
QATAR UNIVERSITY 

   COLLEGE OF ARTS AND SCIENCES 

FACTORS OF THE ASYMMETRIC NON-UNIFORM DIF DETECTION RATE WHEN 

USING THE ALTERNATIVE MANTEL-HAENSZEL PROCEDURE 

BY 

MOHAMMAD D. MOLLAZEHI 

 

 

 

 

 

 

 
 
 
 
 

A Thesis Submitted to  

the College of Arts and Sciences  

in Partial Fulfillment of the Requirements for the Degree of    

Masters of Science in Master of Science in Applied Statistics  

 

 January  2020 

 

 

 
© 2020 Mohammad D. Mollazehi. All Rights Reserved. 



  

ii 

 

COMMITTEE PAGE 

 

The members of the Committee approve the Thesis of  

Mohammad Mollazehi defended on 12/10/2019. 

 

 
 

Dr. Abdel-Salam Gomaa 

 Thesis/Dissertation Supervisor 
 
 

  
Dr. Esam Mahdi 

 Committee Member 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved: 

 

Prof. Ibrahim AlKaabi, Dean, College of Arts and Sciences 



  

iii 

 

ABSTRACT 

MOLLAZEHI, MOHAMMAD, D., Masters: January : 2020, Applied Statistics 

Title: Factors of the Asymmetric Non-Uniform DIF Detection Rate When Using the 

Alternative Mantel-Haenszel Procedure 

Supervisor of Thesis: Abdel-Salam G., Abdel-Salam. 

Test-item bias has become an increasingly challenging investigation in 

statistics and education. A popular method, the Mantel-Haenszel (MH) Test, is used 

for detecting non-uniform differential item functioning (DIF) but requires 

constructing several performance tiers to maintain robustness. Within the last two 

decades, the Alternative Mantel-Haeszel (AMH) Test (1994) was developed as a 

proxy procedure requiring only two scoring tiers. However, there is little information 

on how important factors like comparison group sizes, difficulty of questions, or 

question discrimination affect its ability to detect bias. In this statistical study, we 

investigate how item difficulty and discrimination as well as the ratio between the 

focal and reference groups examined impact the likelihood of the AMH detecting 

DIF.  

This research begins with a simulation phase, in which test scores are 

generated under three conditions: three commonly-used difficulty levels (easy, 

medium, and hard), two discrimination levels (referred to as 'low' and 'high'), and 

three group comparison ratios (1:1, 2:1, and 5:1). From the simulation, the detection 

rates of the AMH Test are compared to those of another common test, like the 

Breslow-Day (BD) Test. The results are then used as input to fit post-hoc statistical 

models to determine, which of the three factors affect AMH detection behavior. The 
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study concludes with an application involving college-level test data comparing 

students across gender, nationality, and meta-major. 

Keywords: Differential item functioning, non-uniform DIF, discrimination, item 

difficulty, Breslow-Day, Mantel-Haenszel 
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Chapter 1: Introduction 

1.1. Overview 

Differential Item Functioning (DIF), also known as item bias, was first 

introduced in the 80’s, and is still considered a relatively new concept. It has been one 

of the most controversial and most studied subjects in the theory of measurements. As 

an assessment tool, DIF has been used extensively in quantitative psychology, 

educational measurement, business management, and insurance, as well as in the 

healthcare sector (Holland & Wainer, 2012). 

The aim of DIF analysis is detecting response differences of items in 

questionnaires, rating scales, or tests across various subgroups such as gender and 

nationality while controlling for ability level. DIF can be examined through four 

general procedures, namely the Mantel-Haenszel (MH), Breslow-Day (BD), Logistic 

Regression (LR) and Item Response Theory (IRT) (Zhang, 2015). 

The MH procedure is a common approach in the detection of DIF. MH 

procedure is used to measure the estimate or strength of association. This test was 

brought up as a technique of detecting DIF by Holland and Thayer (1988). The 

approach has been extensively used in educational assessments due to its ease of 

implementation in testing programs. However, the approach is usually used in 

detecting uniform DIF for dichotomous items. 

The BD test was formulated by Breslow and Day (1980). This is a test for 

homogeneity of odds ratios, that is used in the evaluation of changes in the degree of 

difference between two datasets under analysis in two different periods. The approach 

nonetheless has played an important role in helping researchers to detect DIF. 

The Logistic Regression (LR) procedure for DIF was introduced by Swaminathan and 

Rogers (1990) and can be used in detecting both uniform and non-uniform DIFs, and 
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can also include exogenous variables in models. Exogenous variables refer to 

variables such as age besides overall scores that are controlled for in the analysis.  

The IRT technique has received more attention as it can model differences in 

item difficulty and discrimination parameters. It is a collection of models that analyze 

the individual items with an aim of providing information about their properties. The 

approach is known to be reliable and has been widely used to detect DIF (Langer et 

al., 2008). The challenges in variations of items between groups indicate uniform DIF, 

whereas variations in item discrimination parameters show non-uniform DIF.  

A common feature between the LR and IRT procedures is that they are model-

based. Both of them can identify uniform and non-uniform DIF for both dichotomous 

and polytomous items. Identification of the DIF item requires a proper application and 

understanding of the related SAS procedures. 

As mentioned earlier, there are two types of DIF: uniform and non-uniform. 

Uniform DIF comes about in cases where there is no overlap between the ability level 

and the group membership. This implies that the likelihood of answering the item 

accurately is higher for one group compared to the other uniformly over all stages of 

ability. It is the simplest form of DIF in which the degree of conditional dependency 

tends to be relatively identical across the latent trait continuum (θ). In this case, the 

item of concern reliably accords one group an advantage across all levels of ability 

(θ). In the case of an IRT structure, this can be seen when both item characteristics 

curves (ICCs) are similarly discriminating and yet show variations in the difficulty 

units (Walker, 2011). 

On the contrary, non-uniform DIF comes about when there is a connection 

between the level of ability and the membership of the group, implying that the 

variation in the likelihood of a correct response for the two clusters varies at all levels 
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of capability. Therefore, in this case, rather than according an advantage to the control 

group across the ability range, there occurs a variation in the conditional dependency 

and the variations in direction at various locations in the (θ) range. The non-uniform 

DIF appear when there is a contact among the level of ability and the membership of 

the group, which is represented by non-parallel ICC (Walker, Beretvas, & Ackerman, 

2001). 

 Mellenbergh (1982) and Hambleton and Rogers (1989) have documented the 

occurrence of non-uniform DIF, and according to the findings of Mellenberghn, a 

Word Analogy Test provided to Tanzanian and Kenyan students had a number of 

items indicating non-uniform DIF. Hambleton and Rogers, on their part, noted that 

various items in the 1982 New Mexico High School Proficiency Examination 

indicated non-uniform DIF during the comparison of Anglo and Native Americans.  

In large-scale assessments, it is important for test analysts to identify items 

that create bias as a function of the characteristics of the examinees (Jensen, 1980; 

Scheuneman & Bleistein, 1989). Several DIF methodologies have been developed and 

incorporated to identify both uniform and non-uniform test items. The MH procedure 

has been indicated to be an effective and popular technique for detecting uniform DIF, 

but it has also been shown to perform poorly in identifying items with non-uniform 

DIF (Hambleton & Rogers, 1989). 

Several studies have shown that various conditions such as major differences 

in sample sizes, item performance, and ability distributions between groups of 

examinees can have tremendous impacts on how often non-uniform DIF is correctly 

detected with the MH procedure. 

There are several considerations during the DIF detection process. The first 

consideration is the size of the sample, especially regarding the reference and the 
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focal groups. Before undertaking any analysis, there is a need to have information 

regarding the number of people in every group such as the ratio of males and females. 

The sample size is important in this case as it helps in determining if the number of 

subjects per group is acceptable for there to be sufficient statistical power for 

identification of DIF. In certain cases, there may occur unequal distribution of the 

group sizes and so in such a scenario, one would have to find a way of adjusting to 

eliminate the differences in the size of the reference and the focal groups (Awuor, 

2008). 

Another factor regarding the size of the sample involves the statistical 

procedure to be used in the detection of DIF. Other than the considerations of the 

sample size of the reference and the focal groups, there are other features of the 

sample that have to be taken into consideration to align with the conventions of each 

statistical test that is used in the detection of DIF. For example, when using IRT 

approaches, larger samples may be needed compared to when using the MH approach. 

Another aspect that needs to be considered can be determination of the number 

of items that are being used for the detection of DIF. There is no standard for 

determining the number of items that should be used but as one moves from one study 

to another, it may be suitable to test all the items for DIF, whereas in other cases, this 

may not be essential (Zumbo, 1999). 

1.2. Objectives and Research Questions  

This research is an extension of the study done by Mazor, Clauser, and 

Hambleton (1994) in which we will use a predictive model to explain the rate at 

which a non-uniform DIF item is detected when partitioning subjects by high and low 

ability levels. In this respect, the study aims to achieve a number of objectives in a bid 

to understand DIF and approaches that are used to detect DIF. There are three 
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research questions in this study: 

 

1.  How does sample size ratio, item difficulty, and item discrimination affect the 

detection of non-uniform DIF using the AMH procedure?  

2.  What factors affect the rate of detection of non-uniform DIF using the AMH 

procedure?  

3.  What are the conditions under which AMH procedure works best in detecting non-

uniform DIF compared to the BD procedure?  

There were several predictors used in these models: item difficulty, item 

discrimination, and sample size ratios. As an extension to Mazor et al. (1994) work, 

the results also considered the case where the ability level distributions for the 

reference and focal groups were equal and unequal. We identified the significant 

factors that contributed to the detection rates and the conditions in which the highest 

non-uniform detection rates occurred. 
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Chapter 2: Literature Review 

2.1.  Test Bias 

Several techniques have come up towards the statistical assessment of DIF. A 

test is said to show signs of DIF when subjects from different groups possess 

considerably higher or lower success probabilities on items even after controlling for 

the overall level of ability. Assessment of the DIF is one of many steps towards the 

assessment of test bias. Test bias refers to the differential validity of test scores for 

groups such as, education, sex, and age, to name a few. A systematic error occurs 

during the process of measurement that affects the scores differentially for a specific 

group.  

Hope, Adamson, McManus, Chis, and Elder (2018) conducted a study in 

which they used DIF to assess the potential bias in high stakes postgraduate 

knowledge-based assessment. In their assessment, the researchers noted that despite 

trying to remove effects that may affect the performance of the candidates, they noted 

differential attainment of the candidates. This is an important component in research, 

as it helps establish the constructive validity of tests. Construct validity is the extent to 

which a test measures what it claims to be measuring.  

Many of the techniques for the assessment of DIF were created in educational 

settings where the items are scored dichotomously as correct or incorrect. MH-based 

techniques were previously applied in the assessment of DIF. By the early 1990s, it 

was understood that the LR-based techniques were more powerful compared to the 

MH-based approaches. This power was accompanied by increased type I-error rates in 

the LR-based approaches. 

The study of test item bias commenced in the late 1960s and continually 

developed in the subsequent decades. Gómez-Benito, Sireci, Padilla, Hidalgo, and 
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Benítez (2018) provide more insights into the development of bias in their study on 

DIF. According to the researchers, this development can be attributed to the deep 

social psychological and educational effects of the teachings at the time. Later, there 

was an introduction of the 1974 standards, where the authors attributed the revision as 

drawing from concerns such as discrimination against certain members of the society, 

like minority groups and women. Thus, the determining factor in stimulating the study 

of item and test bias has been social justice in the form of interest in equal treatment 

of ethnic and socio-economical groups. 

Instrument assessment bias has developed into something more solely viewed 

as a technical issue in psychometric analysis and has thus become a subject of debate 

in the educational, social and legal areas (Reynolds & Suzuki, 2012). For example, 

the methods of identifying DIF were developed from the Golden Rule case by Davis-

Becker and Buckendahl (2017), that involved screening out items on employment 

tests, which may be biased against certain subgroups of examinees. 

Moreover, Benítez, Padilla, Hidalgo Montesinos, and Sireci (2016) show the 

existence of DIF through using mixed methods to interpret DIF. The researchers 

posited that currently, researchers have renewed their attention to equity and fairness 

in assessment, which comprises a broader conceptualization of the evidence of 

validity required in the justification of the use of a test for a certain purpose. In 

modern research, it is becoming more and more difficult to establish a clear 

distinction between DIF and item bias as the statistical DIF techniques are more 

sophisticated and the new contexts for DIF studies go beyond the traditional 

monolingual comparative groups developed by the demographic variables. 
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2.2. The MH Procedure 

The MH technique is a chi-squared contingency table-based method that 

detect differences between reference and focal groups on all items of the test, one-by-

one. The total test scores define the ability continuum, which is divided into k 

intervals that serves as the basis for matching the members of the two groups. A 

comparison of both groups at each interval of k is made through a 2×2 contingency 

table. The group membership (reference or focal) is represented by the rows of the 

table, whereas the columns represent the correct or incorrect responses. The reference 

group refers to the group that an item is suspected of favoring whereas a focal group 

refers to the group where the item is suspected to be functioning differently (Holland 

& Thayer, 1986). 

Even though the MH procedure is one of the most utilized procedures in the 

determination of DIF due to its simplicity and practicality, it has its own 

disadvantages. One of its drawbacks is that using this procedure may yield misleading 

results in the detection of non-uniform DIF or in cases where more complex models 

are used. This, however, does not affect the usefulness of this procedure (Holland & 

Thayer, 1986). 

