[ii]
#credible interval for sigm
Sr2=sort(sigmhat)
Low2[ii]=Sr2[0.025*(nsim-n)]
Upper2[ii]=Sr2[0.975*(nsim-n)]

#EL for mu
Exact2[ii]=Upper2[ii]-Low2[ii]
HEHERR R R R R
t1=0.5
S1=1-1/(1+exp(-pi*(log(t1)-muhat)/(sigmhat*sqgrt(3))))
S11[ii]=mean(S1)

t2=1
S2=1-1/(1+exp(-pi*(log(t2)-muhat)/(sigmhat*sqrt(3))))
S22[ii]=mean(S2)

t3=2
S3=1-1/(1+exp(-pi*(log(t3)-muhat)/(sigmhat*sqrt(3))))
S33[ii]=mean(S3)
T
#Credible interval for S1

Srsl=sort(S1)
LowS1[ii]=Srs1[0.025*(nsim-n)]
UpperS1[ii]=Srs1[0.975*(nsim-n)]

#EL for S1
ExactS1[ii]=UpperS1[ii]-LowS1[ii]
#Credible interval for S2

Srs2=so0rt(S2)
LowS2[ii]=Srs2[0.025*(nsim-n)]

LowS2
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UpperS2[ii]=Srs2[0.975*(nsim-n)]

UpperS2

#EL for S2

ExactS2[ii]=UpperS2[ii]-LowS2[ii]

#Credible interval for S3# 95% ClI

Srs3=s0rt(S3)

LowS3[ii]=Srs3[0.025*(nsim-n)]

LowS3

UpperS3[ii]=Srs3[0.975*(nsim-n)]

UpperS3

#EL for S3

ExactS3[ii]=UpperS3[ii]-LowS3[ii]
Jelse{if((G==m)||G+1==m))}{

da=y

dm=y[m] # last value in the adaptive progressive type Il censored data)

dm

rs=c()

for(i in 1:))
{

rs[i]=r[i]
}

rs #progressive censored scheme for J

R=sum(rs)

R

RR=(n-m-sum(rs)) #or R=sum(rs)
RR

ds=c()

for(i in 1:){
ds[i]=y[i]

}
ds

#MCMC(MH): Bayesian method

muhat[1]=mu
sigmhat[1]=sigm
posterior=function(muu,sigmm){
exp(m*log(pi)-(m*log(sigmm)+sum(log(da))+m*log(sqrt(3)))-
sum(log(da))*pi/(sigmm*sqrt(3))+(m*muu*pi)/(sigmm*sqrt(3))-2*sum(log(1+exp((-
pi*log(da)+pi*muu)/(sigmm*sqrt(3)))))-pi/(sigmm*sqgrt(3))*sum(rs*(log(ds)-muu))-
sum(rs*log(1+exp((-pi*log(ds)+pi*muu)/(sigmm™*sqrt(3)))))+RR*(-
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pi*log(dm)+muu*pi)/(sigmm*sqrt(3))-RR*log(1+exp((-
pi*log(dm)+pi*muu)/(sigmm*sqrt(3))))-(sigmm)-(muu)-2*log(1+exp(-muu)))
}
dcand = function(muu,sigmm) {
dlogis(muu,mu,1)*dgamma(l/sigmm,sigm”2+2,rate=sigm™*(sigm”2+1))/sigmm~"2

}

for (i in 2:nsim) {

cand = c(rlogis(1,muhat[i-1],1),1/rgamma(1,sigmhat[i-1]"2+2,rate=(sigmhat][i-
1]72+1)))

accep = min(posterior(cand[1], cand[2])*dcand(muhat[i-1],sigmhat][i-

1])/(posterior(muhat[i-1], sigmhat[i-1])*dcand(cand[1],cand[2])), 1)
dad=runif(1)

rho = (dad < accep)
mubhat[i] = cand[1] * rho + muhat[i - 1] * (1 - rho)
sigmhat[i] = cand[2] * rho + sigmhat[i - 1] * (1 - rho)

