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Exploring use of unsupervised clustering to
associate signaling profiles of GPCR ligands
to clinical response

Besma Benredjem"? ", Jonathan Gallion3", Dennis Pelletier?, Paul Dallaire!2, Johanie Charbonneau?,

Darren Cawkill*’, Karim Nagi® °, Mark Gosink?, Viktoryia Lukasheva®, Stephen Jenkinson®8, Yong Ren*?,
Christopher Somps4, Brigitte Murat®, Emma Van Der Westhuizen® ©1°, Christian Le Gouill®, Olivier Lichtarge3,
Anne Schmidt?, Michel Bouvier 6 & Graciela Pineyro1'2

Signaling diversity of G protein-coupled (GPCR) ligands provides novel opportunities to
develop more effective, better-tolerated therapeutics. Taking advantage of these opportu-
nities requires identifying which effectors should be specifically activated or avoided so as to
promote desired clinical responses and avoid side effects. However, identifying signaling
profiles that support desired clinical outcomes remains challenging. This study describes
signaling diversity of mu opioid receptor (MOR) ligands in terms of logistic and operational
parameters for ten different in vitro readouts. It then uses unsupervised clustering of curve
parameters to: classify MOR ligands according to similarities in type and magnitude of
response, associate resulting ligand categories with frequency of undesired events reported
to the pharmacovigilance program of the Food and Drug Administration and associate signals
to side effects. The ability of the classification method to associate specific in vitro signaling
profiles to clinically relevant responses was corroborated using P2-adrenergic receptor
ligands.
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protein-coupled receptors (GPCRs) modulate practically

every aspect of human physiology and are the target of

~30% of FDA-approved medicines!. When activated these
receptors undergo conformational changes>3 that determine the
type and the magnitude of signals triggered within the cell*. This
signaling configuration supports ligand-specific activation of the
different pathways?, and provides a theoretical opportunity for
directing pharmacological stimulus toward pathways that
underlie desired therapeutic responses and away from those
responsible for undesired side effects>. However, in spite of
this promise® development of therapeutic biased ligands has
yet to translate into more effective and/or better-tolerated
medicines”~11.

Different challenges have hindered the development of clini-
cally effective biased ligands. Except for limited examples!2-14, we
ignore the signals underlying desired and undesired clinical
responses of GPCR ligands. To access this knowledge and apply it
to drug discovery, it is necessary to identify signaling preferences
and to associate distinct signaling profiles to desired/undesired
clinical outcomes!>16. The way in which signaling preferences are
currently identified in drug discovery efforts involves calculation
of “bias factors”, an approach that uses consolidated (Log(t/KA))
transduction coefficients to measure the extent to which a ligand
preferentially activates one pathway over another!7-19, This type
of evaluation compares signals in a pairwise manner, a dichot-
omous approach that provides a fragmented view of a ligand’s
signaling preferences across the multiplicity of pathways. Perhaps
more troubling for the use of “bias factors” as descriptors of
potential clinical responses is the fact that their estimated mag-
nitudes vary with the calculation method used to produce them!>.
Finally, the same “bias factor” may describe drugs with very
different efficacies at the pathways of interest?® further ques-
tioning the value of these measures as predictors of desired/
undesired in vivo responses. In an effort to circumvent at least
some of these limitations, we sought an alternative way to identify
signaling preferences and classify GPCR ligands.

One of the most studied examples of how biased signaling
may support development of more effective and/or better-
tolerated therapeutic agents is that of opioid analgesics. Pre-
clinical models have indicated that B-arrestin2 (Barr2) knock-
out mitigates constipation and respiratory depression induced
by morphine?!, pointing to the possibility that mu opioid
receptor (MOR) agonists that preferentially activate G protein
signaling over Parr2 recruitment could induce less of these side
effects!2-14, Here, we use this prototypical example to establish
that clustering MOR ligands according to similarities in
pharmacodynamic parameters for multiple responses, captures
their signaling differences and preferences. We show that
ligands with similar G protein/Barr responses cluster together,
and provide evidence that ligands within different categories
display distinct frequencies of gastrointestinal and respiratory
events reported to the FDA pharmacovigilance program.
Moreover, when ligands are clustered according to either G
protein or Parr responses both signals directly associate to side
effects. The practical value of the classification method pro-
posed is further illustrated by the fact that ligand categories
defined by similarity of G protein responses at p2-adrenergic
receptor (P2AR) correlate with sympatholytic CV events and
bronchoconstriction.

Results

Clustering ligands according to pharmacodynamic similarities.
We sought a method to identify and group together ligands with
overall similarities in a multiplicity of signaling pathways while
simultaneously discerning those with overall differences in

features, such as efficacy, potency, and signaling preferences. To
test the ability of the method to accomplish this task independent
of idiosyncrasies in experimental data sets, we generated a set of
320 virtual compounds as variations of 16 prototypical profiles
characterized by a combination of pharmacodynamic features
across six different readouts (see the Methods section). Profiles
are shown in Supplementary Fig. 1. Criteria to classify ligands
according to pharmacodynamic similarities were empirically
established by generating matrices, in which each ligand was
represented by individual logistic (E,.x, pEC50) or operational
(Log(t), pKA, Log(t/KA)) parameters, as well as their combi-
nations. Matrices were then subject to nonnegative matrix fac-
torization (NNMF)?2 to identify essential, nonredundant
features, and k-means clustering was subsequently used to clas-
sify ligands according to these features?3. Iterations were used to
incorporate the error associated with each mean parameter value,
ensuring its propagation throughout the clustering procedure
(see the Methods and Supplementary Fig. 2). The result of this
procedure was a ligand x ligand similarity matrix that quantifies
how frequently any two compounds clustered together over the
iterations. Final similarity matrices were submitted to hier-
archical clustering to establish row and column ordering
according to similarity, and visualized as heatmaps. Figure 1
shows heatmaps for the progressive associations of parameters
leading to identification of Log(t), En.x and Log(t/KA) as a
combination faithfully recreating the 16 profiles initially defined.
Operational efficacy (1) by itself was not sufficient to fully dis-
tinguish ligands with different profiles (Fig. la, d). Introducing
measures of signaling capacity (E,x) improved the classification
(Fig. 1, e), but discrimination was not optimal unless values for
transduction coefficient Log(t/KA) were also included (Fig. Ic,
f). Unlike Log(t) and E. values, transduction coefficients
incorporate potency information?42° and thus provide a differ-
ent dimension on which ligands can be distinguished. In effect,
Log(t/KA) coefficients were correlated with logistic potency
estimates (pEC50) (Supplementary Fig. 3a), so the classification
afforded by Log(1)-Enax-pEC50 (Supplementary Fig. 3b, c) was
quite similar to the one produced with Log(1)-Eax-Log(t/KA).
Profiles recreated by classifying ligands according to Log(t)-
Eax-Log(t/KA), are shown in Supplementary Fig. 4, revealing a
minimal number of displaced compounds.