Many researchers have used this procedure to examine the relationships between 

items, and this mainly because it is easy and does not require iterative calculation. 

Therefore, statisticians have favored this procedure over other procedure.   

 The data in the form of 2×2×k tables is as shown in Table 1, and is then used 

in the development of a chi-square test of null hypothesis against the specific 

alternative hypothesis. 
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Table 1: Data for the jth matched set of members of R and F 

Score on Studied item 

Groups  Correct (1) Incorrect (0) Total  

Reference (R) 𝑛11𝑖 𝑛12𝑖 𝑛1+𝑖 
Focal (F) 𝑛21𝑖 𝑛22𝑖 𝑛2+𝑖 
Total  𝑛+1𝑖 𝑛+2𝑖 𝑛++𝑖 

 

 

Precisely, MH procedure allows researchers to obtain estimates of the odd 

ratio (𝛼̂𝑀𝐻) across the strata. Odd ratios quantify the strength of the relationship 

between items. According to Agresti & Kateri (2011), the odd ratio can be estimated 

by: 

 

𝛼̂𝑀𝐻 =
∑ (

𝑛11𝑖  𝑛22𝑖

𝑛++𝑖
)𝑘

𝑖=1

∑ (
𝑛12𝑖  𝑛21𝑖

𝑛++𝑖
)𝑘

𝑖=1

                                                           (1) 

 

and the asymptotic MH Chi-square test statistic with one degree of freedom 

summarized as below: 

 

𝜒𝑀𝐻
2 =

[∑ (𝑛11𝑖 − 𝐸(𝑛11𝑖))𝑘
𝑖=1 ]

2

∑ 𝑉𝑎𝑟(𝑛11𝑖)
𝑘
𝑖=1

                                                     (2) 

 

𝑛11𝑖 is the first cell count in each partial table, 𝑘 is the number of subgroups 

that are defined on the base of stratification variable. It is actually the consistent 

estimate of the odds ratio. This therefore means even if there is small data or zeros in 
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some cells then, one will be able to find the actual number of the 𝛼̂𝑀𝐻 (Mannocci, 

2009). 𝛼̂𝑀𝐻 is equivalent to odds ratio when there are no confounders, i.e. when 

𝑘 = 1. From, the formula of odds ratio, MH estimate will be the weighted average of 

the subgroup-specific odds ratios, as long as the values of 𝑛12𝑖 or 𝑛21𝑖 are not 

equivalent to zero. 

Odds ratios have been applied by a number of researchers who include: 

(Woolf, 1955; Birch, 1964; Goodman, 1969; Gart, 1970;  and Mannocci, 2009). The 

previously mentioned researchers made assumption that odds ratios were constant in 

subgroup’s 2 × 2. MH approach is good for detecting DIF since it provides useful 

comparisons of item performance for different groups. This approach compares 

subjects of the similar ability level instead of making comparisons on the total group 

performance on an item.  

The MH approach nonetheless does not have the ability to control 

simultaneously multiple confounding variables. An attempt to control multiple 

confounding variables will interfere with the size of the strata, consequently, affecting 

the final results in the long run (Mannocci, 2009). 

Since the MH approach is a nonparametric method, it does not build 

assumptions on a particular form of the item response function (IRF), together with 

the underlying latent trait distribution. Li (2015) shed more light on the MH formula 

by deriving the asymptotic power of the test for the DIF. In this study, the author uses 

the formula to define the performance of the power when the number of items is large, 

so that the measured latent trait can be regarded as the matching variable in the MH 

approach. The power relates to the size of the sample, the effect size of DIF, the IRF, 

and the distribution latent trait in the reference and focal groups. The formula gives an 

approximation of the power of the MH approach, and consequently offers a guideline 
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for the DIF detection in practice.  

McDonald (2009) provides more insights on when to use the MH test and how 

the test works. According to the author, the Cochran Mantel–Haenszel (CMH) test is 

used when there is data from 2 × 2 tables that has been repeated at different times and 

locations. The test is to be used for repeated tests of independence, which in most 

cases occur when one has multiple 2 × 2 tables of independence for analysis. The test 

has three categorical variables, in which two variables of the 2 × 2 test of 

independence, and the third categorical variable that classifies the repeats such as 

different location, time or studies. The null hypothesis for the test is that the odds 

ratios in every repetition are equal to one. Generally, the probabilities are equals when 

the odds ratio is equal to one and the probabilities differ from each other when the 

odds ratio is different from one. The probability of rejecting a false null hypothesis is 

called power. The null hypothesis is, therefore, rejected for extremely large values 

from 1 under the Chi-Square distribution. This range of value that leads to the 

researcher rejecting the null hypothesis is known as the region of rejection. The 

rejection region is obtained in such a manner that the probability is α that is will 

contain the test statistic at the time when the null hypothesis is true and hence 

resulting in a Type I error. Normally, the value of α is taken to be small such as 0.01, 

0.05, or 0.10 and is known as the level of significance of the test.  

 Kondratek and Grudniewska (2014) undertake a comparison of the MH 

procedure with the IRT approach for DIF detection and the effect size estimation. The 

authors compare the two approaches used in detecting DIF of dichotomously scored 

items. The results of the study proved that in detecting uniform DIF, the MH approach 

has more statistical power comparing to likelihood ratio test. Moreover, in case of 

non-uniform DIF detection, the MH approach has less power than the LR test.  
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Besides, Magis, Beland, Raiche, and Magis (2018) provide an overview of the 

different DIF detection techniques. Among the techniques covered in the study are the 

MH technique, the IRT approach and the BD approach. They provide a summary of 

different studies that involve the above-mentioned approaches and go further to 

provide the different factors affecting these approaches, among which are size and the 

number of items.  

 Furthermore, Zwick (2012) provides an overview of how different factors, 

including the sample size, the nature and stringency of the statistical rules used in 

flagging the items, and the efficacy of criterion refinement, affect DIF analysis. The 

findings of the study showed that the Educational Testing Service (ETS) C-rule often 

displays low DIF detection rates even in cases where samples are large. ETS is a 

service on which the first system of DIF classification for dichotomously scored items 

was developed. It makes use of the MH delta difference statistic 𝑀𝐻 𝐷_𝐷𝐼𝐹 =

− 2.35 𝑙𝑛 (𝛼̂𝑀𝐻), which is a transformation of the MH constant odds ratio 𝛼̂𝑀𝐻. This 

statistic forms the basis of classification of items into three categories, namely 

category A, that has items with negligible DIF, category B that has items with slight 

to moderate values of DIF, and category C that has items with moderate to large 

values of DIF. The study result shows that with improved flagging rules in place, the 

lowest sample size requirements might be realised. Furthermore, the updated rules for 

combining data across administrations could help DIF analysis to be carried out in a 

wider range of situations. The study mentioned that the refinement of the matching 

criterion enhances the detection rates when DIF is mainly in one direction but can 

depress detection rates upon balancing of DIF. The study then goes on to recommend 

refinement in the event that nothing is known about the likely pattern of DIF. 

 Mazor et al. (1994) tried to determine whether a simple adjustment of the 
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MH procedure can improve detection rates for items showing non-uniform DIF. The 

researchers developed an ingenious alternative to the Mantel-Haenszel (AMH) 

procedure. They suggested that by partitioning examinees based on total test score, 

particularly separating the examinees into either a ‘high’ or a ‘low’ scoring group, 

one could use the MH procedure to identify non-uniform DIF. The results of their 

study led the researchers to conclude that the procedure helps increase detection 

rates without increasing the Type I error rate. 

Since its development, studies investigating the AMH procedure have been 

rare. Fidalgo and Mellenbergh (1995) compared the performance of the AMH 

procedure to that of the standard MH and iterative logit procedures. They studied 

how sample size and effect size DIF affects the Type I error rate, power rate, and 

robustness of the three procedures. They found that the AMH procedure had a 

higher power rate than the other two procedures, but later cautioned that the AMH 

procedure was not as robust. This study showed some significant relationships 

between sample size and DIF effect on the AMH procedure performance, but 

several limitations surrounding this study warrant further investigation. Their study 

considered two sample sizes (200 and 1,000). However, conditioned the compared 

groups to having equal sizes. Additionally, they investigated non-uniform DIF as a 

composite measure of both difficulty and discrimination. Finally, the researchers 

investigated symmetric non-uniform DIF, thus leaving readers to question how these 

factors affect asymmetric non-uniform DIF. 

2.3. The BD Procedure 

This test was interpreted by Breslow and Day in 1980. They used BD test to 

do comparison among the exposure groups in a cancer research. Having used BD test 

in many researches and the cancer research, acknowledges that BD test is flexible 
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and, as a result, can handle a variety of data configuration. They also found out that 

BD test can handle wide range of problems that can be approached from conceptual 

foundation (Breslow & Day, 1980). Flexibility of the BD test is important since it 

promotes better understanding of the data consequently promoting good identification 

of the DIF. It is also used to focus on key parameters that are important to understand 

various groups for proper interventions to be undertaken. 

As mentioned earlier, BD is a test for homogeneity of odds ratio. One of the 

requirements for the BD test to be valid is that the sample size has to be relatively 

large in each stratum and that atleast 80% of the expected cell counts have to be 

greater than 5. The BD approach has a more strict sample size requirement compared 

to the total overall requirement for the MH test table in the sense that the sample size 

for each stratum, rather than just the sample size, has to be relatively large. This is 

what limit its usefulness since it will not give a significant result for a small sample. A 

good test should give a result for any type of test irrespective of whether the sample is 

small or large. However, the main disadvantage of the approach is that even when it is 

valid, it may remain weak against certain alternatives (Bagheri, Ayatollahi, & Jafari, 

2011). 

To effectively deal with the weakness of this approach the entire inference or 

forecast problem can be put into the setting of an LR model. This can be achieved 

through investigating whether or not the association with the strata is necessary. A 

likelihood ratio test through ANOVA function can be used for this. BD test however 

does not apply when one or two explanatory variables have more than two levels. In 

such a case, alternative methods or solutions should be sought (Bagheri et al., 2011).  

The BD method nonethless is good for analysing non-uniform DIF since it can 

assess trends in odds ratio heterogeneity. Though the test has numerous weaknesses, it 
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has helped significantly in detecting DIF. However, compared to other alternatives, 

the test is less accurate and, as a result, combining it with other tests will give more 

accurate results. This is important to ensure that the test achieves the results that were 

intended i.e. detecting DIF. In order to determine the non-uniformity of the DIF, the 

following formula is used: 

 

𝐵𝐷 = ∑
(𝑛11𝑖 − 𝐸(𝑛11𝑖|𝛼̂𝑀𝐻))

2

𝑉𝑎𝑟(𝑛11𝑖|𝛼̂𝑀𝐻)
                                                   (3)

𝑘

𝑖=1

 

 

Where 𝛼̂𝑀𝐻 is the MH estimator of common odds ratio, 𝐸(𝑛11𝑖|𝛼̂𝑀𝐻) is the 

expected value of 𝑛11𝑖 and 𝑉𝑎𝑟(𝑛11𝑖|𝛼̂𝑀𝐻) is the variance of 𝑛11𝑖 under the 𝐻0 of 

homogeneity of odds ratios. The BD is a test statistic distributed as a Chi-square with 

𝑘 − 1 degree of freedom (Breslow & Day, 1980). When the deviations between 𝑛11𝑖  

and 𝐸(𝑛11𝑖|𝛼̂𝑀𝐻) increases, the non-uniform DIF increases, and vice versa. For the 

BD test to achieve good results, large stratum sizes are required. Otherwise the BD 

test statistic might give biased results.  

The BD test, however, has some disadvantages that makes it unpopular. The 

global test gives a global statistic, and, as a result, cannot assess the specific 

alternatives to determine increase or decrease in odds ratios across the ability 

continuum. Also, it cannnot approximate nominal chi square distribution if there are 

only a few observations per stratum even if null hypothesis of the homogeneity holds.  

Notably, BD test has more power if the sample size is larger and less power if the 

sample size is small (Penfield, 2003). 

Furthermore, Magis, Beland, Raiche, and Magis (2018) provide an overview 

of the different DIF detection techniques. Aguerri, Galibert, Attorresi, and Marañón 
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(2009) used the BD test to detect non-uniform DIF when the average ability of one 

group is considerably larger than another group. DIF uses BD test to effectively 

determine factors that affect rate of detection of non-uniform DIF. The results from 

the BD test were compared to other methods of detecting non uniform DIF. In 

particular, the results of the test were compared with LR and the standard MH 

procedure. It also found that BD was much better compared to the logistic regression 

(LR) and the MH procedure. It also tested parameters which are the main focus of this 

study. The parameters that were tested include: sample size and item parameters to 

effectively determine factors that affect the use of BD test to detect non uniform DIF. 

It also found that when the item with the largest discrimination and difficulty 

parameters for equally sized groups was omitted from the goodness-of-fit to the 

binomial distribution, the test returned Type I error that was similar to the nominal 

one. 

Penfield (2001) performs DIF analysis with BD method using single 

reference group and multiple focal groups. The study does this by examining several 

undesirable qualities. In particular, the researcher found that the Type I error rate 

exceeded nominal level if the individual tests were effectively adjusted. The study 

examines the drawbacks in the detection of the DIF. The study does this by making 

comparisons of the performance of different methods. 

