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ABSTRACT 

AHMAD, H.M., SABBIR., Masters : January  : [2020]

Masters of Science in Electrical Engineering   

Title: Cyber Attack Detection in Nonlinear Binary Distillation Column 

Supervisor of Thesis : Nader Meskin. 

This thesis focuses on addressing the issue of cyber security for Industrial 

Control Systems (ICS). Evolution in computing and internet technology has 

encouraged increasing number of Industrial Control Systems (ICS) to be linked to cyber 

world giving rise to a new class of systems called Cyber Physical system (CPS) making 

them more vulnerable to cyber threats. The effect of cyber-attacks differs in cyber 

physical critical ICS compared to traditional ICT systems as they can cause damage to 

physical infrastructure posing threats to human health and environment.  The four main 

objectives of this thesis are as follows: 

i. Mathematically model various malicious adversary attacks and intrusions. 

ii. Mathematically model dynamics of a crude oil distillation column (DC) and 

design its control system. 

iii. Analyze the effect of cyber-attacks on dynamic performance of the DC. 

iv. Design attack detection techniques and validate their performance and 

effectiveness on the model of a DC. 
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CHAPTER 1: INTRODUCTION 

Due to the continuous development of technology, an increasing number of 

electronic devices are being created with networking features suitable for connecting to 

IT networks. This technological evolution has also made its way to ICS where an 

increasing number of monitoring and controlling devices have been connected to 

computer networks facilitating supervisory level monitoring and control which 

provides CPS manifolds economic and performance enhancing benefits.  However, it 

also makes Industrial Control Systems (ICS) more vulnerable to cyber-attacks. The 

envisaged complex CPS infrastructure more than ever requires the development of 

novel and proactive security technologies, as these systems are continuously targeted 

by attacks and intrusions by intelligent adversaries. Some typical examples of attacks 

in real systems are the Stuxnet worm attack, multiple recent power blackouts in Brazil, 

and the SQL Slammer worm attack on the Davis-Besse nuclear plant, to name a few, 

further justifying the need to address cyber security for ICS [1], [2]. 

Extensive research has been conducted on security issues from the prospective 

of network and communication technologies to securely defend network performance 

against adversaries. These researches have mainly concentrated on designing 

methodologies to secure communication networks in CPS ignoring interactions 

between the cyber and physical domain. Traditionally, cyber security for ICS has been 

dealt by IT engineers from the prospective of network security. Such approaches 

primarily aim to secure the communication network to protect the IT infrastructure 

without considering the physical behavior of the plant and how the ICS is affected by 

cyber-attack. This thesis considers the behavior of the plant and ICS as part of the study 

of cyber security.    
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ICS are characterized by feedback closed-loop control architecture and aim to 

optimize the system control performance, such as reducing state estimation errors, 

stabilizing an unstable plant, and enhancing the robustness against uncertainties and 

noise. It is important to optimize the system control performances and at the same time 

to guarantee the survivability and resiliency of cyber-physical ICS subject to multiple 

types of malicious attacks. A cyber-physical system (CPS) is characterized by the 

number of control loops containing controller, sensors, and actuators. Integrity, 

availability, and confidentiality are three essential characteristics that are required for 

data transmitted across communication channels in a closed-loop control in order to 

operate the plant as per the specifications. An attacker can launch an attack in order to 

violate one of these three requirements of data that are transmitted over the 

communication channels. Hence, the attacker can target the data from the plant sensors 

or the actuators. 

The huge worldwide demand for crude oil can make them a target for attackers. 

Since distillation columns (DC) handle highly flammable chemicals, attackers can 

launch attacks with the motivation of causing damage to the plant infrastructure or upset 

the column operation by degrading the quality of the distilled products.  In this thesis, 

a continuous binary DC is considered as a cyber-physical framework to investigate the 

effect of attacks on the performance of DC as well as the development of attack 

detection algorithms.  

1.1 Literature review 

Attack modelling is the first step which is required to generate attack vectors 

for performing cyber security study. As this thesis focuses on cyber security for ICS 

hence attacks which are relevant in this regard have been reviewed. Based on the 

existing literature, attacks on ICS can be classified into four categories: i) sensor 
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attacks, ii) actuator attacks, iii) sensor and actuator attacks, and iv) controller attacks.  

In [3]- [4], [5], and [6] various different models for sensor attacks are presented. 

Various different actuator attack models have been presented by authors in [7]- [8].  In 

[1], [2], [9], [10]- [11], [12] authors present attacks which can be applied to both sensors 

and actuators. Finally, [7] presents cyber-attacks to be applied on controllers.  