We then applied the proposed classification strategy on
experimental data. Multidimensional signaling profiles for this
analysis were generated using ten different BRET-based biosen-
sors that monitor Parr recruitment and G protein signaling. G-
protein signaling was monitored through conformational rear-
rangements within Gay; »/0AB1Y2 heterotrimers2, at the interface
of GBy2/Kir3 channel subunits?’, or as changes in cAMP
levels?8-2%, Barr recruitment to the receptor was assessed for Parrl,
Barr2, and Parr2 in presence of GRK2, GRKS5, or GRK6 to
account for possible impact of expression differences between the
screening system (HEK 293) and target neurons where GRK
levels are higher®®. Net BRET values obtained in cells co-
expressing human MORs (hMOR) and different biosensors in
presence/absence of the endogenous ligand Met-Enkephalin
(Met-ENK) are shown for reference in Supplementary Fig. 5.
Concentration response curves (CRCs) for 10 known opioids
(Fig. 2), and 15 novel compounds (Supplementary Fig. 6)
identified in the context of a screening campaign at Pfizer
Inc3!, were then generated and analyzed with the logistic
equation and the operational®> model. Each ligand was
phenotypically described by corresponding t, Eyiax, and Log(t/
KA) values (+ SEM) derived from 5 G protein- and 5 Barr-related
responses (Supplementary Data 1). These were analyzed with
NNMEF/k-means clustering as above and represented as heat
maps for ligands (Fig. 3a) and for parameters (Fig. 3b).
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Fig. 1 Ligands are classified according to similarities in multidimensional signaling profiles using pharmacodynamic parameters. 320 virtual compounds
were defined by logistic and operational parameters to represent 16 distinct signaling profiles describing response at six different readouts. Indicated
parameters were then subject to NNMF followed by k-means clustering, to produce corresponding similarity matrices that were represented as heatmaps
and hierarchical clustering trees (using the R heatmap function with the metric:ward.D2) (a-c) or t-SNE plots (using the R package tsne with default
parameters) (d-f). Ligands were color-coded to highlight how different combinations of parameters differentiated compounds originating from the different

profiles originally defined

Ligands within the same cluster share quality and magnitude of
response. An essential pharmacological question is to identify the
pathways and pharmacodynamic properties primarily responsible
for ligand clustering. The overall resemblance among relative
magnitudes of operational and logistic parameters from different
functional readouts is shown in Fig. 3b delineating three clusters
of parameters. To further characterize differences among ligand
categories, we investigated whether the magnitude of parameters
describing ligand response in each assay was different across
the three clusters of ligands. To do so, we wused a
Kolmogorov-Smirnoff test to compare the distribution of para-
meter values in each cluster to that of the overall population

(detailed in Supplementary Fig. 7). Only certain parameters in
each cluster contributed to ligand discrimination, and they did so
to different extents (Fig. 3c). Those in cluster A had the most
weight, as 29.9% of comparisons identified at least one distribu-
tion of parameters significantly different from that of the whole
population. Overall, 14.9% of comparisons in cluster B and 3.5%
in cluster C also significantly contributed to ligand discrimina-
tion. Alternatively, ordering parameters by type (Fig. 3d) revealed
that efficacy-related parameters (E,,,, and 1) had the most weight
in the classification (52.0% and 36.0% of the comparisons,
respectively, identified distributions different from the whole
population) while Log(t/KA) played a smaller role separating
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primary compound clusters (11.0%). Finally, Supplementary
Table 1 shows assay parameters significantly contributing to
ligand clustering. The diversity of signals determining cluster
assignment distinguishes this multidimensional classification
from dichotomous comparisons underlying bias magnitudes.

log[Agonist], M

Importantly, despite independence from bias magnitudes, the
proposed classification strategy still allows to evaluate relative
contributions of Barr and G protein signaling to ligand assign-
ment to clusters. To access this information, drugs were re-
clustered using subsets of the data corresponding exclusively to G
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Fig. 2 parr recruitment and G-protein responses generated by opioid ligands. Responses for prescription opioids and known hMOR ligands were monitored
using BRET-based biosensors. The results correspond to mean+ SEM of at least three independent experiments, normalized to the maximal effect of Met-
ENK, which was tested in all experimental runs (n =16-29). Curves were fit with the operational model and the logistic equation (the results from the
logistic fit are shown). a parr1 recruitment, (b) Barr2 recruitment, (¢) Barr2 recruitment in presence of GRK2, (d) parr2 recruitment in presence of GRK5,
(e) Barr2 recruitment in presence of GRK6, (f) cAMP, (g) Gail activation, (h) Gai2 activation, (i) GaoA activation, and (j) Kir3.1/3.2 activation. Net BRET
values for Met-ENK are shown in Supplementary Fig. 5 and dose-response curves for all novel compounds appear in Supplementary Fig. 6. Operational and
logistic parameters provided in Supplementary Data 1. Source data are provided as a source data file

protein (Supplementary Fig. 8a) or to Parr (Supplementary Fig.
8b) assays, and the resulting similarity matrix produced with each
partial data set was compared with the matrix generated using the
complete set of values. Differences between matrices were
quantified as described in the Methods section and Supplemen-
tary Fig. 9, and expressed as the proportion of changes in ligand
distances that were compatible with a switch in clusters between
the two compared matrices. Clusters generated with Parr data
differed by only 11.5% from clusters produced with the complete
data set (Fig. 3e), underscoring the similarity of drug classes
defined by Parr signaling patterns and complete signaling profiles.
The partial data set for G protein responses differed by 27.2%
(Fig. 3e) from the complete ligand similarity matrix. Thus,
although clusters generated with Parr or with G protein data sets
resembled clusters produced with the complete data set more
than did clusters generated with the corresponding randomized
values, initial ligand clustering was more faithfully recreated by
Barr responses (Fig. 3e), indicating that that this signal was the
one primarily driving classification in the complete matrix.
Profiles graphically representing E,;.x and Log(t/KA) values for G
protein and Parr readouts further highlight how the analysis
clustered ligands according to type and magnitude of responses
elicited (Fig. 4). Ligands in cluster #3 were full, reasonably
balanced agonists characterized by maximal effects at farr and G
protein readouts. Ligands in cluster #2 were partial agonists for G
protein-mediated responses with measurable Parr recruitment
only in presence of overexpressed GRKs, while ligands in cluster
#1 displayed minimal or no Parr recruitment and G protein
responses were overall smaller than in cluster #2.

While it may be feasible to monitor ten different signaling
outcomes for a small group of ligands, it is unlikely that this could
be done in high-throughput screening or structure-activity
profiling. Hence, once we had identified the signals that
contributed the most to drug classification, we determined
whether a reduced number of assays could convey similar
diversity. To this end, Parr2 + GRK2, Parr2 + GRK6, Gai2, and
cAMP were chosen as respective prototypes of Parr- and G
protein responses. Similarity matrices generated from these
individual signals or from their combinations were compared
with the complete similarity matrix. As above, we compared each
partial data set to the complete set of hAMOR parameters, and then
established if the proportion of ligands switching clusters was less
than that observed for the corresponding randomized data set.
For cAMP, the proportion of changes were larger than the
expected random value (Fig. 3f), indicating minimal contribution
of this signal to ligand classification. In contrast, for clusters
generated with the other data subsets, the proportion of ligands
switching clusters was significantly smaller than the random
expectation (Fig. 3f), indicating that each of these signals
significantly supported ligand discrimination in the complete
data set, albeit to different extents.

The combination of Parr2 + GRK2 and Parr2 + GRK6 data
was the best at reproducing clustering obtained with the complete
hMOR similarity matrix (91.4%; Fig. 3f). In comparison, the Gai2
data set either combined with cAMP or in isolation moderately
recreated the clusters of the complete matrix (Gai2 =74.4%,

Gai2 + cAMP = 69.0% differences). Combining all four assays
added little extra precision as compared with Parr2 + GRK2 with
Barr2 + GRK6 (Fig. 3f). Thus, taken together, these data indicate
that it is possible to first identify the signals that primarily
contribute to signaling diversity of a group of compounds at a
given receptor, and then use these signals as surrogate readout for
screening campaigns over large collections of compounds.