2.4. Item Response Theory (IRT) 

IRT is also known as a latent trait or modern mental test theory. This model is 

used in the determination of the possible individual latent character through use of the 

observed total sores on an instrument (Embretson & Reise, 2013). IRT tries to 

elaborate on the relationship that exists between the latent traits and their 

manifestations. Latent traits refer to the unobservable characteristics or attributes that 
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different individuals exhibit when they respond or perform to different environments 

or conditions. Items and latent constructs including stress, knowledge and attitudes 

among others, of a particular measure are assumed to be organized in an invisible 

continuum. Consequently, Item Latent Theory is oriented on the determination of the 

position of the individual in that series. The correctness of the model is determined 

through the use of probability of the performance and results vary along the Item 

response and ICC. 

 

2.4.1. One Parameter IRT Model 

In this model, the IRT focuses on one parameter that is used to describe the 

latent trait of the individual (Chalmers, 2012). The attribute may be denoted as 

ability (θ). The ability is tested against another parameter of the same item, which is 

represented as the difficulty (b). One parameter IRT can be represented 

mathematically as in the equation below: 

 

𝑃(𝑋𝑖𝑗 = 1|θ𝑗, b𝑖) =
𝑒1.7𝑎(θ𝑗−b𝑖)

1 + 𝑒1.7𝑎(θ𝑗−b𝑖)
                                                 (4) 

 

Where θ𝑗 refer to the ability level of jth participant and b𝑖 refer to the difficulty level 

of ith item. In this model, the value of (𝑎) is fixed to the same value across items. 

Thus, there is no subscript on the (𝑎) parameter (DeMars, 2010) . 

In one parameter IRT model, the amounts of information given at a specific 

ability level equal the inverse of its variance. This implies that the more considerable 

the amount of information given, the higher the precision level of the test will be. The 

ability level of an individual is estimated through the comparison of the various 

probable performance in the response patterns. When the examinees are exposed to 
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tests, the results tend to give trends that would be predictive to the possible outcomes, 

since they tend to reach the median probability level, which lowers the possible error 

levels (DeMars, 2010). 

2.4.2. Two Parameter IRT Model 

This model is applied to the individuals in the cases where the probability of 

them successfully answering the test is above 50%.  The two-parameter IRT model 

operates under two main parameters, namely difficulty (b) and discrimination (𝑎). 

The discrimination parameter value is permitted to vary between various items that 

are being used in the equation. The lower asymptote’s value (𝑐) is fixed to zero. 

Thus, the model can be represented as follows mathematically: 

 

𝑃(𝑋𝑖𝑗 = 1|θ𝑗 , b𝑖, 𝑎𝑖) =
𝑒1.7𝑎𝑖(θ𝑗−b𝑖)

1 + 𝑒1.7𝑎𝑖(θ𝑗−b𝑖)
                                              (5) 

 

where 𝑎𝑖 refers to the discrimination level of ith item (DeMars, 2010). 

The model is served in an ICC, where various selected items intersect in 

different slope gradients. The discrimination of an object is proportional to the 

gradient of the slope. This implies that the higher the discrimination level, the steeper 

the slope will be due to the model’s capability to detect even minute differences in the 

respondent's ability (Rizopoulos, 2006). 

2.4.3. Three Parameter IRT Model 

Three parameter model, similarly to the one and two parameter models, is 

used in prediction of the probability of individual responses to be correct. However, 

this model has an additional third parameter, namely the guessing parameter (𝑐). The 

model can be represented as follows mathematically: 
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𝑃(𝑋𝑖𝑗 = 1|θ𝑗, b𝑖, a𝑖, c𝑖) = c𝑖 + (1 − c𝑖)
𝑒1.7𝑎𝑖(θ𝑗−b𝑖)

1 + 𝑒1.7𝑎𝑖(θ𝑗−b𝑖)
                               (6) 

 

where c𝑖 refers to the guessing parameter of ith item (DeMars, 2010).  

The (𝑐) parameter is responsible for restricting the probability of endorsing 

correctness of the response as the ability of the respondent’s approached infinity. 

When a respondent answers items by guessing, the information amounts intended to 

be provided by the item tend to decrease; hence, the respondent’s ability is less than 

the associated difficulty (Chalmers, 2012). 

2.4.4. Four Parameter IRT Model 

In this model, the underestimate of the respondent is reduced, which is more 

probable than in the previous models. Upper asymptote parameter (d) creates a room 

for the high-ability respondents to give a wrong response in an easy task without 

being underestimated. This model is represented in the following equation: 

 

𝑃(𝑋𝑖𝑗 = 1|θ𝑗 , b𝑖, a𝑖 , c𝑖, d𝑖) = c𝑖 + (d𝑖 − c𝑖)
𝑒1.7𝑎𝑖(θ𝑗−b𝑖)

1 + 𝑒1.7𝑎𝑖(θ𝑗−b𝑖)
                           (7) 

 

Where d𝑖 refers to the upper asymptote (guessing) parameter of ith item (Loken & 

Rulison, 2010). 

2.5. DIF Detection Using Bayesian Inference 

Bayesian inference is an essential technique in the field of mathematics and 

statistics where Bayes' theorem is used to validate the hypothesis of a particular 

situation using probability. The importance of Bayesian inference has been 

progressively increasing in IRT and other statistical techniques in DIF analysis.  

Zwick et al. (1999), compared the empirical Bayes with classical MH 
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technique for DIF analysis. The main aim of their study was to predict the actual 

status of samples used using probability. The findings proved that results yielded by 

Empirical Bayes (EB) were more stable that MH DIF analysis, especially in samples 

of small quantities. 

In an article titled “Using Loss Functions for DIF Detection: An Empirical 

Bayes Approach”, Zwick (2000) used posterior distribution of the DIF experiment to 

estimate the expected loss of three samples that varied in quantity. Their findings 

showed an analysis that small quantities presented huge loss function compared to 

samples of larger numbers. 

Moreover, Angel et al. (2007), compared empirical Bayes with standard MH 

statistics for Detecting DIF under small sample conditions. The main aim of his study 

was to determine whether samples that used the EB approach performed better than 

samples that used MH statistics. The results proved that loss functions have no 

advantage in terms of power, errors realized when MH analysis is used compared to 

when other analytical methods are used, such as the EB approach. 

Soares et al. (2009) shed more light on detecting DIF using Bayesian Models. 

The main aim of their research was to determine DIF detection. They proved that the 

DIF analysis, in this case, has variables unlike the previous studies done in the field. 

This improved the quality of this research since the results obtained are not dependent 

on a single variable. The findings of this approach affirm that the integrated model 

that subjects DIF analysis to separate variables is efficient and can be applied in real-

life situations because people vary. 

2.6. Notations, Derivations and Definitions 

2.6.1. Mantel-Haenszel Test 

As for the data in 2 × 2 contigency table (Table 1) and MH procedure, both 



  

21 

 

margins are fixed. Taking that into consideration, there is only one cell which can 

vary independently. The focus is on 𝑛11𝑖 cell without the loss-of-generality. The row 

margins and column margins, 𝑛1+𝑖 and 𝑛+1𝑖, respectively, are conditioned under the 

null hypothesis 𝐻0: 𝑋 ⊥ 𝑌. Thus, the conditional distribution of 𝑛11𝑖 is given by the 

row and column margins, which yield the hypergeometric distribution. According to 

Agresti and Kateri (2011), the formulas related to hypergeometric are as follows: 

 

𝑃[𝑛11𝑖] =
(

𝑛1+𝑖

𝑛11𝑖
) (

𝑛++𝑖 − 𝑛1+𝑖

𝑛+1𝑖 − 𝑛11𝑖
)

(
𝑛++𝑖

𝑛+1𝑖
)

                                                    (8) 

Since MH statistics conditioned both margins, the hypergeometric mean is given by: 

 

𝐸(𝑛11𝑖) =
(𝑛1+𝑖)(𝑛+1𝑖)

𝑛++𝑖
                                                            (9) 

 

and the hypergeometric variance is: 

 

𝑉𝑎𝑟(𝑛11𝑖) =
(𝑛1+𝑖)(𝑛2+𝑖)(𝑛+1𝑖)(𝑛+2𝑖)

𝑛++𝑖
2 (𝑛++𝑖 − 1)

                                           (10) 

 

According to Casella and Berger (2002), the mean and variance of the 

hypergeometric random variable 𝑛11𝑖 can be derived using the following definitions 

(See Appendix A): 

 

𝐸𝑔(𝑋) = ∑ 𝑔(𝑥) 𝑃(𝑋 = 𝑥)
𝑥∈𝑋

                                                   (11) 
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𝑉𝑔(𝑋) = 𝐸𝑔(𝑋)2 − (𝐸𝑔(𝑋))
2

                                                     (12) 

 

As stated earlier, the MH test statistic is as follow: 

 

𝜒𝑀𝐻
2 = [∑ (𝑛11𝑖 − 𝐸(𝑛11𝑖))

𝑘

𝑖=1
]

2

∑ 𝑉𝑎𝑟(𝑛11𝑖)
𝑘

𝑖=1
⁄  

 

As reported by Rayner and Best (2017), in particular, MH statistic is approximately 

chi-square as long as at least one of the two conditions are satisfied: 

 

i. If the number of strata, 𝑘, is small, then 𝑛++𝑖 should be large. 

ii. If the strata sample sizes 𝑛++𝑖 are small, then number of 𝑘𝑡ℎ strata should 

be large. 

This is proven using central limit theorem where the sum of normal will be 

approximately normal. For this case, if all 𝑛++𝑖 are large, then each 𝑛11𝑖 will be 

approximately normal. Using central limit theorem, this can be shown by: 

 

(∑ 𝑛11𝑖

𝑘

𝑖=1

) ~𝑁 (∑ 𝐸(𝑛11𝑖), ∑ 𝑉𝑎𝑟(𝑛11𝑖

𝑘

𝑖=1

)

𝑘

𝑖=1

) 

 

which is equivalent to: 

 

(∑ 𝑛11𝑖

𝑘

𝑖=1

) ~𝑁 (𝐸 (∑ 𝑛11𝑖

𝑘

𝑖=1

) , 𝑉𝑎𝑟 (∑ 𝑛11𝑖

𝑘

𝑖=1

)) 
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Thus, Z will be as follows: 

 

𝑍 =
𝜃 − 𝜃

𝑆𝐸(𝜃)
=

∑ 𝑛11𝑖
𝑘
𝑖=1 − 𝐸(∑ 𝑛11𝑖

𝑘
𝑖=1 )

√𝑉𝑎𝑟(∑ 𝑛11𝑖
𝑘
𝑖=1 )

                                           (13) 

 

Which is equivalent to: 

 

𝑍 =
∑ 𝑛11𝑖

𝑘
𝑖=1 − ∑ 𝐸(𝑛11𝑖)

𝑘
𝑖=1

√∑ 𝑉𝑎𝑟(𝑛11𝑖)
𝑘
𝑖=1

=
∑ (𝑛11𝑖 − 𝐸(𝑛11𝑖))𝑘

𝑖=1

√∑ 𝑉𝑎𝑟(𝑛11𝑖)
𝑘
𝑖=1

                             (14) 

 

and 

 

𝑍2 =
(∑ (𝑛11𝑖 − 𝐸(𝑛11𝑖))𝑘

𝑖=1 )
2

∑ 𝑉𝑎𝑟(𝑛11𝑖)
𝑘
𝑖=1

= 𝜒𝑀𝐻
2  

 

Since the square of a standard normal distribution follows a Chi square 

distribution asymptotically with 1 degree of freedom, we can conclude that the MH 

test statistic also follows a Chi square distribution asymptotically with 1 degree of 

freedom under the null hypothesis. 