}

n=1000
muhat=muhat[-1:-n]
muhat

mmuhat[ii]J=mean(muhat)
sigmhat=sigmhat[-1:-n]

sigmhat
ssigmhat[ii]=mean(sigmhat)
#credible interval for mu
Srl=sort(muhat)
Low1[ii]=Sr1[0.025*(nsim-n)]
Upperl[ii]=Sr1[0.975*(nsim-n)]
Exactl[ii]=Upperl[ii]-Low1[ii]
#credible interval for sigm
Sr2=sort(sigmhat)
Low?2[ii]=Sr2[0.025*(nsim-n)]
Upper2[ii]=Sr2[0.975*(nsim-n)]
#EL for mu
Exact2[ii]=Upper2[ii]-Low2[ii]
HHH R R

t1=0.5
S1=1-1/(1+exp(-pi*(log(t1)-muhat)/(sigmhat*sqrt(3))))
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S11[ii]=mean(S1)

t2=1
S2=1-1/(1+exp(-pi*(log(t2)-muhat)/(sigmhat*sqgrt(3))))
S22[ii]=mean(S2)

t3=2
S3=1-1/(1+exp(-pi*(log(t3)-muhat)/(sigmhat*sqrt(3))))
S33[ii]=mean(S3)

HHHBHHH
#Credible interval for S1
Srsl=sort(S1)
LowS1[ii]=Srs1[0.025*(nsim-n)]
LowS1
UpperS1[ii]=Srs1[0.975*(nsim-n)]
UpperS1

#EL for S1
ExactS1[ii]=UpperS1[ii]-LowS1[ii]
#Credible interval for S2
Srs2=sort(S2)
LowS2[ii]=Srs2[0.025*(nsim-n)]
LowS2
UpperS2[ii]=Srs2[0.975*(nsim-n)]
UpperS2

#EL for S2
ExactS2[ii]=UpperS2[ii]-LowS2[ii]
#Credible interval for S3# 95% ClI
Srs3=sort(S3)
LowS3[ii]=Srs3[0.025*(nsim-n)]
LowS3
UpperS3[ii]=Srs3[0.975*(nsim-n)]
UpperS3

#EL for S3
ExactS3[ii]=UpperS3[ii]-LowS3[ii]

¥
k

#end of loop

HHHHHHH R
mbO=mean(mmuhat) #Bayesian estimate for mu
mb0

sbO0=mean(ssigmhat)# Bayesian estimate for sigm
sb0

HEHHHHEHHEHEH A Bias for mu & sigma
Bm=mb0-mu

Bm
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Bs=sb0-sigm
Bs
I

# an approximate Bayesian estimate of S(t) based on SEL function is the posterior mean

SS11=mean(S11)#estimate for S1

SS11

SS22=mean(S22)#estimate for S2

SS22

SS33=mean(S33)#estimate for S3

SS33
I
#need intial value for S1,S2,S3 by sub. mu & sigm
S01=1-1/(1+exp(-pi*(log(tl)-mu)/(sigm*sqrt(3))))
S02=1-1/(1+exp(-pi*(log(t2)-mu)/(sigm*sqrt(3))))
S03=1-1/(1+exp(-pi*(log(t3)-mu)/(sigm*sqrt(3))))

HHHEHHEHHEHH R DAIS survival function
S1b=SS11-S01#bais for S1

Sib

S2b=SS22-S02#bais for S2

S2b

S3b=SS33-S03#bais for S3

S3b

HHHHHHHHHHHHEHHHH##MSE for mu & sigma
MSEm=sum((mmuhat-mu)”2)/nBoot

MSEm

MSEs=sum((ssigmhat-sigm)”2)/nBoot

MSEs

HEHHHHHHHHHH T MSE for S1,52,S3
MSEs1=sum((S11-S01)"2)/nBoot

MSEs1

MSEs2=sum((S22-S02)"2)/nBoot

MSEs?2

MSEs2=sum((S33-S03)"2)/nBoot

MSEs?2

HHHHHHIH I HH#E X pected Length. for mu ,sigma,S1,S2 ,S3

ALl=sum(Exactl)/nBoot
AL1
AL2=sum(Exact2)/nBoot
AL2
ALS1=sum(ExactS1)/nBoot
ALS1
ALS2=sum(ExactS2)/nBoot
ALS2
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ALS3=sum(ExactS3)/nBoot

ALS3
HUHHHHHHH
#CII for mu
Cll=c(mean(Low1l),mean(Upperl))

Cl1

#CII for ssigm
Cl2=c(mean(Low2),mean(Upper2))