Ligand clusters are informative of possible side effects.
Preclinical studies suggest that signaling diversity of MOR ago-
nists provides a means of improving tolerability of opioid
analgesics!2-14, Therefore, it was of interest to determine if the
pharmacodynamic clusters just defined could inform us about
clinical side effects of ligands in each category. To address this
issue, we first used standardized gamma (SD gamma) scores3 to
identify adverse events most frequently reported for opioids in
the Food and Drug Administration’s pharmacovigilance data base
(Adverse Effects Report System (AERS)), and then calculated the
scores of these events for each of the prescription opioids used in
the study. These measures of side effect prevalence were asso-
ciated to ligands in the different clusters by using the Euclidian
distance between ligands in the similarity matrix. Tramadol was
set as the arbitrary origin, and distances separating the rest of
prescription opioids from tramadol in the Log(t)-E.-Log(t/
KA) matrix were consigned as measures of ligand similarity.
These measures were then correlated to the SD gamma scores for
each ligand’s side effects. A complete list of the 80 events con-
sidered along with 72 and p-values for each correlation is provided
in Supplementary Data 2. Correlations that were significant (p <
0.05) and/or explained at least 60% of the variance (r>0.60)
were considered. Applying these criteria, ligand position in the
Log(1)-Enax-Log(t/KA) matrix was correlated to 6 out of a total
of 80 associations considered (7.5%), including gastrointestinal
(GI) events, respiratory depression, and somnolence (Table 1), all
typically associated to opioid therapy>*3>. These correlations
confirm that signaling categories defined by unsupervised clus-
tering can be associated to distinct frequency of report of unde-
sired effects of opioid ligands.

Log(t) and E,;,,, were the main determinants of ligand position
in the matrix constituting 89.0% of parameters -effectively
grouping ligands into clusters (Fig. 3d). Not surprisingly, if
ligands were classified exclusively using these efficacy-related
parameters, all side effects previously associated with ligand
position in the Log(t)-E.-Log(t/KA) matrix remained corre-
lated with their positions in this efficacy-only matrix (Table 1).
Actually, categories driven by efficacy measures associated with
more side effects than clusters established by including Log(t/KA)
as an additional classification criterion (Table 1). Thus, even if
functional affinity information within transduction coefficient
affords better discrimination of ligands, it also acts as a
confounder for cluster association to side effects.

Associating side effects to specific signals. Preclinical studies
have suggested that MOR agonists that preferentially engage G
protein over Parr responses could display less gastrointestinal and
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cAMP: —3.308; z-score difference: Gai2 vs Barr2-GRK2/6-Gai2: 3.754 (f). Source data provided in Supplementary Data 1 and as a source data file
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Fig. 4 Graphic representation of operational and logistic parameters for AIMOR ligands populating different clusters. Operational transduction coefficients
(Log(t/KA)) and logistic E..x values derived from concentration response curves generated by hMORs at ten different biosensors were represented as
radial graphs. Each radius corresponds to the magnitude of Log(t/KA) or E..x values. Transduction coefficients are in logarithmic scale, E.x values were
normalized to maximal Met-ENK response, and are presented on linear scale. Source data provided in Supplementary Data 1

respiratory side effects in the clinic!?~14, Hence, we were inter-
ested to find out whether AERS reports for opioids would dis-
tinctively correlate with ligand categories defined either by G
protein or Parr signaling. There has been considerable debate as
to whether biased signaling is best identified using Log(t/KA)
transduction coefficients!7-*42> or efficacy-related measures3%-37.
Hence, partial matrices in which drugs were classified according
to G protein or Parr responses were generated using either Log
(1)-Emax Or Log(T)-Emax-Log(1/KA) as classification criteria.
Supplementary Fig. 10 shows how frequency of faecaloma report
correlates to similarity scores in these four partial matrices.
Considering the classification based exclusively on Log(t)-Eax
values, categories defined by Parr and G protein responses were
both correlated to faecaloma report (Supplementary Fig. 10a),
implying no differential association of these signals to the
undesired event. In contrast, when Log(t/KA) coefficients were
additionally considered, faecaloma report correlated to Parr, but
not G protein responses (Supplementary Fig. 10b). However, it is
worth considering how inclusion of Log(t/KA) values breaks the
correlation previously established with efficacy-based categories.
BUP has a high transduction coefficient that cannot be dis-
tinguished from those of fentanyl (FEN) or loperamide (LOP),
causing the partial agonist to move closer to these efficacious
ligands in the matrix. Yet BUP’s transduction coefficient is driven
by its high affinity3®3%, and regardless of its position among
efficacious agonists its side effects profile remains determined by
its partial efficacy, disrupting the correlation.

Opioid modulation of acute ileum contractility is G protein-
driven by effectors that hyperpolarize myenteric neurons and

inhibit neurotransmitter release by vagal terminals*0-42:, We used
this G protein-mediated response to ascertain that failure to
correlate faecaloma report to categories partly defined by Log(t/
KA) was not due to the method itself. In effect, as shown in
Supplementary Fig. 10c-e, frequency of faecaloma report
correlated with Log(t) but not Log(t/KA) values describing
ligand inhibition of ileum contraction.

Signaling and structural clusters convey complementary
information about side effects. Structural criteria are used to
classify, compare, and infer possible commonalities of in vivo
responses for drug candidates*3. We therefore compared cate-
gories of ligands defined by pharmacodynamic and structural
criteria. Ligand structure was described using Tanimoto values**
derived from standard fingerprint representations (Supplemen-
tary Data 3-5), and these values were then clustered using the
same NNMF/k-means method as previously applied on signaling
profiles. The resulting clusters are shown in Supplementary Fig.
11a, and representatives of each structural group are provided in
Supplementary Fig. 12. Structural and pharmacodynamic simi-
larity matrices were then compared, indicating that 36.0% of
changes in ligand distance were compatible with a switch in
cluster when the two different criteria were applied. This value
was significantly lower when compared with 43.5% switches
observed using randomized structural data (z-score = —2.803;
p <0.01), denoting some degree of statistical similarity between
signaling and structural categories (Source data provided).
However, the degree of similarity was low as schematically
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available hMOR ligands*

Table 1 Pharmacodynamic and structural categories associate with frequency of report of undesired events for clinically

Undesired events associated with Type of side effect Preferred term R square p-value
Functional categories defined by Log(t)-Enax-Log  Gastrointestinal/nutrition Cachexia 0.66 0.05
(t/KA)
Faecaloma 0.86 0.01
Gastrointestinal motility disorder 0.81 0.01
Respiratory events Respiratory depression 0.62 omn
Respiratory rate decreased 0.60 0.13
Sleep disorder Somnolence 0.60 0.12
Functional categories defined by Log(t)-Emax Gastrointestinal/nutrition Cachexia 0.66 0.05
Faecaloma 0.92 0.00
Gastrointestinal motility disorder 0.62 0.06
Respiratory events Hypoventilation 0.68 0.08
Oxygen saturation decreased 0.61 0.12
Respiratory depression 0.78 0.05
Respiratory rate decreased 0.69 0.08
Sleep disorder Somnolence 0.75 0.06
Structural categories Respiratory events Hypopnoea 0.65 0.10
Yawning 0.79 0.04
Neuropsychiatric Withdrawal syndrome 0.74 0.06
Change in drug response Analgesic drug level increased 0.70 0.08
Drug effect decreased 0.64 0.10
Drug effect increased 0.90 0.01
Therapeutic response increased 0.89 0.02
Therapeutic response decreased 0.74 0.06
Pain Breakthrough pain 0.69 0.08
Complex regional pain syndrome 0.64 0.1
Itching Pruritus generalized 0.86 0.02
Others Therapy cessation 0.76 0.05

Supplementary Data 2 and source data files

#Only significant correlations, and correlations that explained 60% or more of the variance were considered; full information in Supplementary Data 2. Similarity and SD gamma scores for Buprenorphine,
Fentanyl, Morphine, Oxycodone, and Tramadol were used to establish correlations. Loperamide was additionally included in correlations for gastrointestinal reports. Source data provided in

represented in Supplementary Fig. 11b. In keeping with this
notion, clusters based on chemical structures were correlated with
a different set of reported events than those associated with the
pharmacodynamic clusters (Table 1). In particular, ligand dis-
tances in the matrix generated with chemical structures correlated
with 12.5% of reported events, including pruritus, a typical opioid
associated complaint4°, as well as with reports of withdrawal and
fluctuations in response and drug levels (Supplementary Data 6).
Since structure determines pharmacokinetic properties, it is not
surprising that structural categories associate with fluctuations in
drug effects and even withdrawal symptoms*®. On the other
hand, and in spite of pharmacodynamic properties also being
determined by structure, categories based on structural finger-
print representations failed to identify any of the events that
associated with signaling categories, emphasizing the value of
complementing structural information with a signal-based
classification.