2.6.2. Breslow-Day Test 

Similar to MH test statistic, it can be shown that BD test follow Chi square 

distribution with 𝑘 − 1 degrees of freedom. Consider the following Z formula: 

 

𝑍 =
𝜃 − 𝜃

𝑆𝐸(𝜃)
=

𝑛11 − 𝐸(𝑛11|𝛼̂𝑀𝐻)

√𝑉𝑎𝑟(𝑛11|𝛼̂𝑀𝐻)
                                                  (15) 
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and 

 

𝑍2 =
(𝑛11 − 𝐸(𝑛11|𝛼̂𝑀𝐻))

2

𝑉𝑎𝑟(𝑛11|𝛼̂𝑀𝐻)
                                                      (16) 

 

Now consider that 𝑍1, … , 𝑍𝑘 are independent standard normal random variables, then 

the sum of their squares will be as follows: 

 

∑ 𝑍𝑖
2

𝑘

𝑖=1

=
(𝑛111 − 𝐸(𝑛111|𝛼̂𝑀𝐻))

2

𝑉𝑎𝑟(𝑛111|𝛼̂𝑀𝐻)
+ ⋯ +

(𝑛11𝑖 − 𝐸(𝑛11𝑖|𝛼̂𝑀𝐻))
2

𝑉𝑎𝑟(𝑛11𝑖|𝛼̂𝑀𝐻)

= ∑
(𝑛11𝑖 − 𝐸(𝑛11𝑖|𝛼̂𝑀𝐻))

2

𝑉𝑎𝑟(𝑛11𝑖|𝛼̂𝑀𝐻)

𝑘

𝑖=1

 

 

In general, it is known that ∑ 𝑍𝑖
2𝑘

𝑖=1  follows a Chi-square distribution with k 

degrees of freedom. However, the 𝑛11 are not completely independent. Thus, if 𝑘 − 1 

of the 𝑛11 are known, then the kth is necessarily already determined. The above 

expression can be reformulated as follows: 

 

∑
(𝑛11𝑖 − 𝐸(𝑛11𝑖|𝛼̂𝑀𝐻))

2

𝑉𝑎𝑟(𝑛11𝑖|𝛼̂𝑀𝐻)

𝑘

𝑖=1

= ∑
(𝑛11𝑖 − 𝐸(𝑛11𝑖|𝛼̂𝑀𝐻))

2

𝑉𝑎𝑟(𝑛11𝑖|𝛼̂𝑀𝐻)

𝑘−1

𝑖=1

+
(𝑛11𝑘 − 𝐸(𝑛11𝑘|𝛼̂𝑀𝐻))

2

𝑉𝑎𝑟(𝑛11𝑘|𝛼̂𝑀𝐻)

= ∑
(𝑛11𝑖 − 𝐸(𝑛11𝑖|𝛼̂𝑀𝐻))

2

𝑉𝑎𝑟(𝑛11𝑖|𝛼̂𝑀𝐻)
+

(∑ (𝑛11𝑖 − 𝐸(𝑛11𝑖|𝛼̂𝑀𝐻))𝑘−1
𝑖=1 )

2

𝑉𝑎𝑟(𝑛11𝑘|𝛼̂𝑀𝐻)

𝑘−1

𝑖=1

= ∑
(𝑛11𝑖 − 𝐸(𝑛11𝑖|𝛼̂𝑀𝐻))

2

𝑉𝑎𝑟(𝑛11𝑖|𝛼̂𝑀𝐻)
+

(∑ 𝑛11𝑘
𝑘−1
𝑖=1 − 𝐸(∑ (𝑛11𝑘|𝛼̂𝑀𝐻)𝑘−1

𝑖=1 ))
2

𝑉𝑎𝑟(𝑛11𝑘|𝛼̂𝑀𝐻)

𝑘−1

𝑖=1
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where we have in last equation ∑ 𝑛11𝑘
𝑘
𝑖=1 − 𝐸(∑ (𝑛11𝑘|𝛼̂𝑀𝐻)𝑘−1

𝑖=1 ) = 0. By rewriting 

the last equation, we will have BD test statistics. 

We can conclude that the BD test statistic follows also a Chi square 

distribution asymptotically with 𝑘 − 1 degree of freedom under the null hypothesis 

(Breslow & Day, 1980). 

2.6.3. Three parameter IRT Model 

In the current study, the focus is on the three parameter IRT model, since it 

is used in simulation and application studies to simulate study and non-study items, 

and to estimate the parameters of items. As mentioned earlier, the three parameter 

IRT model is as follows: 

 

𝑃(𝑋𝑖𝑗 = 1|θ𝑗, b𝑖, a𝑖, c𝑖) = c𝑖 + (1 − c𝑖)
𝑒1.7𝑎𝑖(θ𝑗−b𝑖)

1 + 𝑒1.7𝑎𝑖(θ𝑗−b𝑖)
 

 

 In the three parameter IRT model, the constant 1.7 was used, so that the 

scale would approximate the normal metric. The 1.7 is a scaling parameter; it is not 

necessary, but omitting it would change the scale of the a-parameter. The 𝑒 in the 

function is a mathematical constant, the exponential function. Its value is 

approximately 2.72. Its counterpart is the natural log function; the natural log of 

e = 1 (DeMars, 2010). The three parameter IRT model is composed of three different 

settings owing to its name. Each has its specific role in the equation, as discussed 

below. 

2.6.3.1. Discrimination Parameter 

The discrimination parameter, denoted as 𝑎𝑖 in the three parameter IRT 
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equation, is also known as the slope parameter. It shows how well the items 

discriminate against stages of the latent traits (Rizopoulos, 2006). The most 

discriminative qualities are always situated at the center of the curve. This necessarily, 

implies that the discrimination level ranges from negative to positive infinity values. 

Figure 1 shows ICCs derived by varying the (a) parameters in a three parameter IRT 

model. 

 

 

Figure 1: ICCs derived by varying the (a) parameters in a three parameter IRT model. 

 

 

2.6.3.2. Difficulty Parameter 

This parameter is used to predict how hard it is to achieve a 50% correct 

response at a given ability (Maydeu-Olivares, Cai, & Hernández, 2011). The item on 

the left have lower difficulty, hence would require fewer skills to answer it correctly. 

Figure 2 shows ICCs derived by varying the (b) parameters in a three parameter IRT 

model. 
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Figure 2: ICCs derived by varying the (b) parameters in a three parameter IRT model. 

 

 

2.6.3.3. Guessing Parameter 

Guessing parameter is commonly applied in the education, and it is also 

referred to as a pseudo-chance level parameter. The setting is used to predict the level 

at which the respondent can guess the answer to an item correctly (Maydeu-Olivares 

et al., 2011). However, the parameter is hardly used in health and personality 

assessment, since there is no wrong or correct answer in these fields. Figure 3 shows 

ICCs derived by varying the (c) parameters in a three parameter IRT model. 
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Figure 3: ICCs derived by varying the (c) parameters in a three parameter IRT model. 
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Chapter 3: Methodology 

This study combines methods described in Mazor et al. (1994) and Penfield 

(2003). There are three processes: simulating the data, assessing the non-uniform 

DIF items, and creating the regression models. Each step will be explained in the 

following subsections. 

3.1. Simulating the Data 

Each simulation contained the item scores for a 75-item examination, in 

which the last item is created to contain non-uniform DIF representing the studied 

item. The number of items is considered since it reflected that of similar large-scale 

assessments. For the non-studied items, difficulty levels will be generated from a 

normal distribution with a mean of zero and standard deviation of one. The 

discrimination levels will be generated from a lognormal distribution with mean of 0 

and standard deviation of 0.35. These considerations are based on a similar study by 

Penfield (2003). The guessing parameter for the non-studied items was 0.2. This 

setting will be used for performance comparisons as well.  

Parameters for the studied item are manipulated to create non-uniform DIF 

based on six combinations between item discrimination and difficulty. Two levels for 

item discrimination will be  tested: low (𝑎𝑟 = 0.46  and 𝑎𝑓 = 0.80) and high (𝑎𝑟 =

0.70 and 𝑎𝑓 = 1.97). Three levels for item difficulty will be considered : easy 

(𝑏 = −1.50), medium (𝑏 = 0), and difficult (𝑏 = 1.50). These parameters are taken 

from (Mazor et al., 1994). The guessing parameter, like the non-studied items, is set at 

0.2. Three sample size ratios are considered in this study, namely 1:1 ( 𝑛𝑟 = 𝑛𝑓 =

1000), 2:1 (𝑛𝑟 = 1000, 𝑛𝑓 = 500), and 5:1 (𝑛𝑟 = 1000, 𝑛𝑓 = 200). These ratios are 

similar to those from Penfield (2003). 
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A total of 10,000 simulations will be performed for each of the eighteen 

combinations of item discrimination, item difficulty, and reference-to-focal group 

ratio. These simulations are  then stratified across two ability level distribution 

conditions: the first case, where reference and focal groups came from normal 

distributions with a mean of 0 and standard deviation of 1, and the second case, in 

which the ability levels for the reference group remained unchanged with the focal 

group having a mean that is one standard deviation lower than the reference group. 

This method is similar to both studies by Penfield (2003) and Mazor et al. (1994). 

3.2. Assessing the Non-uniform DIF 

After creating the simulated item scores, the AMH and BD tests will be 

performed to determine whether non-uniform DIF is present in the studied item. A 

significant level of five percent will be considered for both procedures for two main 

reasons; first, most studies in the domains of quantitative research use five percent 

level of significance and second, it was proven that the type one error rates were 

consistent at or below the nominal level of five percent in both cases, whether the 

group ability distributions were equal or unequal (Penfield, 2003). In the current 

study, a type one error occurs when DIF is detected while in fact there is no DIF. 

Mathematically, Type one error can be calculated as follows: 

𝛼 = 𝑃(𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0: 𝑛𝑜 𝐷𝐼𝐹|𝐻0: 𝑛𝑜 𝐷𝐼𝐹 𝑖𝑠 𝑡𝑟𝑢𝑒)  

3.3. Creating the Regression Models 

Four logistic regression models will be created to assess the likelihood of 

detecting non-uniform DIF from the studied item. Two models each will assess the 

DIF using the AMH and BD procedures, where each distinguishes between equal 

and unequal ability distributions. Each logistic regression model uses item 

discrimination, item difficulty, and group ratio as explanatory variables to predict 
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the likelihood of detecting non-uniform DIF. The logit form of the logistic 

regression model carries the following form: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝛽0 + 𝛽1(𝑔𝑟𝑜𝑢𝑝 𝑟𝑎𝑡𝑖𝑜) + 𝛽2(𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) + 𝛽3(𝑑𝑖𝑓fi𝑐𝑢𝑙𝑡𝑦)

+ 𝛽4(𝑔𝑟𝑜𝑢𝑝 𝑟𝑎𝑡𝑖𝑜 × 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

+ 𝛽5(𝑔𝑟𝑜𝑢𝑝 𝑟𝑎𝑡𝑖𝑜 × 𝑑𝑖𝑓fi𝑐𝑢𝑙𝑡𝑦)

+ 𝛽6(𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 × 𝑑𝑖𝑓fi𝑐𝑢𝑙𝑡𝑦)

+ 𝛽7(𝑔𝑟𝑜𝑢𝑝 𝑟𝑎𝑡𝑖𝑜 × 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 × 𝑑𝑖𝑓fi𝑐𝑢𝑙𝑡𝑦) 

 

where 𝑙𝑜𝑔𝑖𝑡(𝑝) = log (𝑝 1 − 𝑝⁄ )  represents the log of the odds of detecting non-

uniform DIF.  

Model regression estimates are produced from the logistic model. The Akaike 

Information Criterion, C-statistic, and correct classification rate will be reported to 

provide diagnostic statistics of the model. 

3.4. Application Study 

Several studies have showed that non-uniform DIF can also be utilized in 

real data sets from both psychological and educational assessments (Teresi & 

Fleishman, 2007; Woods & Grimm, 2011). Thus, real data will be used in the study 

to help in systematically investigating the consistencies of DIF detection and the 

effect size measures in the procedures of detection chosen. For purposes of analysis, 

the items subjected to the simulations are first organized to form data sets to make it 

easier to run the simulations and to be able to trace any instances of errors that may 

arise. 

In the current study, the data was obtained from the Department of Student 

Experience and the Department of Mathematics, Statistics and Physics at Qatar 
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University. From the student’s statistics I exam papers, four multiple choice 

questions were selected for the purpose of DIF analysis. Moreover, other 

information about students such as GPA, nationality, major, and gender was 

obtained in order to classify them into different groups. 
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Chapter 4: Analysis and Results 

4.1.  Simulation Study 

The detection rate of DIF, which is the percentage of simulations in which the 

AMH and the BD procedures successfully detected non-uniform DIF in the studied 

item are shown in table 2 and 3. Both tables reflect percentages as a function of 

sample size ratios (RF), item discrimination (AL), and item difficulty (BL), but the 

two tables contrast by the consideration of equal and unequal ability distributions. 

 

 

Table 2: Non-uniform DIF Detection Rates from Equal Ability Distributions 

R:F Ratio Discrimination Difficulty 
DIF Detection Rate 

AMH BD 

1:1   Low   Easy  97.87% 47.28% 

2:1   Low   Easy  91.34% 34.70% 

5:1   Low   Easy  70.27% 22.28% 

1:1   Low   Medium  49.95% 43.68% 

2:1   Low   Medium  37.40% 29.76% 

5:1   Low   Medium  25.86% 18.27% 

1:1   Low   Hard 89.65% 18.53% 

2:1   Low   Hard 75.16% 14.05% 

5:1   Low   Hard 48.88% 9.74% 

1:1   High   Easy  100.00% 99.98% 

2:1   High   Easy  100.00% 99.16% 

5:1   High   Easy  100.00% 90.51% 

1:1   High   Medium  99.88% 99.94% 

2:1   High   Medium  98.32% 99.22% 

5:1   High   Medium  84.07% 87.58% 

1:1   High   Hard 99.95% 44.43% 

2:1   High   Hard 99.35% 29.69% 

5:1   High   Hard 89.87% 19.44% 

 

 

For reference and focal groups with equal ability distributions, detection rates 

ranged from 25.86% to 100.00% for the AMH procedure and 9.74% to 99.98% for the 

BD procedure. Variability of detection rates were higher for the BD procedure than 
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for the AMH procedure. The three highest detection rates for the AMH procedure 

occurred with items containing high ALs and easy BLs, while the three lowest 

detection rates occurrred with items containing low ALs and medium BLs. For the 

BD procedure, a smaller number of combinations with high detection rates were 

observed. For the BD procedure, the three highest detection rates were observed 

where items contained high ALs and easy or medium BLs. The three lowest detection 

rates were present for items with low ALs, 2:1 or 5:1 RFs, and medium or hard BLs. 

Regardless of the RFs, both procedures appeared to be most vunerable in detecting 

non-uniform DIF when the AL was low and the BL was medium. 