CI2

#CII for S1
CIS1=c(mean(LowS1),mean(UpperS1))
ClIs1

#CII for S2
CIS2=c(mean(LowS2),mean(UpperS2))
CIS2

#CII for S3
CIS3=c(mean(LowS3),mean(UpperS3))
CIS3

HIHHHHEHEHEHHHAHHAHA# covarage prob. for mu ,sigma,S1,S2 ,S3

# cv.prob.for mu
for(i in 1:nBoot){

if(Lowl[i]<=mu & Upperl[i]>=mu) # check with equal or not

countl=countl+1

by

countl
propl=sum(countl)/nBoot
propl
T
# cv.prob.for sigm

for(i in 1:nBoot){

if(Low2[i]<=sigm & Upper2[i]>=sigm)
count2=count2+1

¥

count2
prop2=sum(count2)/nBoot
prop2
HHTHHHHEHHEHHEHHTHE
# cv.prob.for S1

for(i in 1:nBoot){

if(LowS1[i]<=S01 & UpperS1[i]>=S01)
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countS1=countS1+1

}

countS1
prop3=sum(countS1)/nBoot
prop3
HUHHHHHHH
# cv. prob. for S2

for(i in 1:nBoot){

if(LowS2[i]<=S02 & UpperS2[i]>=S02)
countS2=countS2+1

ky

countS2
prop4=sum(countS2)/nBoot
prop4

HHTHHHH
# cv.prob.for S3

for(i in 1:nBoot){

if(LowS3[i]<=S03 & UpperS3[i]>=S03)
countS3=countS3+1

}

countS3

prop5=sum(countS3)/nBoot

props

HHHBHHH R
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APPENDIX C: R CODE FOR REAL LIFE EXAMPLE

#The MLE of complete data set n=m(no censoring)

y=c(0.39,0.81,0.85,0.98,1.08,1.12,1.17,1.18,1.22,1.25,1.36,1.41,1.47,1.57,1.57,1.59,1.59,
1.61,1.61,1.69,1.69,1.71,1.73,1.80,1.84,1.84,1.87,1.89,1.92,2.00,2.03,2.03,2.05,2.12,2.17,
2.17,2.17,2.35,2.38,2.41,2.43,2.48,2.48,2.50,2.53,2.55,2.55,2.56,2.59,2.67,2.73,2.74,2.76,
2.77,2.79,2.81,2.81,2.82,2.83,2.85,2.87,2.88,2.93,2.95,2.96,2.97,2.97,3.09,3.11,3.11,3.15,
3.15,3.19,3.19,3.22,3.22,3.27,3.28,3.31,3.31,3.33,3.39,3.39,3.51,3.56,3.60,3.65,3.68,3.68,
3.68,3.70,3.75,4.20,4.38,4.42,4.70,4.90,4.91,5.08,5.56)

hist(y,freq = FALSE)

length(y)

mu=0;sigm=1

S0=1-1/(1+exp(-pi*(log(t)-mu)/(sigm*sqrt(3))))

SO

m=length(y)

like=function(b)

{-(m*log(pi)-(m*log(b[2])+sum(log(y))+m*log(sqrt(3)))-
sum(log(y))*pi/(b[2]*sqrt(3))+(m*b[1]*pi)/(b[2]*sqrt(3))-2*sum(log(1+exp((-
pi*log(y)+pi*b[1])/(b[2]*sqrt(3))))))}

nn=nlm(like,c(mu,sigm),hessian=TRUE)

nn

mul=nn$estimate[1]

mul

sigml=nn$estimate[2]

sigml

t=0.5
S=1-1/(1+exp(-pi*(log(t)-nn$estimate[1])/(nn$estimate[2] *sqrt(3))))
S

xx=(pi/sqrt(3))*(log(y)-mul)/sigml

XX

## (KS.TEST FOR ONE SAMPLE)
ks.test(jitter(xx),"plogis",0,1)#standard logistic distribution
R R S R R R S R R e e R
###Real data set (MLE): censoring scheme

#casel:T=3.66

x1=sample(1:99, 30, replace=F)

x1

mu=0

sigm=1

n=100

pi=3.14

m=60
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R=c(30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10)

j=60 #All number of observed failures before time T
da=ds=c(0.39,0.85,1.08,1.17,1.22,1.25,1.36,1.57,1.59,1.59,1.61,1.71,1.73,1.80,1.84,1.84,
1.87,1.89,1.92,2.03,2.03,2.05,2.12,2.17,2.17,2.38,2.41,2.43,2.48,2.53,2.55,2.55,2.67,2.73,
2.74,2.76,2.77,2.79,2.81,2.81,2.82,2.83,2.87,2.95,2.96,2.97,3.09,3.11,3.11,3.15,3.19,3.19,
3.22,3.27,3.28,3.31,3.39,3.51,3.60,3.65)

length(da)