Understanding the effect of attacks is the first step to design attack diagnosis, 

detection and mitigation technologies. One of the key factors that needs to be identified 

is the parts of the ICS the attacker may target. Thus far, to the best of our knowledge, 

there is no literature available in the area of cyber security for a DC. Hence, motivation 

is drawn from the literatures available in the area of fault diagnosis, fault recovery, fault 

survivability, and fault tolerant control techniques. It will be a fair assumption to believe 

the attacker is limited to targeting the controllers, sensors and actuators as they are the 

only hardware which are part of the closed-loop control and are integrated to the cyber 

world. In [13]- [14], faults with the reboiler power and reflux flow rate have been 

studied. The effect of the top and bottom composition sensor faults have been studied 

in [15] and [14]. Fault in the feed flow rate has been considered and assessed in [16], 

[17], [18], [14]. Besides that, [17] and [18] also study faults in the feed composition 

and the feed preheater power, respectively and their effect on the DC performance. 

Finally, fault in the bottoms flow rate has been discussed in [19].  

Attack detection is the first step towards designing attack mitigation, 

survivability, and recovery techniques for ICS against cyber threats. The focus is to 

design detection techniques following approaches in the field of control engineering 

based on the physical knowledge of the plant and ICS and validate their performance 

and effectiveness in terms of attack detection using the model of the DC. However, 

several different model-based techniques have been found in the literature for detection 
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of cyber-attacks. Observer-based detection techniques have been presented in [20], 

[21], [22], [23], and [24]. In [5], and [25] Kalman Filter (KF) is used for securely 

estimating the system states for detecting cyber-attacks. The authors in [26] proposes 

Extended Kalman Filter (EKF) based algorithm for attack detection. Unscented Kalman 

Filter (UKF) has been used for attack detection in [27] - [28]. Comparison between 

Observer and Cubature KF (CKF) has been done in [19]. [23] compares between UKF, 

EKF and Enhanced EKF the ability of detecting cyber-attacks. In [29], authors provide 

a comparative study of observer, EKF, UKF, and CKF for detection of malicious cyber-

attacks.   

In terms of application areas, in [30], [31], and [32] authors explore the effect 

of cyber-attacks on Smart Grid whereas [33]- [34] study the effect of cyber-attacks on 

Power Systems. In [35] and [36], the effect of cyber-attacks on Smart Cities and Water 

Distribution System are investigated, respectively.  In regards to cyber-attack detection 

[37] and [38] present machine learning algorithms for Water Distribution System. On 

the other hand, [39] proposes a model-based detection technique for water treatment 

plant. Authors in [40], and [41] present machine learning algorithms for detecting 

attacks in Smart Grid. Finally, detection methods for attacks on Power Systems are 

presented in [42], [43], and [44]. 

1.2 Thesis objectives 

The first objective is to mathematically model cyber-attacks for ICS. As part of 

this thesis attacks which are commonly found in the literature for ICS are primarily 

modeled. All the existing literature provides attack models for the class of linear time 

invariant systems. However, most plants in real world have nonlinear dynamics. Hence 

in this thesis the attacks have been modeled for nonlinear systems.  

The second objective is to model DC in order to investigate the effects of 



  

5 

 

different cyber-attacks on the performance of DC. In our case we limit the study to a 

continuous binary DC. A continuous binary DC during its entire lifecycle takes a fixed 

raw crude stream and splits it into two product streams. The availability of a wide scale 

computer simulation tools makes it possible to simulate the dynamic behavior of a 

nonlinear plant based on their mathematical models, to facilitate safer tools for 

performing cyber security study and consequently, to save cost and time.  A distillation 

column has a nonlinear dynamic behavior. There are two different DC models which 

are used for the study as part of this thesis. The first plant model is generated based on 

data found in [45] and [46] using which a DC is designed in Aspen Plus Dynamics. The 

first model has been derived based on grey box modelling approach where the known 

dynamics are generated using MESH equations and remaining dynamics are generated 

using Aspen Plus Dynamics. The second model is based on a hybrid simulation engine 

where the plant dynamics are simulated using Aspen Plus Dynamics and the ICS is 

implemented in Simulink.  

 The third objective is to study the effect of cyber-attacks on the control 

performance of a DC. Based on the literature survey, the attack surface for a DC is 

determined. Then, the modeled attacks are injected and their effect on the performance 

of the control system and consequently the DC is observed.  

The final objective is to propose attack detection techniques for the DC. The 

thesis focuses on designing model-based detection techniques for cyber-attacks using 

secure estate estimation. There is no literature available for detection of cyber-attacks 

on a DC. As part of the thesis, three different detection techniques have been proposed. 