 

 

Table 3: Non-uniform DIF Detection Rates from Unequal Ability Distributions 

R:F Ratio Discrimination Difficulty 
DIF Detection Rate 

AMH BD 

1:1   Low   Easy  93.03% 47.47% 

2:1   Low   Easy  85.37% 31.48% 

5:1   Low   Easy  68.29% 21.95% 

1:1   Low   Medium  48.90% 36.26% 

2:1   Low   Medium  34.91% 24.72% 

5:1   Low   Medium  22.95% 14.54% 

1:1   Low   Hard 89.40% 11.79% 

2:1   Low   Hard 73.06% 9.86% 

5:1   Low   Hard 47.14% 7.68% 

1:1   High   Easy  100.00% 99.97% 

2:1   High   Easy  100.00% 99.23% 

5:1   High   Easy  99.87% 89.06% 

1:1   High   Medium  99.58% 99.39% 

2:1   High   Medium  95.15% 95.63% 

5:1   High   Medium  74.62% 73.98% 

1:1   High   Hard 99.98% 16.16% 

2:1   High   Hard 99.20% 11.87% 

5:1   High   Hard 89.73% 7.80% 
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Similar behavior was observed with the two procedures when the ability 

distributions were unequal. Detection rates ranged between 22.95% to 100.00% for 

the AMH procedure and 7.68% to 99.97% for the BD procedure, with more 

variability in detection rates observed for the BD procedure. The three highest 

detection rates for the AMH procedure were found in items containing high ALs and 

easy BLs, but it is interesting to note that some high detection rates were observed 

even when the BL increased. The lowest detection rates for the AMH procedure were 

found for the case where the AL was low and the BL was medium, regardless of the 

RF ratio. For the BD procedure, the highest detection rates were observed for items 

containing high ALs and easy or medium BLs. The lowest detection rates occurred 

with items with hard BLs and large RFs (7.58% and 7.80%). The results from both 

tables suggest that considering equal or unequal ability distributions have little effect 

on non-uniform DIF detection rates. Rather, the size of the RF and item 

characteristics are more important factors. 

To further understand the behavior and dependence that the AL, BL, and RF 

have on non-uniform DIF detection rates, four full-effect logistic regression models 

were created to predict the likelihood of detecting item non-uniform DIF: detecting 

non-uniform DIF for the AMH procedure with equal ability distributions (Model 4a), 

detecting non-uniform DIF for the BD procedure with equal ability distributions 

(Model 4b), detecting non-uniform DIF for the AMH procedure with unequal ability 

distributions (Model 4c), and detecting non-uniform DIF for the BD procedure with 

unequal ability distributions (Model 4d). Table 4 contains the estimates and standard 

errors from the four models, as well as the AIC, c-statistic, and CCR to represent the 

model diagnostics. 
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It is important to note that Models 4a and 4c were the focus of this study. The 

purpose of creating Models 4b and 4d was to compare the significance found in these 

models to those of Models 4a and 4c, thus identifying concordant and discordant 

predictor behavior when detecting non-uniform DIF using the AMH versus the BD 

proedures. 

 Tables 9 to 12 of the Appendix B contain model-building, main-effect models 

to show the inclusion of each predictor in the model and to determine whether a 

predictor’s inclusion affect the significance or change in its effect. 
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The AIC for Model 4a was 69,363.72. The c-statistic and CCR of 0.935 and 

85.88% respectively suggests that this model possesses strong predictive power. The 

RF was found to have a very strong negative effect on the detection of non-uniform 

DIF. Non-uniform DIF items from RFs of 2:1 and 5:1 have lower likelihoods of being 

detected than non-uniform DIF items from an RF of 1:1, decreasing the log of the 

odds of detection by 1.26 and 2.62 logits respectively. The behavior of the RF 

predictor was found to be concordant with that of the RF predictor from Model 4b. 

The AL was found to be a poor predictor in estimating non-uniform DIF items, and 

strongly discordant to the behavior of the AL predictor in Model 4b. Significant 

negative effects were present with the BL predictor. These effects suggest that non-

uniform DIF items with hard BLs have lower detection rates than items with easy BLs 

when using the AMH procedure (𝛽̂ = −0.87, 𝑝𝑣 < 0.1%), but items with medium 

BLs have even lower detection rates (𝛽̂ = −5.86, 𝑝𝑣 < 0.1%). Little significance was 

observed with two-way and three-way interactions of these predictors. Significant 

positive effects present only for the interaction between the RF and BL, particularly 

for items with medium BLs involving 2:1 RF (𝛽̂ = 1.17, 𝑝𝑣 < 0.1%) or 5:1 RFs 

(𝛽̂ = 2.60, 𝑝𝑣 < 0.1%). These significant interactions were discordant to the 

behaviors and significant interactions found in Model 4b with the RF and and AL 

predictors (negative effects with the 2:1 and 5:1 RF levels with the high AL), RF and 

BL predictors (positive effect with the 5:1 RF with the hard BL level), the AL and BL 

predictors (negative effect with the high AL and hard BL), and all three predictors 

(positive effect with the 5:1 RF, high AL, and hard BL). 

Model 4c had an AIC of 86,121.56. The c-statistic and CCR for Model 4c 

were 0.938 and 86.61% respectively, which was just slightly higher than those 

calculated in Model 4d. The RF predictor was found to have a strong negative effect 
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on non-uniform DIF detection. Items created from 2:1 or 5:1 RFs decreased DIF 

detection rates by -0.58 and -1.77 logits. It is interesting to recognize that the 

behaviors and significances observed with the RF predictor were similar in Models 4c 

and 4d, while the standard errors were different. One plausible reason could be due to 

the differences in the ability distributions. These results were similar to those in 

Models 4c and 4d where the effects were negative and the standard errors were 

equivalent. Discrimination was not found to be statistically significant in Model 4c, 

which was opposite of the effects observed in Model 4d. Strong significant effects 

were present with the BL on detection rates in Models 4c and 4d. Items with medium 

BLs decreased detection rates by 3.40 logits, but hard items tend to increase detection 

rates by 1.08 logits. This was somewhat discordant with what was observed in Model 

4d in which medium and hard items exhibited a significant negative effect on the 

likelihood of detecting non-uniform DIF. 

It is interesting to note that there were similarities found in Models 4a and 4c 

which suggest that some factors contribute to non-uniform DIF detection rates 

regardless of differences in ability level distributions. It appears that as the ratio of the 

reference and focal groups’ sizes increas, the likelhood of detecting non-uniform DIF 

with the AMH decreases. Results showed that items created from groups with a 2:1 

ratio significantly decreased DIF detection between -0.58 logits and -1.26 logits, 

while items created from groups with a 5:1 ratio significantly decreased DIF detection 

between 1.77 to 2.62 logits. Medium items also significantly decrease DIF detection 

with the AMH procedure between 3.40 and 5.86 logits. However, the interaction of 

the RF and BL factors had a significant positive effect on non-uniform DIF detection 

as it increases the likelihood between 1.14 and 2.60 logits. 
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4.2. Real Application 

4.2.1. Sample Characteristics 

The sample size for this study were 257 students with average GPA of 2.83. 

According to Table 5, based on gender, 16.3% of them with GPA average of 2.70 

were males; and 83.7% with GPA average of 2.85 were females. Qatari students 

represent 42.0% of sample with GPA average of 2.73 while non-Qataris represent 

58.0% with GPA average of 2.90. Based on their majors, students were classified in 

two main categories: STEM and non-Stem major. STEM major students represent 

32.7% of the total sample while non-STEM students represent 67.3%. The average 

GPA of STEM and non-STEM major students were 2.91 and 2.79 respectively. 

Finally, for DIF analysis, students were categorized in two main ability classes 

according to their GPA. Students with a GPA less than 2.5 were classified as 

students with low ability levels and students with a GPA 2.5 and more were 

categorized as high ability level students. The GPA was used because students that 

earn a 2.5 GPA, in most universities are considered students with good standing and 

are eligible to enroll in majors and minors (Scheffler, 1992). 

 

 

Table 4: Demographics of Application Data 

Groups Percentages GPA 

By Gender     

   Male 16.3 2.70 

   Female 83.7 2.85 

By Nationality     

   Qatari 42.0 2.73 

   non-Qatari 58.0 2.90 

By Majors     

   STEM 32.7 2.91 

   non-STEM 67.3 2.79 
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 Tables 6 cross-classifies students according to their gender, nationality, major 

and their ability level. 38.1% of male students ability level was low, while 61.9% of 

them was high. For female students, the percentage of low and high ability was 24.7% 

and 75.3%, respectively. Furthermore, 32.4% of Qatari students’ ability level was 

low, while 67.6% of them was high. For non-Qatari students, these percentages were 

22.8% and 77.2%, consecutively. Finally, 28.6% of STEM students have low ability 

level and 71.4% of them have high ability level and for non-STEM students, 26% of 

them have low ability level and 74% of them have high ability level. 

 

 

Table 5:  Ability Level by Gender, Nationality, and Major 

Groups 
Ability Level 

Low High 

By Gender 
Male 38.1% 61.9% 

Female  24.7% 75.3% 

By Nationality 
Qatari 32.4% 67.6% 

Non-Qatari 22.8% 77.2% 

By Major 
STEM 28.6% 71.4% 

Non-STEM 26.0% 74.0% 

 

 

Figure 4 shows the percentages of correct answers rate of study items 

according to gender. 73.8% of male and 57.2% of female students answered Item 1 

correctly. For Item 2, 71.4% of male and 70.2% of female students answered it 

correctly. The correct answer rate for Item 3 was 50.0% for males and 61.9% for 

females. Finally, 76.2% of male and 70.2% of female students answered Item 4 

correctly. 
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Figure 4: Percentages of Correct Answers Rate of Study Items by Gender 

 

 

Figure 5 shows the percentages of correct answers rate of study items 

according to nationality. 54.6% of Qatari and 63.8% of non-Qatari students answered 

Item 1 correctly. 69.4% of Qatari and 71.1% of non-Qatari students answered Item 2 

correctly. The correct answer rate for Item 3 was 56.5% for Qataris and 62.4% for 

non-Qataris. Finally, in terms of Item 4, 63.9% of Qatari and 76.5% of non-Qatari 

students answered it correctly. 
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Figure 5: Percentages of Correct Answers Rate of Study Items by Gender 

 

 

Figure 6 shows the percentages of correct answers rate of study items 

according to students’ major. 58.3% of STEM students and 60.7% of non-STEM 

students answered Item 1 correctly. For Item 2, 84.5% of STEM students and 63.6% 

of non-STEM students answered it correctly. The correct answer rate for Item 3 was 

61.9% for STEM and 59.0% for non-STEM students. Finally, 76.2% of STEM and 

68.8% of non-STEM student answered Item 4 correctly. 
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Figure 6: Percentages of Correct Answers Rate of Study Items by Major 

 

 

4.2.2. Assumptions 

In order to apply IRT, several conditions and assumptions must be satisfied. 

The very basic assumption that should be taken into consideration is that the 

performance of the students could be predicted based on their abilities. Moreover, the 

relationship between the probability of answering an item correctly and the ability is 

directly proportional. 

Another required assumption in order to use the IRT procedure is the 

unidimensionality, which means that there is only one factor that might affect the 

ability of students. In this study, the GPA of students was the only factor that has been 

used to measure such an ability. In addition, the criteria of grading students’ test from 

several classes was the same among all instructors. 

One last assumption for IRT is the local independence. Local independence 

means that after taking students’ abilities into consideration, there is no association 

between responses to different items. Pairwise independence between the items can be 
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proven by using Chi-square test of independence. The following table illustrates the 

pairwise independence. 

 

 

Table 6: Testing the Local Independence Assumption 

Item Pairs Chi Square (P-value)
 * 

1 and 2 1.604 (0.205) 

1 and 3 0.726 (0.394) 

1 and 4 2.255 (0.133) 

2 and 3 2.388 (0.122) 

2 and 4 2.386 (0.122) 

3 and 4 0.883 (0.347) 

* P-values are based on 2-sided test 

 

 

According to Table 6, there is no significant relationship between different pairs of 

study items. In other words, the study items are independent from each other. 

4.2.3. Items’ Parameter Estimations 

Table 7 shows parameter estimation values for items guessing, difficulty, and 

discrimination parameters. The guessing parameters are ranged between 0.02 and 

0.54. It suggests that respondents with low ability may answer the questions correctly. 

In this case, Item 1 and 4 have the lowest and Item 2 has the highest guessing 

parameter.  

Moreover, in terms of difficulty level, its ranged between -1.28 and 1.16. Item 

4 is the easeist item among others, while Item 3 is the most difficult item compared to 

other items. Similarly, the discrimination parameters are ranged between 0.37 and 

9.12. In general, if an item has the highest discrimination value, it means that an item 

may discriminate examinees more accurately and clearly. According to Table 7, Item 

1 has the lowest discrimination value, whereas Item 2 has the highest value. 
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Table 7:  Items Parameter Estimates 

Items Parameter Estimate SE 

1 

Guessing (c) 0.02 0.38 

Difficulty (b) -1.03 2.16 

Discrimination (a) 0.37 0.31 

2 

Guessing (c) 0.54 0.14 

Difficulty (b) 0.39 0.99 

Discrimination (a) 9.12 33.25 

3 

Guessing (c) 0.52 0.12 

Difficulty (b) 1.16 0.57 

Discrimination (a) 2.49 7.12 

4 

Guessing (c) 0.02 0.37 

Difficulty (b) -1.28 1.25 

Discrimination (a) 0.77 0.65 

 

 

Figure 7 shows the ICCs for four study items. This figure confirms the results 

of table 7. Its clearly displays that items 2 and 3 have higher guessing parameter than 

item 1 and 4. Moreover, the slop of green curve, which represents Item 2 is higher 

than other items. This indicates that the discrimination level of item 2 is higher than 

other items. In terms of difficulty parameter, the curve of Item 4 reachs highest 

probabilities faster compared to other items. This indicates that this item is the easiest 

among all items. 
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Figure 7: ICCs for Study Items 

 

 

4.2.4. Detecting DIF 

In order to test the null hypothesis of no DIF detection (an Item is not biased), 

AMH and BD procedures are used. Table 8 shows whether DIF is detected in 

different secanrios or not. In terms of  Item 1 and using gender as group membership 

variable, DIF is detected using AMH procedure. The Chi square values for AMH was 

4.64. It clearly shows that this values is significantly greater than the critical value of 

Chi square with one degree of freedom, which is equal to 3.84. Moreover, In terms of  

Item 2 and using major as group membership, DIF is detected using AMH procedure. 