Ligand clusters generated with different GPCRs. We next
examined whether clustering analysis could reveal pharmacody-
namic similarities and differences among ligand responses gen-
erated at different opioid receptor subtypes. To do so, we used the
same set of biosensors as for hMORs to monitor ligand activity at
rat MORs (rMORs), human delta opioid receptor (hDORs) and
rat DORs (rDORs). Corresponding input matrices containing
logistic and operational parameters for each receptor (Supple-
mentary Data 7-9) were analyzed as before to yield individual
similarity matrices and associated heatmaps (Fig. 5a-c). Differ-
ences in clustering across receptor subtypes and species were
evaluated by comparing similarity matrices for each receptor and
are summarized in Fig. 5d. These comparisons revealed that the

pattern of signaling diversity of this group of opioid ligands was
reasonably conserved within the same receptor from different
species. Indeed, in comparisons between rat and human MORs or
rat and human DORs, the proportion of changes in ligand dis-
tances that were compatible with a switch in cluster was sig-
nificantly less for actual as compared with randomized data sets
(Fig. 5e), confirming congruent patterns across species.

In contrast, when clusters generated with data sets from MORs
and DORs within the same species were compared, their
differences were statistically indistinguishable from those
obtained by comparing corresponding sets of randomized data
(Fig. 5f), indicating that the analysis discerned the distinct
pharmacological profiles of the two receptor subtypes. To identify
the source of these differences, we compared the relative
contribution of Barr and G protein responses in driving ligand
clustering this time according to hDOR responses. Clusters
generated with each partial data set bore statistical similarity to
clustering done using the complete data set, and no statistical
difference was revealed between clusters produced with Barr and
G protein parameters (Fig. 5g). To more precisely establish the
weight of PBarr and Gprotein responses to clustering of ligands
according to hDOR signaling, we investigated how every value in
the similarity matrix changed when considering hDOR clusters
produced with the complete data set, and clusters generated with
pathway-specific data sets. As shown in Fig. 5h, the variations
between the complete and the G protein similarity matrices
paralleled the differences between the complete and the Parr
similarity matrices, indicating the two types of signals similarly
contributed to the classification of ligands according to responses
generated at hDORs. In contrast, and consistent with the fact that
Parr recruitment was the main determinant in hMOR clustering,
the differences between G protein and complete matrices were
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Fig. 5 Signaling profiles of opioid receptor ligands are conserved across species but not receptor subtypes. Ligand similarity heatmaps for rat MOR (a),
human DOR (b), and rat DOR (¢) data sets. Yellow and blue, respectively, indicate ligands/parameters that never or always cluster together. Proportion of
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in (h) were repeated for the complete hMOR matrix and partial data sets for parr or G protein (i). Source data provided in Supplementary Data 7, 8, and 9

and source data files

more frequent and larger than those for the corresponding Parr
comparison (Fig. 5i). A graphical representation of hDOR clusters
is given in Supplementary Fig. 13.

Finally, we assessed whether clustering according to signaling
profiles could be extended to GPCRs that couple to effectors
different than those activated by opioid receptors. For this
purpose, we considered published*’ and novel data generated
with (B2-adrenergic receptor (B2AR) ligands including: (a) G
protein-dependent responses (Gas activation, cAMP production,
Ca%*t mobilization)*3, (b) Barr-mediated responses (Barr2 recruit-
ment and receptor internalization), and (c) ERK signaling, a
multifaceted response involving both G proteins and Parrs®.
Parameters describing concentration response curves for each of
the readouts (Supplementary Data 10) were analyzed by NNMF

and k-means to reveal four different drug categories (Fig. 6a).
Cluster #1, including isoproterenol (ISO) and norepinephrine
(NE), was characterized by measurable agonist efficacy at all
readouts. Salbutamol (SALB) and salmeterol (SALM) in cluster #2
could be distinguished from the first category because of their
minimal responses at arr-dependent readouts. Carvedilol
(CARV) and propranolol (PRO) behaved as agonists only in
the ERK pathway (Cluster #3), while ICI118,555 and metoprolol
(MET) had no efficacy except for inverse agonism at Gas
and cAMP assays (cluster #4). The complete signaling profiles
for ligands in different clusters are provided in Supplementary
Fig. 14.

As shown in Fig. 6b, partial data sets for Gas/cAMP/Ca2* and
for Parr-recruitment/endocytosis recreated original clusters better
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Fig. 6 P2apr ligands cluster according to similarity in G protein and parr-
mediated responses. Ligand similarity heatmaps for hp2aprs. Yellow and
blue, respectively, indicate ligands/parameters that never or always cluster
together. (a). Similarity matrices for partial data sets corresponding to ERK,
G protein- (Gas, cAMP, Cat2), and Barr2- (recruitment, endocytosis)
mediated responses were compared with the reference hf2aprs data set.
Filled bars: proportion of ligands changing clusters when comparing actual
ERK, G protein, and Parr2 data sets to the reference; empty bars:
proportions observed comparing the reference data set to corresponding
simulations of random clustering for partial matrices. *p <0.05, **p < 0.07;
z-score ERK: 1.523; z-score G protein: —2.446 and z-score parr: —2.636 (b).
Source data provided in Supplementary Data 10 and source data files

than their corresponding randomized controls, indicating sig-
nificant contribution of these signals to ligand clustering. To
establish whether these categories were also relevant to human
pharmacology, we evaluated their association to pharmacovigi-
lance data. For this purpose, undesired cardiovascular and
respiratory events most frequently reported for B2AR agonists
and antagonists were first identified, and SD gamma scores
representing the frequency with which these events were reported
for the prescription ligands used in the study was correlated to
their signaling similarity (measured as Euclidian distances in the
full matrix) (Supplementary Data 11). We found that increasing
distance from the agonist ISO was significantly correlated (p <
0.05) with increasing frequency of reports for hypotension,
decrease in blood pressure, sinus bradycardia, atrioventricular
block, sinus arrest, and need for inhalation therapy (Table 2).
Interestingly, the first four events in this list typically correspond

to reduced sympathetic tone on cardiovascular function>. Hence,
their more frequent association with ligands that clustered
furthest apart from ISO is entirely consistent with gradual loss
of efficacy at B2AR. Moreover, these four events were also
negatively correlated with ligand efficacy to induce Gas, cAMP,
and Ca2™ signaling (Table 2), an overlap that is consistent both
with the well-document role of these signals in maintaining heart
chrono-, and inotropism®! and with the fact that G protein-
dependent signals significantly drove ligand clustering. Gas,
cAMP, and Ca?* signaling categories also showed increasing
reports of deleterious effects on respiratory function, some of
them such as asthma, asthmatic crisis, status asthmaticus
consistent with bronchoconstriction, as distance from ISO
and P2AR antagonism increased. Thus, pharmacodynamic
categories defined by as few as eight ligands were sufficiently
robust to reveal a well-known association between sympatholytic
CV events or manifestations of bronchoconstriction and
modulation of G protein activity by P2AR ligands. The
observation reinforces the notion that unsupervised clustering
of multidimensional signaling profiles allows the association of
signals generated in simple cellular models to possible clinical
effects of GPCR ligands.