RR=0

rs=R

rs

dm=3.65

like=function(b)

{-(m*log(pi)-(m*log(b[2])+sum(log(da))+m™>log(sart(3)))-
sum(log(da))*pi/(b[2]*sqrt(3))+(m*b[1]*pi)/(b[2]*sqrt(3))-2*sum(log(1+exp((-
pi*log(da)+pi*b[1])/(b[2]*sqrt(3)))))-pi/ (b[2]*sqrt(3))*sum(rs*(log(ds)-b[1]))-
sum(rs*log(1+exp((-pi*log(ds)+pi*b[1])/(b[2]*sqrt(3)))))+RR*(-
pi*log(dm)+b[1]*pi)/(b[2]*sqrt(3))-RR*log(1+exp((-
pi*log(dm)+pi*b[1])/(b[2]*sqrt(3)))))}

nn=nlm(like,c(mu,sigm),hessian=TRUE)

mul=nn$estimate[1]

mul

sigml=nn$estimate[2]

sigml

HitHHHH

#Estimate of survival functions

t=0.5
S=1-1/(1+exp(-pi*(log(t)-mul)/(sigm1*sqrt(3))))
S

#95% (alpha=0.05), 100(1-alpha)% two sided approx.Cl for the parameters mu & sigma
or gnorm(alpha/2)=qnorm(0.025)

inv=solve(nn$hessian)

varl=inv[1]# mu

varl

var2=inv[4]#sigma

var2
Lowl=mul-qnorm(0.975)*sqrt(varl)
Uppl=mul+gnorm(0.975)*sqrt(varl)
Clmul=c(Lowl,Uppl)

Clmul
Low2=sigm1-gnorm(0.975)*sqrt(var2)
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Upp2=sigm1+qnorm(0.975)*sqrt(var2)

Clsigml=c(Low2,Upp2)

Clsigml

###95% CI for survival function S1(0.5)
G1=c(((pi/(sigm1*sqrt(3)))*exp(-pi*(log(t)-mul)/(sigml*sqrt(3))))/(1+exp(-pi*(log(t)-
mul)/(sigm1*sqrt(3))))"2,((pi*(log(t)-mul)/((sigm1)*2*sqrt(3)))*exp(-pi*(log(t)-
mul)/(sigm1*sqrt(3))))/(1+exp(-pi*(log(t)-mul)/(sigm1*sqrt(3))))"2)

G11=rbind(G1)

varS1=G11%*%inv

varSle=varS1%*%t(G11)

LowS1=S-gqnorm(0.975)*sqrt(varS1le)

UppS1=S+qgnorm(0.975)*sqrt(varSle)

CIS1=c(LowS1,UppSl)

CIs1

##### The length of CI for location & scale parameters

ExactL1=Uppl-Lowl

ExactL1

ExactL2=Upp2-Low?2

ExactL2

#### The length of CI for survival function at t=0.5

ExactLS1=UppS1-LowS1l

ExactLS1

#,3.68)3.68,3.68,3.70,3.75,4.38,4.42,4.70,4.90,4.91)

T

#case2:T=1.60

x1=sample(1:99, 30, replace=F)

x1

mu=0

sigm=1

n=100

pi=3.14

m=60
R=c(30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10)

J=13 #number of observed failures before time T
ds=c(0.39,0.81,0.85,0.98,1.12,1.17,1.22,1.25,1.36,1.41,1.57,1.59,1.59)

length(ds)
da=c(0.39,0.81,0.85,0.98,1.12,1.17,1.22,1.25,1.36,1.41,1.57,1.59,1.59,1.61,1.69,1.69,1.7
1,1.73,1.80,1.84,1.84,1.89,1.92,2.00,2.03,2.05,2.12,2.17,2.17,2.35,2.41,2.43,2.48,2.48,2.5
0,2.55,2.59,2.76,2.79,2.81,2.81,2.81,2.83,2.85,2.87,2.93,2.95,2.96,2.97,3.09,3.11,3.15,3.1
9,3.19,3.22,3.31,3.31,3.33,3.39,3.51)

length(da) #,3.56,3.65,3.68,3.68,3.70,3.75,4.20,4.70,4.91,5.56)
rs=c(30,0,0,0,0,0,0,0,0,0,0,0,0)