Two techniques have been designed based on nonlinear grey box model of the DC 

which relies on state estimation using Extended Kalman Filter (EKF) and Unscented 

Kalman Filter (UKF). EKF and UKF are well established algorithms used for 
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estimating the plant states and consequently outputs for a nonlinear system based on 

the knowledge of the plant inputs and outputs. The third detection algorithm has been 

designed for the Aspen Plus Dynamics and Simulink based hybrid model using 

Luenberger observer which is a common technique for estimating states for linear 

systems based on the knowledge of plant inputs and outputs. 

1.3 Thesis contribution 

There are three main contributions of the thesis. The first contribution is 

modeling attacks for ICS for nonlinear CPS including sensor attacks, actuator attacks 

and controller attacks. The second contribution is about studying and identifying the 

behavior of a continuous binary DC under cyber-attacks. Lastly, this thesis provides 

three attack detection techniques that can be applied to detect attacks on DC. 

1.4 Thesis organization 

The thesis is organized into four chapters including introduction chapter. 

Chapter 2 concisely presents fundamentals of the distillation theory before presenting 

the details of the two DC models along with their control schemes. In Chapter 3, the 

mathematical models of the attacks modeled as part of this thesis is presented along 

with results for illustrating their effect on the behavior of the two DCs. Following that 

the details of the attack detection algorithms are presented. Moreover, the performance 

and effectiveness of the algorithms for detecting attacks on DC are illustrated using 

simulation results. Finally, the thesis ends with a short conclusion along with scope for 

future work in this field.  
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CHAPTER 2: DISTILLATION COLUMN MODELLING AND CONTROL 

This chapter begins by introducing fundamentals of distillation theory along 

with the key essential physical and chemical properties used for characterization of raw 

crude. Following that the distillation column (DC) models along with their control 

scheme and closed loop simulation results are presented in separate subsections. The 

first subsection presents the grey box model of binary continuous DC. After that the 

hybrid DC model implemented using plant dynamics generated from Aspen Plus 

Dynamics based DC model and the ICS implemented in Simulink has been presented.  

2.1 Distillation theory 

Crude oil in its raw form is considered as a mixture of various chemical 

components. Distillation is an ancient technology which is commonly used in 

petroleum refineries to render various valuable product streams from crude feed stream. 

As raw crude is a multicomponent mixture hence it is essential to characterize the feed 

stream, intermediate, and final product streams prior to designing crude oil processing 

refinery.  

Fundamentally a refinery consists of a combination of physical and chemical 

processes that are used to render final valuable products from raw feed stream. 

Distillation is a commonly found physical process used to separate components from 

their mixture based on their relative volatilities due to differences in their boiling points. 

Broadly the process in a petroleum refinery can be categorized into four groups which 

includes separation, finishing, conversion, and support used to generate valuable final 

product streams from crude feedstock. Therefore, characterization of crude feedstock 

is necessary to design the various processes in a refinery. Characterization of crude is 

done based on their chemical and physical properties. The chemical properties include 

identifying the presence of functional groups present in the mixture such as olefins, 
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parrafins, napthenes, aromatics, and resins. On the other hand, properties such as 

density, viscosity, boiling points and so on are used for physical characterization of 

crude oil 

2.1.1 Crude oil characterization  

In this section, the physical and chemical properties of crude oil are reviewed.   

2.1.1.a Physical properties:  

i. API Gravity: It is a measure of the relative density of the crude stream in 

comparison to water. The API gravity is generated and measured at 60oF, and can be 

expressed as: 

API = 141.5/specific gravity – 131.5                                                                                    (1) 

where the specific gravity (SG) of a liquid material is defined as the density at 

60°F (15.6°C) over density of water at 60°F. The SG of water at 15.6°C is 0.999 g/cm3 

(999 kg/m3). Hence components heavier than water has SG greater than 1; thus, their 

API gravity is less than that of water. On the other hand, components lighter than water 

has higher API gravity than water. Hence lower SG indicates higher API gravity thus 

lighter crude fractions and vice-versa. 

ii. True Boiling Point (TBP) distillation curve [47], [48]  : TBP curve offers an 

insight into a petroleum liquid mixture composition before it is processed and provides 

a means to characterize it. It generates boiling points distribution for a crude mixture, 

which can be used to determine the components that constitutes the mixture along with 

their volume percentage in the mixture. A TBP curve plots the boiling point as a 

function of the distilled volume percent. This is an ideal method which can achieve the 

best possible separation. The separation results obtained using this distillation method 

can be closely acquired from an actual distillation column which makes it a useful tool 

in the distillation column design process. Batch distillation method is used to generate 
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the TBP curve for a mixture. The method incorporates an apparatus that includes well 

over 100 theoretical plates and involves maintaining a high reflux ratio (reflux to 

distillate ratio) during the distillation process to acquire the TBP curve.  

iii. American Society for Testing and Materials (ASTM) curve [48]: Although 

TBP curves are ideal, however the required distillation method is expensive and time 

consuming. To remedy these issues, other quicker methods such as ASTM have been 

developed. ASTM methods provides another means to acquire information about the 

constituents of a crude oil mixture that can be used to characterize it. There are many 

ASTM distillation standards available that provide the boiling point distribution. 