Discussion

This study introduced a stepwise analysis in which GPCR ligands
were organized into pharmacodynamic categories that could be
then associated with clinically relevant responses. Pharmacody-
namic parameters that best supported classification of ligands
((Log(1)-Emax-Log(1/KA)) were empirically chosen by con-
secutively applying NNMF and k-means clustering to different
combination of parameters informative of efficacies and func-
tional affinities. The procedure was successfully applied to classify
groups of ligands ranging from 8-320 in number, and repre-
sentative of a multiplicity of signaling profiles.

Ligand categories generated with (Log(t)-Ep,-Log(t/KA))
values from hMOR data were primarily driven by ligand diversity
in Parr signaling efficacy, but G protein responses also con-
tributed to the classification. Measured similarity among signaling
profiles of prescription opioids present in the different categories
was correlated with their corresponding frequencies of AERS
reports for typical opioid side effects, indicating that the cate-
gories established by applying this exploratory method may allow
to establish meaningful associations between in vitro signals and
clinically relevant drug actions. This notion was further supported
by observations that pharmacodynamic categories defined for
B2AR ligands were essentially driven by G protein responses and
associated to G protein-driven sympatholytic effects®>>3, Hence,
by unveiling these well-documented associations, we established
that clustering analysis of concentration-response parameters
allows to associate multidimensional in vitro signaling profiles to
clinical responses. Such use of curve parameters should prove
beneficial for identifying signals that support specific responses of
interest and for which mechanistic information is unavailable.
Pharmacodynamic categories defined by efficacy-related para-
meters (Log(T)-Epn,,) had stronger and more frequent correla-
tions to side effects than those defined by additional inclusion of
affinity information provided by transduction coefficients. On the
other hand, ligand differentiation was optimal when transduction
coefficients were taken into account, calling for a discretionary
decision on which parameters to use depending on the goal of the
classification.

By classifying opioid ligands according to pathway-specific
responses, it was possible to explore whether specific signals were
driving typical side effects of opioids. We found that association
of faecaloma report to categories defined by G protein responses
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Table 2 Pharmacodynamic categories associate with frequency of report of undesired cardiovascular and respiratory events for

clinically available p24pg ligands¥

Correlations between SD gamma scores for prescription f2ADR Type of side effect Preferred term R square p-value

ligands* and

Functional categories defined by Log(t)-Emax-Log(t/KA) Ccv Hypotension 0.60 0.04
Sinus bradycardia 0.58 0.05
Blood pressure decreased 0.64 0.03
Atrioventricular block 0.62 0.04
Sinus arrest 0.68 0.02

Respiratory Inhalation therapy 0.60 0.04

Functional categories defined by Gs/cAMP/Ca2 + (partial matrix) cv Hypotension 0.80 0.01
Sinus bradycardia 0.66 0.03
Blood pressure decreased 0.81 0.01
Atrioventricular block 0.72 0.02
Blood pressure systolic decreased 0.64 0.03
Sinus arrest 0.82 0.00
Ejection fraction decreased 0.82 0.01
Heart rate decreased 0.67 0.05

Respiratory Asthma 0.64 0.03

Inhalation therapy 0.59 0.05
Asthmatic crisis 0.74 0.01
Status asthmaticus 0.89 0.00
Throat irritation 0.69 0.02
Choking 0.64 0.03

#Only significant correlations were considered, full information in Supplementary Data 11. Similarity and SD gamma scores for Isoproterenol, norepinephrine, salbutamol, salmeterol, propranolol,

carvedilol, and metroprolol were used to establish correlations. Source data provided in Supplementary Data 11 and source data files

was influenced by the parameters used in ligand classification. In
Log(t)-Enax matrices, G protein and Parr categories were both
directly correlated with reports for this side effect, implying that
weaker agonists were associated with lower frequency of reports.
In contrast, the correlation with G protein responses was dis-
rupted if Log(t/KA) values were also considered, suggesting a
scenario were G protein signaling would not associate to side
effects. This divergence as compared with Log(1)-E,,.x matrices is
linked to the fact that despite its partial efficacy and a side effects
profile consistent with partial agonism, Log(t/KA) coefficients
could not distinguish this low-efficacy-high-affinity ligand from
much more efficacious agonists, such as morphine or oxycodone.
In contrast to G proteins, Parr categories correlated to faecaloma
report independent of the parameters used for classification, as
transduction coefficients for Parr responses were consistent with
BUP’s low efficacy. Log(t/KA) transduction coefficients are lar-
gely used to identify biased ligands!7-?>, so a word of caution is
warranted for bias measures driven by functional affinity since
only efficacy parameters are predictive of the magnitude of
in vivo responses®4.

It is also of interest that maximal responses for Parr and G
proteins decreased in parallel across the different clusters, albeit
not to the same extent. Indeed, Parr signals gradually disappeared
while those of G proteins grew progressively smaller without
completely vanishing. Such systematic imbalance between the two
types of signals has been previously reported®, and is akin to
system bias?> where Parr responses are less well coupled to the
receptor than G protein signals. Within this context, absence of
Barr responses may simply indicate partial agonism and not
signaling bias. As a matter of fact, all novel biased hMOR ligands
presented herein as well as those published to date (ie.:
TRV130!2; PZM21!3 and Scripps compounds!4) are partial ago-
nists at G protein responses. This raises the possibility that cur-
rently available biased ligands could simply produce less side
effects because they are partially effective at stimulating the
receptor, and not necessarily because of greater efficacy for acti-
vating the G protein over Parr. A miss-interpretation of bias
might be a problem for future clinical applications since a partial

agonist may also produce a submaximal analgesic response. In
this sense, it is of interest that Barr-G protein signaling profiles of
the latest hMOR ligands!# resemble those obtained in this study
for BUP, a partially effective analgesic®. It is also worth con-
sidering that the clinical profile of TRV130, a partial hMOR
agonist which was clinically tested as the first biased agonist for
MORs, did not significantly differ from morphine’s profile at
doses with equivalent analgesic effects!?. Finally, when PZM21
was independently tested after its initial description as biased
agonist, it was shown to behave as a partial agonist in farr and G
protein readouts, and to produce respiratory depression com-
mensurate with partial signaling!?.

Structural similarity is another means for inferring common
in vivo responses of therapeutic drug candidates early in the
discovery process?3. Here, when clusters established on the bases
of signaling and structural resemblance were compared, they
displayed nonrandom but marginal similarity. Different reasons
could explain the low degree of similarity between categories
established with structural and pharmacodynamic criteria,
including incomplete representation of structural diversity of
opioid ligands within the sample used, or different discriminatory
power of signaling profiles and current descriptors of structural
properties. Consistent with their low degree of similarity, struc-
tural, and pharmacodynamic categories were associated with
different types of undesired events. Indeed, structural similarities
were more frequently associated with fluctuations in therapeutic
response, which are typically associated with pharmacokinetic
properties*2. On the other hand, signaling categories specifically
correlated with on-target side effects, pointing to the com-
plementarity of both approaches when characterizing a limited
number of compounds of interest.

In conclusion, we presented an unsupervised classification
method that incorporates distinct and complementary data
sources to comprehensively describe signaling diversity of GPCR
ligands. The procedure identifies signaling imbalance indepen-
dent of whether bias in the response co-varies with efficacy, it was
applied to a large diversity of signaling profiles and distinguishes
subtle differences in signaling preferences.
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Methods

Materials and reagents. Standard opioids were purchased from Cedarlane
(Burlington, Canada) and Sigma-Aldrich (St. Louis, MO, USA). Fifteen novel
compounds were provided by Pfizer Inc. (Worldwide Research and Development).
(—)-Isoproterenol hydrochloride, (—)-norepinephrine, DL-propranolol hydro-
chloride, (+) metoprolol (+ )-tartrate salt, carvedilol, and salmeterol xinafoate
were purchased from Sigma-Aldrich (St Louis, MO). ICI 118,551 and salbutamol
hemisulfate were purchased from Tocris Bioscience (Ellisville, MO). Coelenterazine
400a was purchased from Biotium.