The Chi square value for AMH is 13.01, which is considerably greater than the 

critical value of Chi square with one degree of freedom. Similarly, In terms of  Item 4 

and using nationality as group membership, DIF is detected using AMH procedure. 

The Chi square value for AMH is 4.19, which is significantly greater than the critical 

value of Chi square with one degree of freedom. 
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Table 8: DIF Detection for Different Scenarios 

* P-values are based on 2-sided test 

 

 

The following figures show the ICCs of three cases that DIF detected 

successfully. According to figure 8, the male students with low ability level have 

more chances to answer Item 1 correctly, compared to female students. Moreover, 

since both curves are not overlapping, which means that the probability of answering 

Item 1 is uniformly higher for one group compared to the other over all stages of 

ability level. 

 

 

 

 

Items Methods 
Gender Nationality Major 

Chi Square (P-value)
 * 

1 
BD

 0.00 (1.00) 0.53 (0.47) 2.29 (0.13) 

AMH 4.64 (0.03) 1.81 (0.18) 0.11 (0.74) 

2 
BD 0.94 (0.33) 1.27 (0.26) 1.24 (0.27) 

AMH 0.32 (0.57) 0.01 (0.92) 13.01 (0.00) 

3 
BD 0.31 (0.58) 0.44 (0.51) 0.14 (0.71) 

AMH 1.68 (0.19) 0.69 (0.41) 0.24 (0.62) 

4 
BD 1.99 (0.16) 1.40 (0.24) 0.74 (0.39) 

AMH 0.92 (0.34) 4.19 (0.04) 1.62 (0.20) 
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Figure 8: ICCs for Males and Females Respect to Item 1 

 

 

In terms of  Item 2, figure 9 shows that the probability of answering Item 2 

correctly is non-uniformly higher for one group compared to the other, over all stages 

of ability level. This is because both curves are overlapping. In this case, the 

probability of low ability STEM students to answer Item 2 accurately is higher 

compared to Non-STEM students. 
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Figure 9: ICCs for STEM and Non-STEM Students Respect to Item 2 

 

 

Similar to Item 2, in case of Item 4, figure 10 shows that the probability of 

answering Item 4 correctly is non-uniformly higher for one group compared to the 

other, over all stages of ability level, as both curves are overlapping. In this case, the 

probability of low ability non-Qatari students to answer Item 4 accurately is higher 

compared to Qatari students. 
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Figure 10: ICCs for Qataris and Non-Qataris Respect to Item 4 
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Chapter 5: Discussion and Conclusions 

The purpose of the study was to determine whether changes in sample size 

ratios of the reference and focal groups, item discrimination, and item difficulty affect 

how often the AMH and BD procedures detect non-uniform DIF. It also attempted to 

find out , which factors significantly affect the detection rate in the AMH procedure, 

and to determine whether particular combinations of these factors yield higher 

detection rates with the AMH procedure compared to the BD procedure. 

With equal ability distributions, the results suggest that the detection rate of 

non-uniform DIF using the AMH procedure is most affected by items with high 

discrimination, then by items with easy item difficulty, and then by items answered by 

reference and focal group of equal sizes. This was based on comparing the six largest 

detection rates found in Table 1. Using the AMH procedure, items with high 

discrimination tend to have 84% chance or more of being detected, 70% or more for 

items with easy difficulty, and 50% or more for items with equal reference and focal 

group ratios. Items associated with all three characteristics have the highest chance of 

being detected by this procedure. To the reader, the order of these factors may be 

trivial since item characteristics have been shown to play an important part in the 

detecting non-uniform DIF using several other DIF procedures. 

Differences in reference and focal group ratios have a significant negative 

effect when modeling non-uniform DIF detection rates, with the significance 

becoming greater as the magnitude of the difference increases. Item difficulty also has 

a significantly negative effect on non-uniform DIF detection rates with the AMH 

procedure. Items with medium or hard difficulty exhibit lower chances of being 

detected, with medium-level items posessing the lowest chance of detection. The 

negative effect for medium items slightly offsets higher group ratios. 
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For the unequal ability distribution case, the results are slightly similar. Items 

with high discrimination, followed by items with easy item difficulty, and then by 

items answered by reference and focal group of equal sizes give the highest detection 

rates for nonuni-form DIF with the AMH procedure. Items with high discrimination 

tend to have about 75% chance or more of being detected, 68% or more for items with 

easy difficulty, and about a 49% chance or more for items with equal reference and 

focal group ratios. These percentages are similar to those of the equivalent case, and 

so it is believed that non-uniform DIF detection is insensitive to unequal ability levels 

between the reference and focal groups. 

Group ratio and item difficulty still possess significant effects on non-uniform 

DIF detection rates. Group ratio particular has a dominant negative effect, and items 

involving higher ratios have a stronger negative effect. With regards to item difficulty, 

medium items have a negative impact on uniform DIF detection rates when compared 

to easy items, but hard items have a positive impact. This behavior is in contrast to 

what was observed with the equivalent ability distribution case and is also discordant 

to the behavior found that one would observe using the BD procedure, in which item 

difficulty has a completely negative effect. 

The results suggest that the effects of item difficulty and group ratios are 

similar to those that one would observe using the BD procedure, but the effects 

observed for item discrimination would differ. One possible reason could be that the 

test statistic formulas involved with the two methods are sample-size dependent. The 

AMH procedure is a special situation of the MH statistic, and like other IRT-based 

methods, are affected by item difficulty. With regards to sample size, it is expressed 

how decreases in group sizes have significant effects on the MH’s ability to detect 

DIF-affected items. 
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Results from the simulation indicate that the AMH procedure detects non-

uniform DIF which is the best for items with easy difficulty levels or high 

discrimination. Test analysts should expect at least a 2.36:1 odds of successfully 

detecting non-uniform DIF when either property is present in an item. 

In comparison to the BD procedure, the AMH procedure appears to have a 

higher chance of detecting non-uniform DIF items except when items contain high 

discrimination and medium difficulty. The AMH procedure yields strongest potential 

to detect non-uniform DIF items for ones with easy difficulty or high discrimination, 

and the weakest detection rates for high-discriminating, medium-difficulty items. 

Finally, results from the application study showed that out of four study items, 

AMH procedure detected DIF in three items. Item 1 was student gender-bias, Item 2 

was university major-bias, and Item 4 was student nationality-bias. Moreover, the 

AMH procedure did a better job compared BD procedure in DIF detection. In all three 

cases, AMH detected the DIF while BD procedure failed to detect DIF. In 

compatibility with the simulation study, results from the application study showed 

that compared to the BD process, AMH worked better in DIF detection in both 

uniform and non-uniform cases. 

There are interesting limitations worth noting in regards to this research.  First, 

recall that the application study investigated 257 collegiate students from a major 

university.  This is relatively small compared to the 1,200 to 2,000 observations used 

in the simulation study.  Researchers may extend on this research by using much 

small sample sizes between the reference and focal groups, and examine how 

detectability is affected by such change.  Another limitation involves the constraints 

on discrimination.  In the simulation study, discrimination was limited between 0.46 

and 1.97 between the reference and focal groups.  However, rather large 



  

55 

 

discrimination values were observed in the application data. One interesting 

exploration for readers would be to examine discrimination at a large level of 

variability, and determine how it affects AMH and BD DIF detection.  It is believed 

that larger levels of item discrimination would make DIF detection more evident. 

Furthermore, this research has used the GPA of students to catorise them into low and 

high ability level, which is considered as limitation. This is  due to the fact that there 

are several other factors that can signify or measure students’ ability such as language 

the and motivation to learn. A final limitation involved the types of DIF tests 

performed.  While the current study tested the effects of several factors on non-

uniform DIF detection rate using MH and BD procedures, additional tests can be 

considered. Comparing MH and BD procedures to other methods such as IRT and LR 

methods may be of interest to some education analysts. 
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APPENDICES 

Appendix A: Mean and Variance of Hypergeometric Random Variable 

Mean and variance of the hypergeometric random variable 𝑛11𝑖 can be derived as 

follow:  

𝐸𝑔(𝑋) = ∑ 𝑔(𝑥) 𝑃(𝑋 = 𝑥)
𝑥∈𝑋
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(𝑛++𝑖
𝑛+1𝑖

)

= (𝑛1+𝑖) ∑
(𝑛1+𝑖) (𝑛1+𝑖−1

𝑛11𝑖−1
) (𝑛++𝑖−𝑛1+𝑖

𝑛+1𝑖−𝑛11𝑖
)

𝑛++𝑖

𝑛+1𝑖
(𝑛++𝑖−1

𝑛+1𝑖−1
)

𝑛1+𝑖

𝑛11𝑖=1
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=
(𝑛1+𝑖)(𝑛+1𝑖)

𝑛++𝑖
∑

(𝑛1+𝑖) (𝑛1+𝑖−1
𝑛11𝑖−1

) (𝑛++𝑖−𝑛1+𝑖
𝑛+1𝑖−𝑛11𝑖

)

(𝑛++𝑖−1
𝑛+1𝑖−1

)

𝑛1+𝑖

𝑛11𝑖=1

 

 

Let j = 𝑛11𝑖 − 1 

 

𝐸(𝑛11𝑖
2 ) =

(𝑛1+𝑖)(𝑛+1𝑖)

𝑛++𝑖
∑

(𝑛11𝑖) (𝑛1+𝑖−1
𝑗

) (
(𝑛++𝑖−1)−(𝑛1+𝑖−1)

(𝑛+1𝑖−1)−𝑗
)

(𝑛++𝑖−1
𝑛+1𝑖−1

)

𝑛1+𝑖−1

𝑗=0

 

 

=
(𝑛1+𝑖)(𝑛+1𝑖)

𝑛++𝑖
𝐸(𝑌 + 1) =

(𝑛1+𝑖)(𝑛+1𝑖)

𝑛++𝑖
(

(𝑛1+𝑖 − 1)(𝑛+1𝑖 − 1)

𝑛++𝑖 − 1
+ 1) 

 

=
(𝑛1+𝑖)(𝑛+1𝑖)

𝑛++𝑖
(

(𝑛1+𝑖)(𝑛+1𝑖) − (𝑛1+𝑖) − (𝑛+1𝑖) + (𝑛++𝑖)

(𝑛++𝑖 − 1)
) 

 

𝑉𝑎𝑟(𝑛11𝑖) =
(𝑛1+𝑖)(𝑛+1𝑖)

𝑛++𝑖
(

(𝑛1+𝑖)(𝑛+1𝑖) − (𝑛1+𝑖) − (𝑛+1𝑖) + (𝑛++𝑖)

(𝑛++𝑖 − 1)
)

− (
(𝑛1+𝑖)(𝑛+1𝑖)

𝑛++𝑖
)

2

 

 

=
(𝑛+1𝑖)(𝑛1+𝑖)(𝑛++𝑖 − 𝑛1+𝑖)(𝑛++𝑖 − 𝑛+1𝑖)

𝑛++𝑖
2 (𝑛++𝑖 − 1)

=
(𝑛1+𝑖)(𝑛2+𝑖)(𝑛+1𝑖)(𝑛+2𝑖)

𝑛++𝑖
2 (𝑛++𝑖 − 1)
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Appendix B: Main Effects Logistic Models 

 

 

Table 9:  AMH Main Effects Logistic Models: Equal Ability Distributions 

Estimates 
 Model 1   Model 2   Model 3  

 𝛽   𝑠𝑒𝛽   𝛽   𝑠𝑒𝛽  𝛽 𝑠𝑒𝛽 

Intercept (𝛼)  0.02 0.11 2.37 

Reference-Focal Ratio       

𝑅𝐹2  0.51*** 0.01 0.50*** 0.01 -0.68*** 0.03 

𝑅𝐹5  -0.41*** 0.02 -0.46*** 0.02 -1.91*** 0.03 

Discrimination Level       

𝐴𝐿𝐻    -0.16*** 0.01 2.13*** 0.04 

Difficulty Level        

𝐵𝐿𝑀      -6.49*** 0.04 

𝐵𝐿𝑇      -0.73*** 0.02 

        

AIC  152,078.76 151,921.62 72,911.56 

c  0.599 0.606 0.934 

CCR  57.69% 55.19% 85.88% 

*𝑝 < 5%,**𝑝 < 1%, ***𝑝 < 0.1%  

 

 

 