ASTM D86-96 is one such commonly used method that involves finding out the boiling 

point distribution of lighter cuts in a crude mixture at atmospheric pressure. This 

process involves heating the sample at varying temperatures and collecting the vapor 

as liquid in a container after passing through a condenser. The curve is obtained by 

plotting the vapor temperature as a function of the cumulative volume of liquid 

collected. Unlike TBP, the reflux ratio in this process is kept to zero. There may be 

unintentional reflux flow from the container back to the flask while cooling.  

iv. Equilibrium Flash Vaporization (EFV Curve) [49]: This is another method 

used to generate the boiling point distribution of a crude sample to identify its 

constituents and their compositions for characterization. In this type of separation 

method, the crude sample under pressure is flashed or vaporized by passing it through 

a heater. The two- phase liquid vapor mixture is then separated in a flash drum. The 

curve is generated by flashing the sample at different temperatures but at fixed pressure 

and measuring the volume of liquid collected at every temperature and then plotting the 

heater temperature against liquid volume collected.  
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 A comparison of the three curves is provided in Figure 1. The key differences 

are the initial boiling temperature and final boiling temperature achieved using the three 

methods. As can be seen from Figure 1, TBP gives the lowest initial boiling point 

followed by ASTM and EFV curves. On the other hand, TBP gives the highest final 

boiling temperature followed by ASTM and EFV curves. The three curves intersect at 

fifty percent volume.  

 

 

Figure 1. TBP vs ASTM vs EFV curves [50]. 

 

v. Watson K factor: Originally introduced by researchers at Universal Oil 

Product (U.O.P), the Watson K factor takes into consideration the boiling point of a 

hydrocarbon mixture varies with H/C ratio. The factor is expressed as follows 

ܭ ൌ 	 ඥ ಳ்
య

ௌ
                                                                                                                             (2) 

where TB is the average boiling point of the mixture in Rankine (oR) and S is the specific 

gravity of the mixture at 60 Fahrenheit (oF).  

vi. Viscosity: Viscosity is used to define the flow properties of crude oil. In 

industries it is generally expressed in centistokes or saybolt seconds or redwood 

seconds.  
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vii. Flash point, fire point and kindling point: These are properties of crude 

mixture which are related to safety and transmission of refinery products. It is well 

known that hydrocarbons are volatile mixtures. All liquids have vapor pressures which 

depends on temperature. As temperature increases, the vapor pressure also increases. 

Increase in the vapor pressure increases the concentration of flammable combustible 

liquid in air.  Flash point of a volatile mixture is the lowest temperature at which there 

is enough concentration of flammable liquid in air to ignite/flash in the presence of an 

ignition source however not enough to sustain combustion. Fire point of a volatile 

mixture is the temperature at which the concentration of flammable fluid in air is high 

enough to continue burning for few seconds once ignited and the ignition source is 

removed. The fire point of a liquid is higher than the flash point. Kindling point of a 

mixture is the temperature at which it ignites spontaneously irrespective of the presence 

of an ignition source. At this temperature, the mixture is said to have the activation 

energy required to undergo combustion. All these parameters are dependent upon 

external pressure as the vapor pressure is a function of external pressure.  

viii. Pour point: The pour point is the lowest temperature at which the oil will pour 

or flow under gravity. Below this temperature the fluid loses its flow characteristics. It 

is one of the important low temperature characteristics of high boiling point fractions 

as below this temperature the product cannot be transferred though pipeline. The pour 

point of crude oils relates to their paraffin content, the higher the pour point the higher 

the paraffin content.  

ix. Sulphur content: The Sulphur content is the most important characteristics that 

defines the price of crude oil in the market [36]. Crude oil contains both organic and 

inorganic Sulphur. Categorically, the Sulphur content is used to determine how sweet 

or sour a crude mixture is. If the Sulphur content is high in crude oil then it is called as 
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sour crude and if the Sulphur content is low then it is termed as sweet crude.  Typically, 

crude oil Sulphur content consists of 0.5 – 5 wt % (weight percent) of Sulphur. Crude 

oil is considered sweet if its Sulfur content is at most 0.5 wt. %, while sour crude has 

Sulfur content of more than 0.5 wt. % [51]. On the other hand, crude oil ranges from 

sweet crude oil ≤ 0.05wt. % to sour crude oil ≥ 1 wt. % [51]. It is necessary to control 

the Sulphur content in crude oil for various reasons; it is poisonous, combustion of 

Sulphur releases oxides of Sulphur which are responsible for acid rain and so on.  