RR=10

dm=3.51
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like=function(b)

{-(m*log(pi)-(m*log(b[2])+sum(log(da))+m*log(sqrt(3)))-
sum(log(da))*pi/(b[2]*sqrt(3))+(m*b[1]*pi)/(b[2]*sqrt(3))-2*sum(log(1+exp((-
pi*log(da)+pi*b[1])/(b[2]*sqrt(3)))))-pi/ (b[2]*sqrt(3))*sum(rs*(log(ds)-b[1]))-
sum(rs*log(1+exp((-pi*log(ds)+pi*b[1])/(b[2]*sqrt(3)))))+RR*(-
pi*log(dm)+b[1]*pi)/(b[2]*sqrt(3))-RR*log(1+exp((-
pi*log(dm)+pi*b[1])/(b[2]*sqrt(3)))))}

nn=nIm(like,c(mu,sigm),hessian=TRUE)

mul=nn$estimate[1]

mul

sigml=nn$estimate[2]

sigml

HETHE

#Estimate of survival functions

t=0.5
S=1-1/(1+exp(-pi*(log(t)-mul)/(sigm1*sqrt(3))))
S

#95% (alpha=0.05)CI (100(1-alpha)% two sided approx.Cl for the parameters mu &
sigma or gnorm(alpha/2)=gnorm(0.025)

inv=solve(nn$hessian)

varl=inv[1]# mu

varl

var2=inv[4]#sigma

var2

Lowl=mul-qnorm(0.975)*sqrt(varl)
Uppl=mul+gnorm(0.975)*sqgrt(varl)

Clmul=c(Lowl,Uppl)

Clmul

Low2=sigm1-gnorm(0.975)*sqrt(var2)
Upp2=sigm1+gnorm(0.975)*sqrt(var2)

Clsigml=c(Low2,Upp2)

Clsigml

###95% CI for survival function S(0.6)
Gl=c(((pi/(sigml1*sqgrt(3)))*exp(-pi*(log(t)-mul)/(sigm1*sqrt(3))))/(1+exp(-pi*(log(t)-
mul)/(sigm1*sqrt(3))))"2,((pi*(log(t)-mul)/((sigm1)*2*sqrt(3)))*exp(-pi*(log(t)-
mul)/(sigm1*sqrt(3))))/(1+exp(-pi*(log(t)-mul)/(sigml*sqrt(3))))"2)
G11=rbind(G1)

varS1=G11%*%inv

varSle=varS1%*%t(G11)

LowS1=S-gnorm(0.975)*sqrt(varSle)
UppS1=S+qgnorm(0.975)*sqrt(varSle)
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CIS1=c(LowS1,UppSl)

ClIs1

HiHHHHEHAHEH# Length of CI. for location & scale parameters

ExactL1=Uppl-Lowl

ExactL1

ExactL2=Upp2-Low?2

ExactL2

L ength of CI. for survival function at t=0.5

ExactLS1=UppS1-LowS1l

ExactLS1

U R R R

#casel:T=3.66 (MCMC Method: censoring scheme)

nsim=11000

mu=0

sigm=1

n=100

pi=3.14

m=60

R=c(30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10)

j=60 #All number of observed failures before time T

da=ds=c(0.39,0.85,1.08,1.17,1.22,1.25,1.36,1.57,1.59,1.59,1.61,1.71,1.73,1.80,1.84,1.84,

1.87,1.89,1.92,2.03,2.03,2.05,2.12,2.17,2.17,2.38,2.41,2.43,2.48,2.53,2.55,2.55,2.67,2.73,

2.74,2.76,2.77,2.79,2.81,2.81,2.82,2.83,2.87,2.95,2.96,2.97,3.09,3.11,3.11,3.15,3.19,3.19,

3.22,3.27,3.28,3.31,3.39,3.51,3.60,3.65)

length(da)