Plasmids and DNA constructs. A cleavable signal sequence of influenza
hemagglutinin (MKTIIALSYIFCLVFA) and a Flag tag (MDYKDDDDA) were
added to the human MORI, rat MORI1, human DOR, and rat DOR and, their
coding sequence optimized and synthetized as Strings DNA Fragments at Gen-
eART (ThermoFisher Scientific). The DNA Strings were subcloned by Gibson
assembly (New England Biolabs Canada) in pLVX-IRES-Puro (Clontech Labora-
tories, Inc). Untagged versions of the receptors were made by an internal Ncol
deletion, removing the coding sequence of the Flag tag. Constructs encoding for
GFP10-tagged receptors were made by PCR overlap; the coding sequence of each
signal-peptide Flag-receptors was PCR-amplified to remove the stop codon and
assembled by PCR overlap with the coding sequence of GFP10. The resulting PCR
products were subcloned by Gibson assembly in pLVX-IRES-Puro. Constructs
encoding the Epac-based cAMP sensor (GFP10-Epac-Rlucll), RluclI-tagged Ga
(ail, ai2, a0A, as), GFP10-Gyl, GFP10-Gy2, B-arrestin1-Rlucll, B-arrestin2-Rlucll,
RluclI-Gy2, human B2-adrenergic receptor (hp2AR), and cmyc-hB2AR-GFP10
were previously described (PMID: 15782186, PMID: 22534132, PMID: 23175530,
PMID: 24309376, PMID: 19584306, PMID: 26658454, PMID: 16901982, PMID:
15155738). pPCDNA3.1 (4 ) GBI was bought at Missouri University of Science and
Technology (cdna.org). Plasmids encoding for the following proteins were gener-
ously provided as follows: GRK6 and GRK2 by Dr Antonio De Blasi (Istituto
Neurologico Mediterraneo Neuromed, Pozzilli, Italy), GRK5 by Dr Robert Lefko-
witz (Duke University, Durham, NC). Kir3.2-GFP10 by Dr Terry Hebert (McGill
University, Montréal, Canada). Kir3.1 subunit by Dr. Deborah J. Nelson (Uni-
versity of Chicago, Chicago, IL).

Cell culture and transfection. HEK293 cells were a kind gift of Dr. Laporte,
McGill University®”. They were cultured in 100 mm Petri dishes (Sarstedt, Ger-
many) at 37 °C and 5% CO, in the Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum, 2 mm L-glutamine and 100 unit mL~!
penicillin-streptomycin.

Transient transfections of vectors encoding BRET biosensors in combination
with complementary signaling partners were performed in 100 mm Petri dishes (3 x
106 cells) for G protein and Kir3.2 channel activation assays and in 96-wells culture
plates coated with polyD-lysine (PerkinElmer, MA, USA) for Parr recruitment
assays (32,000 cells/well), using the polyethylenimine transfection reagent
(Polysciences, PA, USA) at a PEI/DNA ratio of 3:1°8. For cAMP production assays,
stable cell lines expressing the GFP10-Epac-RlucBRET2-cAMP biosensor>® were
plated in six-wells plates (Greiner bio-one, Austria) and stably transfected with 1 pg
of either MORs or DORs (human or rat) biosensor using PEIL. They were selected
respectively using hygromycin (100 pgmL~!) and puromycin (10 mg mL~1).

BRET assays. Ligand preparation: Agonists were dissolved in DMSO and spotted
on 96-well white bottom microplates (Greiner bio-one) using the HP D300 Digital
Dispenser (Tecan Life Sciences). DMSO concentration was normalized for each
point at 0.334%.

Gai and Gao-activation assay: HEK 293 were co-transfected with DOR or MOR
(human or rat), either of the BRET biosensors pairs: y2-GFP10/GaoA-99-Rlucll
(Ratio Receptor/GFP/Rlucll: 1:0.6:0.12), y2-GFP10/Gail-91-RluclI (Ratio
Receptor/GFP/Rlucll: 1:0.6:0.12), or y2-GFP10/Gai2-99-RluclI (Ratio Receptor/
GFP/Rlucll: 1:0.72:0.12) together with untagged GB1(Ratio 1: 0.6)%. Forty-eight
hours after the transfection, the media was removed and the cells were washed with
phosphate-buffered solution (PBS) then re-suspended in PBS + MgCl, (0.429 mM)
at a protein concentration >0.6 pg L 1. Coelenterazine 400a was added to the cells
to a final concentration of 5uM for 3 min, and 100 uL per well of this mix were
subsequently distributed into the 96-well-printed plates. Plates were read 5 min
after on the Mithras LB 940 microplate reader (Berthold Technologies, Bad
Wildbad, Germany), 3 s per well, with filters set at 400 nm (RlucII) and 515 nm
(GFP10); BRET ratios were calculated as GFP10/RluclI emissions. Net BRET values
were calculated by subtracting background BRET ratio observed in cells expressing
donor G biosensors alone.

Gs activation assay: HEK293 cells stably expressing B2AR were transiently
transfected with 200 ng Gas-67-Rlucll, 100 ng GP1, and 100 ng GFP10-Gyl. The
day of the experiment, cells were washed with Hank’s balanced salt solution
(HBSS) (137 mM NaCl, 5.4 mM KCl, 0.25 mM NaHPO,, 0.44 mM KH,PO,, 1.8
mM CaCl,, 0.8 mM MgSO,, 4.2 mM NaHCO;, pH 7.4) supplemented with 0.1%
glucose and 0.1% BSA. Coelenterazine 400a (Coel-400a, Biotium) was added for
5 min to the wells (2.5 pM), then B-adrenergic compounds were added for 4.5 min.
BRET was measured and calculated as described above.

Kir 3.2 channel activation assay: HEK 293 were plated onto 100 mm Petri dish
and transfected with DOR or MOR (human or rat), the Kir3.2-GFP10/y2-LuclI
BRET biosensor pair together with untagged Kir3 channel and G protein
subunits?’ at a ratio of 1:1:0.075:1:0.5, respectively. The BRET assay was performed
as described above.

B-arrestin recruitment: HEK 293 cells were co-transfected with sp-FLAG-DOR-
GFP10 or sp-FLAG -MOR-GFP10 (human or rat) and Parr1/2-RluclI for p-
arrestinl/2 recruitment at a ratio receptor/construct of 1:0.06. Recruitment of
Barr2-Rlucll was also tested in the presence of, GRK2, GRK5, GRK6 (Ratio
receptor/GRK DNA: 1:0.1). Forty-eight hours after transfection, cells were washed
with PBS then incubated in Tyrode’s solution (140 mM NaCl, 2.7 mM KCl, 1 mM
CaCl,, 12 mM NaHCOs3, 5.6 mM D-glucose, 0.49 mM MgCl,, 0.37 mM NaH,PO,,
25 mM HEPES, pH 7.4) for 30-60 min at 37 °C. Indicated concentrations of
agonists, diluted in Tyrode buffer, were added to the wells for 10 min, then cells
were incubated for 5 min with Coelenterazine 400a (2.5 uM). BRET?2 readings were
taken at 37 °C as detailed above. For 2AR f-arrestin2 recruitment, HEK cells were
transiently transfected with 50 ng Barr2-RLucll and 300 ng f2AR-GFP10. The day
of the experiment, cells were washed with HBSS supplemented with 0.1% glucose
and 0.1% BSA. B-adrenergic compounds were added to the wells for 10 min, then
coelenterazine 400a was added for 5 min to the wells (2.5 uM). BRET was measured
and calculated as described above.

cAMP production assay: Stably-transfected cells expressing the GFP10-Epac-
RlucBRET2-cAMP biosensor>® and either MORs or DORs were seeded at a density
of 30,000 cells/well in a high glucose medium supplemented with 10% newborn calf
serum, and grown on 96-well polylysine-coated plates for 48 h. Cells were later
transferred to Tyrode buffer and incubated for 15 min at 37 °C. Coelenterazine
400a was then added to a final concentration of 5uM. Five min later, forskolin
(Bioshop, Canada) was introduced (final concentration: 10 uM for rMOR, 15 uM
for rDOR, and 25 uM for hMOR and hDOR) followed, 3.5 min later, by increasing
concentrations of ligands. BRET2 readings were taken 5 min after ligands were
introduced?s.