2.1.1.b Chemical properties: 

Tabulated below is a list of functional groups which are derived from chemical 

analysis which are found in crude oil.  

 

Table 1. Organic functional groups found in crude oil. 

Name Chemical structure 

Paraffins Alkanes with straight Carbon chain. 
Olefins Alkenes with double bond between carbons. 
Napthenes Cyclic alkanes like cyclopropane, methyl cyclohexane. 
Aromatics Ring structured alkenes (Benzene, Xylene, Toulene). 
Napthalenes Poly-aromatic structure containing two or more aromatic rings. 
Organic sulphur Various organic compounds such as mercaptans, theophenes and 

so on are also found in crude oil. 

Oxygen Weak acids such as carboxylic acid, phenol, cresylic acid and 
napthenic acid also exist in crude oil. 

Resins Polynuclear aromatic rings contains branches of parrafins and 
other polar compounds. 

Asphalt The heaviest leftover fraction from crude oil containing large 
aromatic chain (> 20 rings) with branched paraffinic and 
naphthenic chains. 

 

 

Crude petroleum is a mixture of compounds that can be separated into different 

generic boiling fractions: Light naphtha (boiling point (bp): –1 to 50◦C), gasoline (bp: 
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–1 to 180◦C), heavy naphtha (bp: 150–205◦C), kerosene (bp: 205–260◦C), light gas oil 

(bp: 260–315◦C), heavy gas oil (bp: 315–425◦C), lubricating oil (bp: >400◦C), vacuum 

gas oil (bp: 425–600◦C), and residuum (bp: >510◦C) [52]. These products can be 

categorized under various existing functional groups in organic chemistry. The 

chemical properties of crude oil are determined based on one or more of these 

functional groups present in the mixture. 

2.2 Mathematical model, control and simulation of a continuous binary distillation 

column 

A continuous binary distillation column separates a crude feedstock into two 

product streams i. distillate and ii. bottoms product. It is assumed that feed into the 

column is a two phase (liquid and vapor phase) pseudo-binary mixture of a light product 

and a heavy product which is separated in the column. The concentration of the light 

component in the feed in the liquid phase is denoted by ݔி. The concentration of light 

component in the top product/distillate in liquid phase is denoted by ݔ஽ and the 

concentration of the lighter component in bottoms product collected from the bottom 

of the column in liquid phase denoted by ݔ஻. For successful separation it is desired that 

the concentration of lighter product in distillate is close to 100% and in bottoms product 

(virtually) 0% which arises the necessity for control system in DC making it a CPS.   

The column can be divided in two sections i. rectifying section and ii. Striping 

section. The rectifying section is located at the top just above the feed and the bottom 

section is called the stripping section. The original crude feedstock is passed through a 

preheater which heats the feed to a certain temperature to separate the feed in a two 

phase fluid before feeding to the distillation column. This is one of the energy input 

port of the distillation column. The top product is fed to a condenser which effectively 

condenses the vapor distillate to a cold liquid reflux. This allows for energy to be 
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extracted off the column. Finally the bottom product stream is reheated using a partial 

re-boiler which allows for energy into the column.  A flowsheet of a binary DC is 

presented in Figure 2. 

 

 

Figure 2. Flowsheet of a binary distillation column. 
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2.2.1 Plant data 

The distillation column model presented is based on a real petroleum project to 

build a gas processing plant to raise the utility value of the raw condensate. The plant 

operates for 24 hours and 365 days a year during which it processes 130,000 tons of 

raw condensate. The operating specification is to maintain the quality of the distilled 

products; the purity of the distillate, ݔ஽ has to be higher than or equal to 98% and the 

impurity of the bottoms, ݔ஻ has to be less/equal than 2% [45].  The basic feed stock 

data and its actual compositions are based on the data given in [46].   

The plant equipment has been designed to operate within 10% above the 

nominal capacity and 50% below the turndown ratio. Considering the plant processes 

130,000 raw condensate a year, the feed rate is calculated as below: 

݀݁݁ܨ ൌ 	
ଵଷ଴଴଴଴

ଶସ	௛	.ଷ଺ହ	௪௢௥௞௜௡௚	ௗ௔௬௦
 = 15.476 tons/hour 

Table 2, presents the true composition of the raw condensate. The actual 

composition of the raw condensate generally fluctuates around the true composition.   