Table 10:  BD Main Effects Logistic Models: Equal Ability Distributions 

Estimates 
 Model 1   Model 2   Model 3  

 𝛽   𝑠𝑒𝛽   𝛽   𝑠𝑒𝛽  𝛽 𝑠𝑒𝛽 

Intercept (𝛼)   0.02  - 0.16 2.37 

Reference-Focal Ratio                   

𝑅𝐹2   -0.83***   0.02   -0.88***   0.02  -0.35*** 0.02 

𝑅𝐹5   -1.81***   0.02   -1.50***   0.02  -1.05*** 0.02 

Discrimination Level                   

𝐴𝐿𝐻           2.91***   0.02  3.16*** 0.02 

Difficulty Level                    

𝐵𝐿𝑀                  0.01 0.02 

𝐵𝐿𝑇                  -2.54*** 0.03 

                    

AIC   142,446.36   103,656.00   90,064.18  

c   0.681   0.854   0.889  

CCR   64.85%   79.59%   80.26%  

*𝑝 < 5%,**𝑝 < 1%, ***𝑝 < 0.1%  
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Table 11: AMH Main Effects Logistic Models: Unequal Ability Distributions 

Estimates 
 Model 1   Model 2   Model 3  

 𝛽   𝑠𝑒𝛽   𝛽   𝑠𝑒𝛽  𝛽 𝑠𝑒𝛽 

Intercept (𝛼)   1.18***   0.53***   0.82***  

Reference-Focal Ratio                   

𝑅𝐹2   -0.46***   0.01   -0.52***   0.01   -0.76***   0.02  

𝑅𝐹5   -1.07***   0.01   -1.23***   0.01   -1.79***   0.02  

Discrimination Level                   

𝐴𝐿𝐻           1.65***   0.01   2.42***   0.02  

Difficulty Level                    

𝐵𝐿𝑀                   -2.04***   0.02  

𝐵𝐿𝑇                   1.86***   0.02  

                    

AIC   224,423.86   200,806.62   145,088.81  

c   0.617   0.741   0.888  

CCR   65.46%   70.62%   80.26%  

*𝑝 < 5%,**𝑝 < 1%, ***𝑝 < 0.1%  

 

 

 

Table 12: BD Main Effects Logistic Models: Unequal Ability Distributions 

Estimates 
 Model 1   Model 2   Model 3  

 𝛽   𝑠𝑒𝛽   𝛽   𝑠𝑒𝛽  𝛽 𝑠𝑒𝛽 

Intercept (𝛼)   0.13***   -0.65***   0.50***  

Reference-Focal Ratio                   

𝑅𝐹2  -0.27***   0.01   -0.32***   0.01   -0.51***   0.02  

𝑅𝐹5   -0.75***   0.01   -0.87***   0.01   -1.40***   0.02  

Discrimination Level                   

𝐴𝐿𝐻           1.59***   0.01   2.58***   0.02  

Difficulty Level                    

𝐵𝐿𝑀                   -0.70***   0.01  

𝐵𝐿𝑇                   -4.34***   0.02  

                    

AIC   243,495.60   218,229.33   145,181.07  

c   0.582   0.724   0.903  

CCR   53.27%   68.17%   83.63%  

*𝑝 < 5%,**𝑝 < 1%, ***𝑝 < 0.1%  
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Appendix C: SAS Codes for Simulation Study 

1. DIF Detection for Equal Ability Distributions 

%macro doit(nref=,nfoc=,af=,ar=,b=,niters=,case=,al=,bl=,rt=); 

data outcomes; 

run; 

%do times = 1 %to &niters; 

data test; 

 array a {75} a1-a75; 

 array d {75} d1-d75; 

 array q {75} q1-q75; 

 do j = 1 to 74; 

  a{j} = round(exp(0.35*rannor(456789 + &times)),.01); 

  d{j} = round(rannor(234567 + &times),.01); 

 end; 

 d{75} = &b; 

 do i = 1 to (&nref + &nfoc); 

  ability = round(rannor(123456 + &times),.01); 

  if i <= &nref then group = 'f'; 

  else group = 'r'; 

  do k = 1 to 75; 

   if k < 75 then do; 

    prob = 0.2 + (0.8)/(1+exp(-1*a{k}*(ability-d{k}))); 

    u = ranuni(567890 + &times); 

    if prob >= u then q{k} = 1; 

     else q{k} = 0; 
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   end; 

   else do; 

    if group = 'f' then prob = 0.2 + (0.8)/(1+exp(-

1*&af*(ability-d{k}))); 

    else prob = 0.2 + (0.8)/(1+exp(-1*&ar*(ability-d{k}))); 

    u = ranuni(345678 + &times); 

    if prob >= u then q{k} = 1; 

     else q{k} = 0; 

   end; 

  end; 

  ts = sum(of q1-q75); 

  * needed to link mean to observations later; 

  _type_ = 0;  

  output; 

 end; 

 drop a1-a75 i j k u d1-d75 q1-q74 prob; 

run; 

proc means data = test mean noprint; 

 var ts; 

 output out = ms (drop = _freq_) mean = mu; 

run; 

proc sort data = test; 

 by _type_; 

run; 
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proc sort data = ms; 

 by _type_; 

run; 

data testa; 

 merge test ms; 

 by _type_; 

 * hscoring = 0 represents low performance group; 

 * hscoring = 1 represents high performance group; 

 if ts < mu then hscoring = 0; 

  else hscoring = 1; 

 drop mu _type_; 

run; 

data testlow testhigh; 

 set testa; 

 if hscoring = 0 then output testlow; 

 else output testhigh; 

run; 

proc rank data = testa out = testa2 groups = 5; 

 var ts; 

 ranks strt_mh; 

run; 

proc rank data = testlow out = testlow2 groups = 5; 

 var ts; 

 ranks strt_mh; 

run; 
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proc rank data = testhigh out = testhigh2 groups = 5; 

 var ts; 

 ranks strt_mh; 

run; 

proc freq data = testa2 noprint; 

 tables strt_mh*group*q75 / cmh2; 

 output out = it cmh2; 

run; 

proc freq data = testlow2 noprint; 

 tables strt_mh*group*q75 / cmh2; 

 output out = itlow cmh2; 

run; 

proc freq data = testhigh2 noprint; 

 tables strt_mh*group*q75 / cmh2; 

 output out = ithigh cmh2; 

run; 

data myout; 

 merge it 

   itlow (rename=(p_cmhcor = pl_cmhcor p_bdchi = pl_bdchi))  

   ithigh (rename=(p_cmhcor = ph_cmhcor p_bdchi = ph_bdchi)); 

 keep _cmhcor_ p_cmhcor p_bdchi pl_cmhcor ph_cmhcor; 

run; 

data outcomes; 

 set outcomes myout; 

run; 
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data it.outcomes_case&case.; 

 set outcomes; 

 ratio = &nref./&nfoc.; 

 disc_level = &al.; 

 diff = &bl.; 

 if _cmhcor_ ^= .; 

 if p_cmhcor < .05 then detected_amh = 'Y'; 

  else detected_amh = 'N'; 

 if p_bdchi < .05 then detected_bd = 'Y'; 

  else detected_bd = 'N'; 

 if ph_cmhcor < .05 or pl_cmhcor < .05 then detected_amh2 = 'Y'; 

  else detected_amh2 = 'N'; 

 keep p_cmhcor p_bdchi pl_cmhcor ph_cmhcor detected_amh detected_bd 

detected_amh2 ratio disc_level diff; 

run; 

proc freq data = it.outcomes_case&case.; 

 tables ratio*disc_level*diff*detected_amh / list; 

 title "AMH DIF Item Detection Results: Ratio = &rt."; 

run; 

proc freq data = it.outcomes_case&case.; 

 tables ratio*disc_level*diff*detected_amh2 / list; 

 title "AMH DIF Item Detection LOW-HIGH Results: Ratio = &rt."; 

run; 
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proc freq data = it.outcomes_case&case.; 

 tables ratio*disc_level*diff*detected_bd / list; 

 title "BD DIF Item Detection Results: Ratio = &rt."; 

run; 

%doit(nref=1000,nfoc=1000,af=0.80,ar=0.46,b=-

1.50,niters=10000,case=L1E,al='L',bl='E',rt=1:1); 

%doit(nref=1000,nfoc=500,af=0.80,ar=0.46,b=-

1.50,niters=10000,case=L2E,al='L',bl='E',rt=2:1); 

%doit(nref=1000,nfoc=200,af=0.80,ar=0.46,b=-

1.50,niters=10000,case=L5E,al='L',bl='E',rt=5:1); 

%doit(nref=1000,nfoc=1000,af=0.80,ar=0.46,b=0.01,niters=10000,case=L1M,al='L',b

l='M',rt=1:1); 

%doit(nref=1000,nfoc=500,af=0.80,ar=0.46,b=0.01,niters=10000,case=L2M,al='L',bl

='M',rt=2:1); 

%doit(nref=1000,nfoc=200,af=0.80,ar=0.46,b=0.01,niters=10000,case=L5M,al='L',bl

='M',rt=5:1); 

%doit(nref=1000,nfoc=1000,af=0.80,ar=0.46,b=1.50,niters=10000,case=L1T,al='L',bl

='T',rt=1:1); 

%doit(nref=1000,nfoc=500,af=0.80,ar=0.46,b=1.50,niters=10000,case=L2T,al='L',bl

='T',rt=2:1); 

%doit(nref=1000,nfoc=200,af=0.80,ar=0.46,b=1.50,niters=10000,case=L5T,al='L',bl

='T',rt=5:1); 

%doit(nref=1000,nfoc=1000,af=1.97,ar=0.70,b=-

1.50,niters=10000,case=H1E,al='H',bl='E',rt=1:1); 
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%doit(nref=1000,nfoc=500,af=1.97,ar=0.70,b=-

1.50,niters=10000,case=H2E,al='H',bl='E',rt=2:1); 

%doit(nref=1000,nfoc=200,af=1.97,ar=0.70,b=-

1.50,niters=10000,case=H5E,al='H',bl='E',rt=5:1); 

%doit(nref=1000,nfoc=1000,af=1.97,ar=0.70,b=0.01,niters=10000,case=H1M,al='H',

bl='M',rt=1:1); 

%doit(nref=1000,nfoc=500,af=1.97,ar=0.70,b=0.01,niters=10000,case=H2M,al='H',bl

='M',rt=2:1); 

%doit(nref=1000,nfoc=200,af=1.97,ar=0.70,b=0.01,niters=10000,case=H5M,al='H',bl

='M',rt=5:1); 

%doit(nref=1000,nfoc=1000,af=1.97,ar=0.70,b=1.50,niters=10000,case=H1T,al='H',b

l='T',rt=1:1); 

%doit(nref=1000,nfoc=500,af=1.97,ar=0.70,b=1.50,niters=10000,case=H2T,al='H',bl

='T',rt=2:1); 

%doit(nref=1000,nfoc=200,af=1.97,ar=0.70,b=1.50,niters=10000,case=H5T,al='H',bl

='T',rt=5:1); 

2. DIF Detection for Unequal Ability Distributions 

%macro doit(nref=,nfoc=,af=,ar=,b=,niters=,case=,al=,bl=,rt=); 

data outcomes; 

run; 

%do times = 1 %to &niters; 

data test; 

 array a {75} a1-a75; 

 array d {75} d1-d75; 

 array q {75} q1-q75; 
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 do j = 1 to 74; 

  a{j} = round(exp(0.35*rannor(567890 + &times)),.01); 

  d{j} = round(rannor(345678 + &times),.01); 

 end; 

 d{75} = &b; 

 do i = 1 to (&nref + &nfoc); 

  *ability = round(rannor(123456 + &times),.01); 

  if i <= &nref then do; 

   group = 'f'; 

   ability = round(rannor(234567 + &times)-0.5,.01); 

  end; 

  else do; 

   group = 'r'; 

   ability = round(rannor(234567 + &times),.01); 

  end; 

  do k = 1 to 75; 

   if k < 75 then do; 

    prob = 0.2 + (0.8)/(1+exp(-1*a{k}*(ability-d{k}))); 

    u = ranuni(678901 + &times); 

    if prob >= u then q{k} = 1; 

     else q{k} = 0; 

   end; 

   else do; 

    if group = 'f' then prob = 0.2 + (0.8)/(1+exp(-

1*&af*(ability-d{k}))); 
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    else prob = 0.2 + (0.8)/(1+exp(-1*&ar*(ability-d{k}))); 

    u = ranuni(456789 + &times); 

    if prob >= u then q{k} = 1; 

     else q{k} = 0; 

   end; 

  end; 

  ts = sum(of q1-q75); 

  _type_ = 0;  

  output; 

 end; 

 drop a1-a75 i j k u d1-d75 q1-q74 prob; 

run; 

proc means data = test mean noprint; 

 var ts; 

 output out = ms (drop = _freq_) mean = mu; 

run; 

proc sort data = test; 

 by _type_; 

run; 

proc sort data = ms; 

 by _type_; 

run; 
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data testa; 

 merge test ms; 

 by _type_; 

 * hscoring = 0 represents low performance group; 