Guinea pig ileum assays. Male Hartley guinea pigs were anesthetized using iso-
flurane followed by exsanguination. The myenteric plexus of the ileum was dis-
sected according to the method described by Cowie & al.4!. Briefly, a portion of the
ileum was removed (10 cm distal to the cecum) into which a glass rod was inserted.
The myenteric plexus was removed from the circular longitudinal muscle via gentle
scraping with a moist cotton swab and separated from the muscle using forceps.
The resulting myenteric tissue was cut into 2.5 mm strips and placed in oxygenated
Krebs buffer (37 °C, gassed with 95% O,/5% CO,) and tensioned to a baseline
tension of 2000 mg. The tissues were washed, equilibrated for 30 min, and subse-
quently tested for viability with a maximal concentration of Carbachol (300 nM,
three times with 10 min of washing, and 10 min of equilibrating in between
additions). The final prime was followed by a 20 min wash period followed by a
20 min equilibration period before the start of the experiment. Tissues were con-
tinually stimulated with 0.1 Hertz for 1 ms at 20 volts (producing a stimulation
equivalent to 80% of the maximal contractile response). Following a 10 min
baseline stimulation period, the kappa opioid antagonist nor-binaltorphimine was
added (5 nM final) and incubated for 10 min. Finally, cumulative
concentration-response curves were generated to each test ligand or vehicle control
(DMSO). Isometric tension data (in mg) were collected.

All procedures performed on these animals were in accordance with regulations
and established guidelines and were reviewed and approved by Pfizer Institutional
Animal Care and Use Committee.

Curve fitting. Concentration response curves describing ligand responses by dif-
ferent receptors (hnMOR, hDOR, rMOR, rDOR, and hb2ADR) were analyzed with
Graphpad Prism6, using built-in 3 or 4 parameter logistic equations to obtain
independent pEC50 and E,y,,x values for each receptor-biosensor pair:

y=a+(b- a)/(l T lo(lagECSO—x)*L) (1)

(y — measured response; a — minimal asymptote, b — maximal asymptote; b — a
— Epax ¢ — slope).

Concentration response curves were additionally analyzed with the operational
model of Black and Leff32. As above, curves representing responses elicited by the
same receptor at each of the ten different biosensors were fit independently. Fitting
was done using Graphpad Prism6 after introducing a set of equations kindly
provided by Dr Christopoulos:

A = 10"

operatel =

((1+A)/ (10" < 4))" )
(used to fit full agonists)

operate2 =
(14 A/1000854) /(108 5 A))" (3)
(used to fit partial agonists)
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Full agonist =

4
basal + (E,,, — basal)/(1 + operatel) @

Partial agonist =

5
basal + (E,,, — basal)/(1 + operate2) ®)

max
basal — response observed in the absence of agonist; Emax — maximal response of
the system; #n — slope of the function which links occupancy to response; KA —
functional affinity (partial agonists); Log(R) — Log(t/KA).

When using the logistic model, the fits for three and four parameter curves were
compared and the best fit taken. If no fitting was possible without constraints, the
minimal asymptote was fixed to zero; if this was unsuccessful, the Hill coefficient
was additionally fixed to one (i.e.,: only the three parameter fit was considered). If
both these constraints proved unsuccessful, and in curves with no inflection point
for maximal effect, the highest experimental value was considered E,,.x. The latter
procedure forced the maximal response of very weak partial agonists within the
range of experimental data avoiding aberrant predictions due to extrapolation. If
no fitting was possible following these constraints, no fitting (NF) status was
consigned. If fitting was possible, we made sure that all curves had a Span > 3x
SEM, otherwise they were considered as no response (NR).

As used in this study, the operational model does not yield Log(t) or pKA
values for full agonists?”, which were consigned as not available (NA). In these
circumstances, E,, values were used to differentiate these compounds from partial
agonists, and differences among full agonists were established through their
consolidated Log(t/KA) coefficients. It should also be noted that by independently
fitting curves for different biosensors, the model does not contemplate
interconversion among distinct receptor states stabilized by different effectors.

Feature reduction, and ligand clustering.

1. Each receptor was represented by a matrix composed of 25 ligands (21
for DORs) x 30 parameters (Eyax, Log(t) and Log(t/KA) for ten assays).
This matrix was created by sampling from the normal distribution around
each parameter using the mean and standard deviation thereby incorpor-
ating the variance associated with each data point and propagating it
through the clustering method. In order to correct for scale differences
between parameters, we standardized each column to range between 0 and
1 according to:

X;; — minimum;

ij J (6)
maximumj — minimumj

Standardized value =

for every ligand i and every parameter j.

2. Process (1) was repeated 1000 times to create 1000 data matrices each
independently put through the following procedure (Supplementary Fig. 2).

3. Nonnegative matrix factorization (NNMF) was used to reduce dimensionality
of the data and create the W (ligand * k) and H (k *parameter) basis vectors
thereby removing noise and redundancy. We used sparse NNMF to ignore
missing data (“NA”, “NF”, and “NR” curves). Difference between the original
matrix V and the product of W * H was minimized to less than le-7.

4. K-means clustering was performed on the W basis vector, where the number
of clusters equals the number of basis vectors from NNMF (K = k), to assign
each compound into a cluster. Note: the phenotypic parameter clusters were
obtained using the H vector instead of the W one.

5. Steps 3 and 4 were repeated 250 times to quantify the fraction of times each
compound clustered together resulting in a ligand * ligand frequency matrix
ranging from 1 (always clustered together) to 0 (never clustered together).
This iterative process quantifies both global and local minima/maxima arising
from small variances in clustering resulting from the randomized starting
vectors for NNMF and k-means.

6. (a) The entire process including feature reduction and clustering (3-5) was
repeated for different values of k (k=2 to k=7), providing a frequency
matrix for each k. (b) These six frequency matrices were averaged together to
quantify ligand similarity independent of the number of features used as each
K may extract unique patterns that may be complementary or orthogonal to
results from different K’s.

7.  Steps 3-6 were independently performed on each of the 1000 sampled data
matrices providing 1000 composite similarity matrices.

8. These 1000 matrices were averaged to create a final frequency matrix
quantifying how often ligands clustered together and representing total ligand
similarity across all concentration response curves.

9. We visualized the similarity matrix using a dendrogram and a heat map using
Orange, created from the distance between each compound in the similarity
matrix using a Pearson Correlation.

Simulation of virtual compounds. We built 16 profiles showing bias and various
potencies/efficacies by selecting ranges of KA-t pairs across six imaginary bio-
sensors. So that our virtual compounds respect these ranges, we invented them by
sampling random values of KA and t within the bounds associated to the

imaginary biosensors specified per profile. We used this procedure 20 times for
each profile yielding 320 virtual ligands.