RR=0

rs=R

rs

dm=3.65

muhat=c()

sigmhat=c()

muhat[1]=mu

sigmhat[1]=sigm

posterior=function(muu,sigmm){
exp(m*log(pi)-(m*log(sigmm)+sum(log(da))+m*log(sqrt(3)))-

sum(log(da))*pi/(sigmm*sqrt(3))+(m*muu*pi)/(sigmm*sqrt(3))-2*sum(log(1+exp((-

pi*log(da)+pi*muu)/(sigmm*sqrt(3)))))-pi/(sigmm*sqrt(3))*sum(rs*(log(ds)-muu))-

sum(rs*log(1+exp((-pi*log(ds)+pi*muu)/(sigmm*sqrt(3)))))+RR*(-

pi*log(dm)+muu*pi)/(sigmm*sqrt(3))-RR*log(1+exp((-

pi*log(dm)+pi*muu)/(sigmm*sqgrt(3))))-log(sigmm))

}

dcand = function(muu,sigmm) {
dlogis(muu,mu,1)*dgamma(1/sigmm,sigm”"2+2,rate=sigm*(sigm”2+1))/sigmm”2
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}

for (i in 2:nsim) {

cand = c(rlogis(1,muhat[i-1],1),1/rgamma(1,sigmhat[i-1]*2+2, rate=(sigmhat[i-1]"2+1)))

accep = min(posterior(cand[1], cand[2])/posterior(muhat[i-1], sigmhat[i-
1])*dcand(mubhat[i-1],sigmhat[i-1])/dcand(cand[1],cand[2]), 1)
rho = (runif(1) < accep)
mubhat[i] = cand[1] * rho + muhat[i - 1] * (1 - rho)
sigmhat[i] = cand[2] * rho + sigmhat[i - 1] * (1 - rho)
}
muhat
sigmhat
cm=as.mcmc(muhat)
summary(cm)
plot(cm,main="p")
cs=as.mcmc(sigmhat)
plot(cs,main="sigma")
B e e ey
autocorr.plot(cm,main="u")
autocorr.plot(cs,main="sigma")
autocorr(cm)# the autocorrelation decrease at lag 50
autocorr(cs)# the autocorrelation decrease at lag 50
HHHHHHH A
n=1000
muhat=muhat[-1:-n]
muhat
sigmhat=sigmhat[-1:-n]
sigmhat
HHHHHHIHHEHHEH A draw marginal density function again
i=seq(1,length(muhat),by=50)
out.sub=density(muhat[i])
out=density(muhat,bw=out.sub$bw)
plot(out,main="Ap")#marginal density after burn in
hist(muhat,main="Ay",freq = FALSE)#not draw
hist(sigmhat,main="sigma",freq = FALSE)#not draw
hist(muhat,freq =FALSE)

HHHHEHHEH

ii=seq(1,length(sigmhat),by=50)
out.sub=density(sigmhat[ii])
out=density(sigmhat,bw=out.sub$bw)
plot(out,main="sigma")#marginal density after burn in
hist(sigmhat,freq =FALSE)
HHHHHEHHHHEHHEHHEHR A Statistical inference
mmuhat=mean(muhat)

mmuhat
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ssigmhat=mean(sigmhat)
ssigmhat

#Estimate of survival functions
t=0.5
S1=1-1/(1+exp(-pi*(log(t)-muhat)/(sigmhat*sqrt(3))))
S1l=mean(S1)

S11

#credible interval for mu
Srl=sort(muhat)
Low1=Sr1[0.025*(nsim-n)]
Upperl=Sr1[0.975*(nsim-n)]
Clmu=c(Low1,Upperl)

Clmu

#credible interval for sigm
Sr2=sort(sigmhat)
Low2=Sr2[0.025*(nsim-n)]
Upper2=Sr2[0.975*(nsim-n)]
Clsigm=c(Low2,Upper2)
Clsigm

HHHEHEHHHHEHEHE A 95% Credible interval
#Credible interval for S1
Srs1=sort(S1)
LowS1=Srs1[0.025*(nsim-n)]
UpperS1=Srs1[0.975*(nsim-n)]
CIS1=c(LowS1,UpperS1)

CIs1

T
#EL for mu
Exactl=Upperl-Lowl
Exactl

#EL for sigm
Exact2=Upper2-Low?2
Exact2
TR T
#EL for S1
ExactS1=UpperS1-LowS1
ExactS1