 

Table 2. Raw condensate composition. 

Component Mole fraction % Component Mole fraction % 

Propane 0.00 n-C11H24 1.94 
Normal Butane 19.00 n-C12H26 2.02 
Iso-Butane 26.65 Cyclopentane 1.61 
Iso-Pentane 20.95 Methylclopentane 2.02 
Normal Pentane 10.05 Benzene 1.61 
Hexane 7.26 Toulen 0.00 
Heptane 3.23 O-xylene 0.00 
Octane 1.21 E-benzen 0.00 
Noname 0.00 124-Mbenzen 0.00 
Normal Decane 0.00   

 

As can be observed from Table 2, the liquid feed consists multiple components. 

However since the aim is to use a binary DC hence it is considered as a pseudo binary 
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mixture consisting of Ligas (iso-butane, n-butane and propane) and Napthas (iso-

pentane, n- pentane, and heavier components) [45].  

The column has been designed with 14 trays, i.e. N = 14. The model of the 

column is generated by lumping some components of the condensate together (pseudo-

components) only [8]. The properties of the pseudo components are allowed to fluctuate 

within the range shown in Table 3, based on the fluctuation in the condensate 

composition.   

 

Table 3. Properties of pseudo components. 

Properties Ligas Napthas 

Molar weight 54.5 – 55.6 84.1 – 86.3 
Liquid density (kg/m3) 570 – 575 725 – 735 
Feed composition (vol %) 38-42 58 – 62 

 

 Relative volatility:  

It is a measure of how volatile one component is compared to the other. This 

gives an indication of the degree of ease or difficulty these two components can be 

separated from a mixture.  

Consider two components i and j; their relative volatility is given by: 

௜௝ߙ ൌ 	
൤
೤೔
ೣ೔
൨

ቈ
೤ೕ
ೣೕ
቉
                                                                                                                              (3) 

where ݕ௜, and 	ݕ௝ represents the mole fraction of the component i and j in the vapor 

phase, respectively; and ݔ௜, and ݔ௝ represents the mole fraction of the component si and 

j, respectively in the liquid phase. From [34] the relative volatility of the pseudo-binary 

mixture is found to be 5.68 = ߙ for the operating temperature and pressure.  
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2.2.2 Mathematical modeling of a distillation column 

The column dynamics is mathematically modelled using MESH equations which are 

given below for a general nth tray.  

Mass balance: 

ௗெ೙

ௗ௧
	ൌ 	 ௡ିଵܮ 	െ ௡ܮ	 ൅	 ௡ܸାଵ 	െ 	ܸ௡                                                                                                  (4) 

Component balance: 

ௗሺெ೙௫೙,೔ሻ

ௗ௧
ൌ 	 ௡ିଵ,௜ݔ௡ିଵܮ 	െ ௡,௜ݔ௡ܮ	 ൅	 ௡ܸାଵݕ௡ାଵ,௜ 	െ 	ܸ௡ݕ௡,௜		                                            (5) 

where ݔ௡,௜ and ݕ௡,௜ corresponds to the liquid and vapor mole fraction of the ith  

component in tray n, respectively. ܮ௡ and ݄௡ corresponds to flow rate of the liquid (in 

kmole/hr) flowing down the nth tray and the amount of heat energy that is passed with 

the liquid from the nth tray. Similarly ௡ܸ and ܪ௡ correspond to the vapor flow rate at the 

nth tray (in kmole/hr) and the energy carried by the vapor. ܯ௡ is the liquid hold up (in 

kmole) in the nth tray.   

Enthalpy balance: 

ௗሺெ೙௛೙ሻ

ௗ௧
ൌ 	݄௡ାଵܮ௡ାଵ 	െ 	݄௡ܮ௡ ൅	ܪ௡ିଵ ௡ܸିଵ 	െ ௡ܪ ௡ܸ                                                               (6) 

By differentiating (5) and substituting (4) into (5) it follows: 

ௗ௫೙,೔
ௗ௧

ൌ 	
௅೙షభ௫೙షభ,೔ା௏೙శభ௬೙శభ,೔ିሺ	௅೙షభା	௏೙శభሻ௫೙,೔ି	௏೙ሺ௬೙,೔ି	௫೙.೔ሻ	

ெ೙
                                                    (7) 

Equilibrium: 

௡,௜ݕ ൌ  ௡,௜                                                                                                                                                   (8)ݔ	݇

Summation: 

෍ݔ௜

ே

௜ୀଵ

ൌ 1 

∑ ௜ݕ
ே
௜ୀଵ ൌ 1                                                                                                                                 (9) 
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The column is designed using Redfrac model available in ASPEN Plus as shown 

in Figure 3 using the plant data to determine the steady state operating point of the 

column. Aspen Plus is one of the many industrially used process simulation softwares 

provided by AspenTech. The parameter values for the column obtained from the 

simulation run in Aspen Plus are used in the mathematical model.  