As for curve fitting, simulations were conducted under the assumption of
independence across biosensors. Using the operational model equation, we
generated corresponding concentration response curves (CRC) to which we added
10% noise using the flat distribution. Noisy CRCs were then fitted to both the
logistic equation and the operational model equation using the Bayesian inference
engine STANSO to yield values of Ey,.x, pEC50, T, and KA and their associated
distributions (from which we computed a standard error of the mean to use in the
NNMF pipeline) (values in Supplementary Data 12). The best estimate for /KA
ratio and its distribution of draws were also computed directly within the fitting
process as a transformed parameter.

Selections of subsets of parameter estimations and associated SEM were used in
NNMEF/k-means clustering. The resulting matrices of frequency of co-occurrences
were used to compute distance metrics, hierarchical clustering trees, and tSNE plots
whose leaves and data points were colored by profile (Fig. 1, Supplementary Fig. 3,
Supplementary Fig. 4).

Clustering of pharmacological parameters. The 25 (1 per ligand) values for each
parameter array (P) were distributed into four smaller arrays corresponding the
ligand clusters. We then utilized a two-sample Kolmogorov-Smirnov test to
compare each sub-array to the original array (P) to measure if these were randomly
sampled from the original array. This provides four p-values for each parameter. A
significant p-value indicates ligands in that cluster are biased toward a specific
response for that parameter. This process was repeated for each of the 30 para-
meters. These p-values were then sorted according to (i) the type of parameter
considered (e.g., pEC50, Eax, or Log(t/KA)) or (ii) measurement similarity
acquired from the similarity matrix obtained by the NNMF/k-means method
detailed above using the H basis vector instead of the W. The procedure is sum-
marized in Supplementary Fig. 7.

Comparing clusters among complete data sets. To compare clustering similarity
between two different data sets we implemented two approaches: (a) Directly
comparing the two similarity matrices using pairwise differences and (b) quanti-
fying the overall difference between the two matrices using random simulation to
obtain a difference threshold and to establish significance.

Direct comparison: We calculated the difference between every paired value in
similarity matrix A and B (representing the similarity between compounds i and j):

Difference = Alj —B; 7)

The resulting difference matrix is of equal dimensionality to A and B, ranging
from 1 (compounds i and j are always clustered together in A but never in B) to —1
(always in B but never in A).

Thresholding and random simulation: We compared the difference in Euclidian
distance for every pair of ligands i and j between similarity matrices for data set A
and B:

Difference = HL,»A — jAH - HLiB - jBH (8)

Where Lis and Lj, are row vectors representing the similarity of L; and L; to all
other ligands in matrix A. We then used random clustering replicates (detailed
below) to identify a cutoff value to determine which difference values corresponded
to a significant variation between A and B. The final comparison between data set
A and B was represented as a proportion:

# significant differences

Fraction change =
J Total# of comparisons

©)

Only ligands tested in both data sets were used (e.g., comparing hMOR to
hDOR only used the 21 shared ligands).

Random clustering: For each data set, we created 50 random input data
matrices by permuting all mean-standard deviation pairs of data points within the
original data matrix. Each random matrix was therefore specific to and equal in size
and shape to the original data (e.g., hMOR: (25 * 30); hMOR-parr: (25 * 15)). We
then repeated the entire NNMF/k-means clustering method on each data-shuffled
random matrix resulting in 50 random clustering frequency matrices for each
data type.

To determine a cutoff value representing significant variation between any two
data sets (Difference threshold), we calculated the Euclidian Distance between pairs
of compounds in the same cluster and compounds in different clusters for each of
the 50 trials. The threshold is the mean value of the overlap between the “same
cluster” distribution and the “different cluster” distribution (see Supplementary Fig.
9). Threshold values range between 0.95 and 1.5. Using these thresholds, it was
possible to calculate the proportion of significant variation between two matrices.
To quantify if this change was significant, we calculated the fraction of significant
changes (using thresholds) between the clustering from the 50 randomized data
sets (e.g., 50 random hDOR) compared with reference cluster (e.g., hMOR). The
resulting distribution of 50 values represented the proportion of random changes
from the reference. This distribution was used to calculate a z-score for the
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difference value of the actual data (hMOR vs hDOR):

(fraction change in actual data) — (mean random change)

Lscore = (STD random changes)

(10)

Comparing clusters generated with complete data and subsets. In order to
calculate whether clustering from data subset I (e.g., hMOR-Barr) changed more
than data subset J (e.g., hMOR-G protein) compared with the complete data set
clusters (e.g., hMOR), we compared the 50 random similarity matrices to the
reference (e.g., hMOR) and calculated the fraction of significant changes using the
method detailed above. As a result, we obtained an array of 50 values representing
the random change from reference. This array was created for both subsets (e.g.,
hMOR-Barr and hMOR-G protein). We then iteratively, with replacement, ran-
domly sampled 1 value from each of these arrays and calculated the difference to
create a distribution of 1000 values indicating the random expected difference
between these two subsets of data. We then calculated a z-score using the mean and
standard deviation of this distribution and the actual observed difference.

Clustering ligands according to structural similarities. Each ligand was repre-
sented using three standard fingerprint representations: (ECFP-6) Extended-
Connectivity Fingerprints (ECFPs) (http://accelrys.com/products/collaborative-
science/biovia-pipeline-pilot/), Functional-Class Fingerprints (FCFPs) and MDL
MACCS keys. A similarity matrices for each different fingerprint was generated for
the 25 ligands in the data set, where each value in the matrix (S;;) corresponds to the
Tanimoto similarity value between compound i and compound j and ranges from a
value 0 to 1 (1 being most similar). We combined these three matrices into a single
matrix of dimensions (25 compounds x 75 comparisons), and repeated the NNMF/
k-means clustering algorithm on the data to yield a structural similarity matrix.

Correlating signaling data to side effect report frequency. A list of all MOR-
active compounds was created by searching DrugBank for all approved drugs
which activate MOR. The resulting list was intersected with the list of drugs in the
FDA’s Adverse Event Reporting System data for which a standardized gamma (SD
gamma) score could be generated at the preferred term (PT) level according to the
method of Johnson et al.33. Briefly, SD gamma scoring is a statistical approach to
identify disproportionately high, or low, numbers of drug-event occurrences by
normalizing for number of drugs and number of event reports. SD gamma scores
for each event were averaged for all resulting MOR compounds, and PT events
were sorted by average score to produce a listing of high-scoring events most
clinically relevant to opioid therapy (80 highest scores were considered). A similar
procedure was completed to find the 80 side effects associated with f2ADR-active
compounds.

Individual drug SD gamma scores for frequently reported events were then
correlated to Euclidian distances separating prescription opioids (tramadol,
buprenorphine, oxycodone, morphine, fentanyl, and loperamide) in hMOR and
structural similarity matrices. SD gamma scores were additionally correlated to
transduction coefficients for BRET or guinea pig contractility responses
respectively normalized to Met-ENK (ALog(t/KA)ygr) or loperamide (ALog(t/
KA)0p). Note that LOP and Met-ENK are balanced ligands that co-cluster in
every data set such that differences due to normalization are simply scalar.
Individual drug SD gamma scores clinically prescribed p2ADR ligands used in the
study (isoproterenol, norepinephrine, salbutamol, salmeterol, pindolol, carvedilol,
and metoprolol) were similarly correlated to Euclidian distances separating these
ligands in the B2ADR similarity matrix or to transduction coefficients for BRET
responses where isoproterenol was the standard.

Statistical analysis. Correlation analysis: GraphPad Prism6 was used to evaluate
correlation between drug distance in cluster and the frequency of reports of adverse
events.

All statistical comparisons were two-sided except when contrasting partial and
whole similarity matrices.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed in this study are included in the article and supplementary
materials or provided as source data files.

Code availability
All clustering and cluster comparisons were conducted using Python 2.7.6. Complete source
code is available for download at http://github.com/JonathanGallion/Benredjem-Gallion.
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