 * hscoring = 1 represents high performance group; 

 if ts < mu then hscoring = 0; 

  else hscoring = 1; 

 drop mu _type_; 

run; 

data testlow testhigh; 

 set testa; 

 if hscoring = 0 then output testlow; 

 else output testhigh; 

run; 

proc rank data = testa out = testa2 groups = 5; 

 var ts; 

 ranks strt_mh; 

run; 

proc rank data = testlow out = testlow2 groups = 5; 

 var ts; 

 ranks strt_mh; 

run; 
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proc rank data = testhigh out = testhigh2 groups = 5; 

 var ts; 

 ranks strt_mh; 

run; 

proc freq data = testa2 noprint; 

 tables strt_mh*group*q75 / cmh2; 

 output out = it cmh2; 

run; 

proc freq data = testlow2 noprint; 

 tables strt_mh*group*q75 / cmh2; 

 output out = itlow cmh2; 

run; 

proc freq data = testhigh2 noprint; 

 tables strt_mh*group*q75 / cmh2; 

 output out = ithigh cmh2; 

run; 

data myout; 

 merge it 

   itlow (rename=(p_cmhcor = pl_cmhcor p_bdchi = pl_bdchi))  

   ithigh (rename=(p_cmhcor = ph_cmhcor p_bdchi = ph_bdchi)); 

 keep _cmhcor_ p_cmhcor p_bdchi pl_cmhcor ph_cmhcor; 

run; 

data outcomes; 

 set outcomes myout; 

run; 
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data it.outcomes_case&case.; 

 set outcomes; 

 ratio = &nref./&nfoc.; 

 disc_level = &al.; 

 diff = &bl.; 

 if _cmhcor_ ^= .; 

 if p_cmhcor < .05 then detected_amh = 'Y'; 

  else detected_amh = 'N'; 

 if p_bdchi < .05 then detected_bd = 'Y'; 

  else detected_bd = 'N'; 

 if ph_cmhcor < .05 or pl_cmhcor < .05 then detected_amh2 = 'Y'; 

  else detected_amh2 = 'N'; 

 keep p_cmhcor p_bdchi pl_cmhcor ph_cmhcor detected_amh detected_bd 

detected_amh2 ratio disc_level diff; 

run; 

proc freq data = it.outcomes_case&case.; 

 tables ratio*disc_level*diff*detected_amh / list; 

 title "AMH UNEQUAL DIF Item Detection Results: Ratio = &rt."; 

run; 

proc freq data = it.outcomes_case&case.; 

 tables ratio*disc_level*diff*detected_amh2 / list; 

 title "AMH UNEQUAL DIF Item Detection LOW-HIGH Results: Ratio = 

&rt."; 

run; 
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proc freq data = it.outcomes_case&case.; 

 tables ratio*disc_level*diff*detected_bd / list; 

 title "BD UNEQUAL DIF Item Detection Results: Ratio = &rt."; 

run; 

%doit(nref=1000,nfoc=1000,af=0.80,ar=0.46,b=-

1.50,niters=10000,case=L1E,al='L',bl='E',rt=1:1); 

%doit(nref=1000,nfoc=500,af=0.80,ar=0.46,b=-

1.50,niters=10000,case=L2E,al='L',bl='E',rt=2:1); 

%doit(nref=1000,nfoc=200,af=0.80,ar=0.46,b=-

1.50,niters=10000,case=L5E,al='L',bl='E',rt=5:1); 

%doit(nref=1000,nfoc=1000,af=0.80,ar=0.46,b=0.01,niters=10000,case=L1M,al='L',b

l='M',rt=1:1); 

%doit(nref=1000,nfoc=500,af=0.80,ar=0.46,b=0.01,niters=10000,case=L2M,al='L',bl

='M',rt=2:1); 

%doit(nref=1000,nfoc=200,af=0.80,ar=0.46,b=0.01,niters=10000,case=L5M,al='L',bl

='M',rt=5:1); 

%doit(nref=1000,nfoc=1000,af=0.80,ar=0.46,b=1.50,niters=10000,case=L1T,al='L',bl

='T',rt=1:1); 

%doit(nref=1000,nfoc=500,af=0.80,ar=0.46,b=1.50,niters=10000,case=L2T,al='L',bl

='T',rt=2:1); 

%doit(nref=1000,nfoc=200,af=0.80,ar=0.46,b=1.50,niters=10000,case=L5T,al='L',bl

='T',rt=5:1); 

%doit(nref=1000,nfoc=1000,af=1.97,ar=0.70,b=-

1.50,niters=10000,case=H1E,al='H',bl='E',rt=1:1); 

%doit(nref=1000,nfoc=500,af=1.97,ar=0.70,b=-
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1.50,niters=10000,case=H2E,al='H',bl='E',rt=2:1); 

%doit(nref=1000,nfoc=200,af=1.97,ar=0.70,b=-

1.50,niters=10000,case=H5E,al='H',bl='E',rt=5:1); 

%doit(nref=1000,nfoc=1000,af=1.97,ar=0.70,b=0.01,niters=10000,case=H1M,al='H',

bl='M',rt=1:1); 

%doit(nref=1000,nfoc=500,af=1.97,ar=0.70,b=0.01,niters=10000,case=H2M,al='H',bl

='M',rt=2:1); 

%doit(nref=1000,nfoc=200,af=1.97,ar=0.70,b=0.01,niters=10000,case=H5M,al='H',bl

='M',rt=5:1); 

%doit(nref=1000,nfoc=1000,af=1.97,ar=0.70,b=1.50,niters=10000,case=H1T,al='H',b

l='T',rt=1:1); 

%doit(nref=1000,nfoc=500,af=1.97,ar=0.70,b=1.50,niters=10000,case=H2T,al='H',bl

='T',rt=2:1); 

%doit(nref=1000,nfoc=200,af=1.97,ar=0.70,b=1.50,niters=10000,case=H5T,al='H',bl

='T',rt=5:1); 

1. Logistic Models for Equal Ability Cases 

data combined; 

 set it2.outcomes_caseh1e it2.outcomes_caseh1m it2.outcomes_caseh1t 

  it2.outcomes_caseh2e it2.outcomes_caseh2m it2.outcomes_caseh2t 

  it2.outcomes_caseh5e it2.outcomes_caseh5m it2.outcomes_caseh5t 

  it2.outcomes_casel1e it2.outcomes_casel1m it2.outcomes_casel1t 

  it2.outcomes_casel2e it2.outcomes_casel2m it2.outcomes_casel2t 

  it2.outcomes_casel5e it2.outcomes_casel5m it2.outcomes_casel5t; 

 ratio2 = put(ratio,2.); 

run; 
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proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_amh = ratio2; 

 output out = tempout predprobs = i; 

 title 'AMH EQUAL: Model 1'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_amh = ratio2 disc_level; 

 output out = tempout predprobs = i; 

 title 'AMH EQUAL: Model 2'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 
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proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_amh = ratio2 disc_level diff; 

 output out = tempout predprobs = i; 

 title 'AMH EQUAL: Model 3'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_amh = ratio2|disc_level|diff @3; 

 output out = tempout predprobs = i; 

 title 'AMH EQUAL: Model 4 (Full Model)'; 

run; 
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data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_bd = ratio2; 

 output out = tempout predprobs = i; 

 title 'BD EQUAL: Model 1'; 

run 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 
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proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_bd = ratio2 disc_level; 

 output out = tempout predprobs = i; 

 title 'BD EQUAL: Model 2'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_bd = ratio2 disc_level diff; 

 output out = tempout predprobs = i; 

 title 'BD EQUAL: Model 3'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 
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proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_bd = ratio2|disc_level|diff @3; 

 output out = tempout predprobs = i; 

 title 'BD EQUAL: Model 4 (Full Model)'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 

2. Logistic Models for Unequal Ability Cases 

data combined; 

 set it2.outcomes_caseh1e it2.outcomes_caseh1m it2.outcomes_caseh1t 

  it2.outcomes_caseh2e it2.outcomes_caseh2m it2.outcomes_caseh2t 

  it2.outcomes_caseh5e it2.outcomes_caseh5m it2.outcomes_caseh5t 

  it2.outcomes_casel1e it2.outcomes_casel1m it2.outcomes_casel1t 

  it2.outcomes_casel2e it2.outcomes_casel2m it2.outcomes_casel2t 

  it2.outcomes_casel5e it2.outcomes_casel5m it2.outcomes_casel5t; 



  

85 

 

 ratio2 = put(ratio,2.); 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_amh = ratio2; 

 output out = tempout predprobs = i; 

 title 'AMH UNEQUAL: Model 1'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_amh = ratio2 disc_level; 

 output out = tempout predprobs = i; 

 title 'AMH UNEQUAL: Model 2'; 

run; 
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data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_amh = ratio2 disc_level diff; 

 output out = tempout predprobs = i; 

 title 'AMH UNEQUAL: Model 3'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 
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proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_amh = ratio2|disc_level|diff @3; 

 output out = tempout predprobs = i; 

 title 'AMH UNEQUAL: Model 4 (Full Model)'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_bd = ratio2; 

 output out = tempout predprobs = i; 

 title 'BD UNEQUAL: Model 1'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 
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proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_bd = ratio2 disc_level; 

 output out = tempout predprobs = i; 

 title 'BD UNEQUAL: Model 2'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_bd = ratio2 disc_level diff; 

 output out = tempout predprobs = i; 

 title 'BD UNEQUAL: Model 3'; 

run; 
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data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 

proc logistic data = combined descending; 

 class ratio2 (ref = '1') disc_level (ref = 'L') diff (ref = 'E') / param = ref; 

 model detected_bd = ratio2|disc_level|diff @3; 

 output out = tempout predprobs = i; 

 title 'BD UNEQUAL: Model 4 (Full Model)'; 

run; 

data tempout; 

 set tempout; 

 if _from_ = _into_ then is_correct = 'Yes'; 

 else is_correct = 'No '; 

run; 

proc freq data = tempout; 

 tables is_correct; 

run; 
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Appendix D: SAS Codes for Application Study 

data data; 

input Gender $ Items $ Correct; 

datalines; 

Male 1 73.8 

Female 1 57.2 

Male 2 71.4 

Female 2 70.2 

Male 3 50.0 

Female 3 61.9 

Male 4 76.2 

Female 4 70.2; 

proc sgplot data=data; 

series x=Items y=Correct / group=Gender; 

yaxis label="% of Correct"; 

run; 

data data; 

input Nationality   $ Items $ Correct; 

datalines; 

Qatari     1 54.6 
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non-Qatari 1 63.8 

Qatari     2 69.4 

non-Qatari 2 71.1 

Qatari     3 56.5 

non-Qatari 3 62.4 

Qatari     4 63.9 

non-Qatari 4 76.5; 

proc sgplot data=data; 

series x=Items y=Correct / group=Nationality; 

yaxis label="% of Correct"; 

run; 

data data; 

input Major $ Items $ Correct; 

datalines; 

non-STEM     1 60.7 

STEM 1 58.3 

non-STEM     2 63.6 

STEM 2 84.5 

non-STEM     3 59.0 

STEM 3 61.9 

non-STEM     4 68.8 

STEM 4 76.2; 

proc sgplot data=data; 

series x=Items y=Correct / group=Major; 

yaxis label="% of Correct"; 
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run; 

 

 

 

 

proc freq data=WORK.data; 

      table Gender; 

      table Nationality; 

      table MajororDepartment; 

run; 

proc sort data = WORK.data; 

by Gender; 

run; 

proc means data = WORK.data mean; 

var GPA; 

by Gender; 

run; 

proc sort data = WORK.data; 

by Nationality; 

run; 

proc means data = WORK.data mean; 

var GPA; 

by Nationality; 

run; 

proc sort data = WORK.data; 
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by MajororDepartment; 

run; 

 

 

 

proc means data = WORK.data mean; 

var GPA; 

by MajororDepartment; 

run; 

proc freq data=WORK.data; 

      table Gender*Ability; 

      table Nationality*Ability; 

      table MajororDepartment*Ability; 

run; 

proc irt data=WORK.data itemfit out=fscore3PL plots=ICC; 

var Q1-Q4; 

model Q1-Q4; 

run; 

proc freq data=data; 

      tables Ability*Gender*Q1/ cmh;  

run; 

proc freq data=data; 

      tables Ability*Nationality*Q1/ cmh;  

run; 

proc freq data=data; 
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      tables Ability*MajororDepartment*Q1/ cmh;  

run; 

proc freq data=data; 

      tables Ability*Gender*Q2/ cmh;  

run; 

proc freq data=data; 

      tables Ability*Nationality*Q2/ cmh;  

run; 

proc freq data=data; 

      tables Ability*MajororDepartment*Q2/ cmh;  

run; 

proc freq data=data; 

      tables Ability*Gender*Q3/ cmh;  

run; 

proc freq data=data; 

      tables Ability*Nationality*Q3/ cmh;  

run; 

proc freq data=data; 

      tables Ability*MajororDepartment*Q3/ cmh;  

run; 

proc freq data=data; 

      tables Ability*Gender*Q4/ cmh;  

run; 

proc freq data=data; 

      tables Ability*Nationality*Q4/ cmh;  
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run; 

proc freq data=data; 

      tables Ability*MajororDepartment*Q4/ cmh;  

run; 
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Appendix E: Study Items Included in Real Application 

Table 13: Study Items Included in Real Application 

Items Description
 

1 

The number of customers entering a bank per minute is a Poisson random 

variable with a mean of * customers per minute. What is the probability that * 

customers enter the bank in a minute? 

2 
The probability that a certain machine will produce a defective item is *. If a 

random sample of *items is taken, what is the probability that exactly * items are 

defective?  

3 
A sample of size * lambs is selected from a production line. The sample mean was 

* hours and the standard deviation was *. We are interested in testing whether 

mean life of all lambs exceeds * hours. The value of the test statistic is: 

4 
 
If P(A) = * , P(B) = * , and P(A and B) =  *, then P(A|B) is:  

 

 