#case2:T=1.60
nsim=11000

mu=0

sigm=1

n=100

pi=3.14

m=60
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R=c(30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10)
j=13 #number of observed failures before time T
ds=c(0.39,0.81,0.85,0.98,1.12,1.17,1.22,1.25,1.36,1.41,1.57,1.59,1.59)
length(ds)
da=c(0.39,0.81,0.85,0.98,1.12,1.17,1.22,1.25,1.36,1.41,1.57,1.59,1.59,1.61,1.69,1.69,1.7
1,1.73,1.80,1.84,1.84,1.89,1.92,2.00,2.03,2.05,2.12,2.17,2.17,2.35,2.41,2.43,2.48,2.48,2.5
0,2.55,2.59,2.76,2.79,2.81,2.81,2.81,2.83,2.85,2.87,2.93,2.95,2.96,2.97,3.09,3.11,3.15,3.1
9,3.19,3.22,3.31,3.31,3.33,3.39,3.51)
length(da)
rs=c(30,0,0,0,0,0,0,0,0,0,0,0,0)
RR=10
dm=3.51
muhat=c()
sigmhat=c()
muhat[1]=mu
sigmhat[1]=sigm
posterior=function(muu,sigmm){
exp(m*log(pi)-(m*log(sigmm)+sum(log(da))+m*log(sqrt(3)))-
sum(log(da))*pi/(sigmm*sqrt(3))+(m*muu*pi)/(sigmm*sqrt(3))-2*sum(log(1+exp((-
pi*log(da)+pi*muu)/(sigmm*sqgrt(3)))))-pi/(sigmm*sqrt(3))*sum(rs*(log(ds)-muu))-
sum(rs*log(1+exp((-pi*log(ds)+pi*muu)/(sigmm*sqrt(3)))))+RR*(-
pi*log(dm)+muu*pi)/(sigmm*sqrt(3))-RR*log(1+exp((-
pi*log(dm)+pi*muu)/(sigmm*sqgrt(3))))-log(sigmm))
}
dcand = function(muu,sigmm) {
dlogis(muu,mu,1)*dgamma(1l/sigmm,sigm”2+2 rate=sigm*(sigm”2+1))/sigmm”2
}
for (i in 2:nsim) {
cand = c(rlogis(1,muhat[i-1],1),1/rgamma(1,sigmhat[i-1]*2+2, rate=(sigmhat[i-1]*2+1)))
#generate samlpe from candidate or proposal (not prior) ,need to install package of
inverse gamma
accep = min(posterior(cand[1], cand[2])/posterior(muhat[i-1], sigmhat[i-
1])*dcand(muhat[i-1],sigmhat[i-1])/dcand(cand[1],cand[2]), 1)
rho = (runif(1) < accep)
muhat[i] = cand[1] * rho + muhat[i - 1] * (1 - rho)
sigmhat[i] = cand[2] * rho + sigmhat[i - 1] * (1 - rho)
}
muhat
sigmhat
n=1000
muhat=muhat[-1:-n]
muhat
mmuhat=mean(muhat)
mmuhat
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sigmhat=sigmhat[-1:-n]
sigmhat

mean(muhat)
mean(sigmbhat)

HHHHHHHHH R R #E stimate of survival functions

t=0.5
S1=1-1/(1+exp(-pi*(log(t)-muhat)/(sigmhat*sqrt(3))))
S1l=mean(S1)

S11

HHHH R
#credible interval for mu
Srl=sort(muhat)
Low1=Sr1[0.025*(nsim-n)]
Upperl=Sr1[0.975*(nsim-n)]
Clmu=c(Low1,Upperl)

Clmu

#credible interval for sigm
Sr2=sort(sigmhat)
Low2=Sr2[0.025*(nsim-n)]
Upper2=Sr2[0.975*(nsim-n)]
Clsigm=c(Low2,Upper2)
Clsigm

HUHHHHHHHHHHH T 95% Credible interval
#Credible interval for S1
Srsl=sort(S1)
LowS1=Srs1[0.025*(nsim-n)]
UpperS1=Srs1[0.975*(nsim-n)]
CIS1=c(LowS1,UpperS1)

ClIs1

HHTHEHHEHHEHHHE

#EL for mu
Exactl=Upperl-Lowl

Exactl

#EL for sigm
Exact2=Upper2-Low?2

Exact2

HHTHHHHEHHEH

#EL for S1
ExactS1=UpperS1-LowS1
ExactS1
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