Redfrac provides two degrees of freedom for the column design. In our case, 

distillate rate (kmole/hr) and reflux rate (kmole/hr) are the two parameters selected for 

the column design. Table 4, presents the data used in ASPEN Plus for the column 

design. 

 

 

Figure 3. Redfrac binary distillation column design in Aspen Plus. 

 

Table 4. Column design parameters used in Aspen Plus 

Parameter Value Parameter Value 

Feed temperature (oC) 118 Feed pressure (atm) 4.6 
Condenser pressure (bar) 4 Stage pressure drop (bar) .075 
Distillate rate (kmole/hr) 93 Reflux rate (kmole/hr) 350 
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The mathematical model is simulated in Simulink, and the control objectives 

are to maintain the purity in the top product and impurity in the bottom product within 

a certain level. Therefore, only the mass and component balance equations are only 

used in simulation. The values obtained from Aspen Plus are used during open loop 

simulation of the distillation column. Aspen Plus also computes the values based on 

mass and energy balance. Hence using these values result in the column operating in 

the steady state unless perturbations are made to any of the energy ports of the column. 

The model from Aspen Plus is also transported to Aspen Plus Dynamics for 

performing dynamic simulation and it is observed that the liquid and vapor flow rates 

in nth tray have transient dynamics observed during changes made to any of the energy 

ports which is due to the hydraulics of the tray. It is necessary to include this dynamical 

behavior since the time constants associated to the liquid and vapor flow rates are quite 

large which will affect the overall response time of the system. The molar flow rates of 

the vapor and liquid through the stripping and rectifying sections are constant in the 

steady state. Hence the effect of tray hydraulics is included in the simulation by adding 

a time constant to the liquid and vapor flow rates across each tray in the column and 

selecting their dynamics as follows:  

ሻݏ௡ሺܮ݀  ൌ 	
ଵ

ఛಽ௦ାଵ
 ሻ                                                                                                    (10)ݏሺܮ݀	

݀ ௡ܸሺݏሻ ൌ 	
ଵ

ఛೇ௦ାଵ
	ܸ݀ሺݏሻ                                                                                                      (11) 

where the time constants are determined from Aspen Plus Dynamics. ݀ܮሺݏሻ ൌ

ሺܮ െ	ܮ௡௢௠௜௡௔௟ሻሺݏሻ, ௡ܮ ൌ ௡ሺ௡௢௠௜௡௔௟ሻܮ ൅ ሻݏ௡, ܸ݀ሺܮ݀ ൌ ሺܸ െ	 ௡ܸ௢௠௜௡௔௟ሻሺݏሻ, ܽ݊݀	 ௡ܸ ൌ

௡ܸሺ௡௢௠௜௡௔௟ሻ ൅ ݀ ௡ܸ, L(s) and V(s) corresponds to reflux rate (kmole/hr) and boil up rate 

(kmole/hr) in Laplace domain.  
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The initial molar holdup in each tray has been computed using the Francise-Wier 

formula presented in [31].  The following assumptions are made in simulation. 

i. The relative volatility is constant across each tray of the column. Hence, 

௜ݕ 	ൌ 	 ሺݔߙ௜ሻ╱ሺ1	 ൅	ሺߙ	 െ 	1ሻݔ௜ሻ 

where, ݔ௜ and ݕ௜ are the liquid concentration and vapor concentration of the lighter 

component in the binary mixture, respectively, and ߙ is the relative volatility. 

ii. The overhead vapor is totally condensed in a condenser. 

iii. The pressure remains constant at the top of the column and the differential pressure 

between trays remains constant. 

iv. The holdup of vapor is negligible throughout the system. 

v. Any change in the reflux flow rate by an dL1 is reflected in the liquid flow rates by 

the same amount (i.e. in the steady state dL1 = dL2 = ... = dL) 

2.2.3 Control of Distillation Column 

To commence discussion on controlling a binary DC, at first, it is essential to 

determine its degree of freedom (DoF). There are several ways of identifying the DoF 

of a process. A simple way to determine the DoF of a process is by counting the number 

of independent variables which can be used to achieve the desired control objective of 

the process. Hence one of the approaches to determine the DoF for a distillation column 

is count the number of valves. The flowsheet shown in Figure 2 contains five control 

valves each of which can be used to independently vary the distillate flow rate, reflux 

flow rate, bottoms flow rate, condenser duty and reboiler duty. Therefore, this column 

has five DoF. However, it is assumed that the column is operated under constant 

pressure; hence an independent variable has to be allocated to control the column 

pressure which leaves the column with four independent variables. 
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The feed stream is considered being set by the upstream process; hence is 

considered to be a constant. In a process the inventories have to be regulated constantly. 

Inventory loops in the case of the distillation column presented in Figure 2 includes 

liquid levels in the reflux drum and column base which must be controlled. Out of the 

four DoF, allocating two independent variables one for controlling each liquid level 

leaves us with two independent variables which can be used for controlling two other 

variables. 

The remaining two independent variables are manipulated to maintain the 

product qualities of the distillate and bottoms product. Generally, a column is designed 

to operate in the steady state at the values determined from design calculations during 

the normal operation. A column remains at energy and material balance (described by 

mesh equations) during the steady state condition. Material balance infers that the sum 

of products entering the column must be equal (approximately) to the sum of products 

leaving the column; and energy balance implies that the heat input to the column must 

be equal (approximately) to heat removed from the system. A column is said to be 

“stable” when it is under energy and material balance.  

The column dynamics arises from the control loops, i.e. if value of a control 

variable fluctuates from its desired value then the corresponding manipulated variable 

is adjusted to bring the control variable back to its desired value. Such changes in value 

of control variables may occur due to various reasons including change in properties of 

the feed within the range mentioned in Table 2. As mentioned previously, the proposed 

distillation column in Figure 2 has five input and five output variables. There are several 

control configurations which can be used to achieve the desired control objective of the 

DC. Control configuration refers to the selection of independent variables for 

controlling the outputs of the process.  
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Amongst several available control configurations a widely used configuration 

for a binary DC summarized in Table 5, is selected to achieve the control objective of 

the binary DC. Out of the four outputs (excluding column pressure) two outputs are 

controlled using feedforward control while the remaining two outputs are controlled 

using feedback control containing PID controllers. The PID controllers for distillation 

and bottoms product composition control are tuned using model-based PID tuning tools 

available from Matlab. The controller performance is verified by implementing the 

model in Simulink.   

 

Table 5. Control configuration details for distillation column. 

Controlled variables Manipulated variables Control valve (Figure 2) 

Concentration of distillate Reflux flow rate Flux flow V2 
Liquid level Distillate flow rate Distillate flow D 
Concentration of bottoms Re-boiler duty Heat flow V4 
Liquid level in column base Bottoms flow rate Bottom flow V5 

 

The mathematical expression of the PID controller.  

ሻݐሺݑ ൌ ௉ܭ	 ൅	ܭ௜ ׬ ݁ሺݐሻ݀ݐ ൅	ܭௗ
ௗ௘ሺ௧ሻ

ௗ௧
                                                                               (12) 

The liquid holdup in reflux drum and column base is kept constant using 

feedforward control by adjusting the distillate flow rate and bottoms flow rate 

respectively as follows 

ሻݐሺܦ ൌ ଵܸହሺݐሻ െ  ሻ                                                                                                     (13)ݐଵ଺ሺܮ

ሻݐሺܤ ൌ ሻݐሺ	ଶܮ െ	 ଵܸሺݐሻ                                                                                                         (14) 
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2.2.4 Simulation of distillation column in SIMULINK 

Figure 4 shows the closed-loop simulation of the DC in Simulink. 

   

 

Figure 4. Simulation of distillation column in SIMULINK. 

 

2.2.4.a Response of distillation column under the proposed control scheme: 

The performance of the control scheme proposed for the column has been 

validated by observing if the distillate purity level and bottoms impurity level conform 

to the column performance requirements specified in section 2.2. Figure 5 and Figure 6 

illustrates the closed loop response of the distillate purity and bottoms impurity level. 

As can be seen both the products meet their quality requirements thus validating the 

operation of the proposed control scheme. 

 

 

Figure 5. Plot of distillate purity against time in closed loop. 
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Figure 6. Plot of bottoms impurity against time in closed loop. 

 

2.2.4.b Effect of feed disturbance on the column performance: 

The effect of change in the feed rate is investigated by changing the flow rate 

by. 5% from its nominal value. This is done by setting the feed flow rate using a sine 

function with amplitude of 0.5% of the nominal feed flow rate and its effect on the 

distillate purity and bottoms impurity have been illustrated in Figure 7, and Figure 8, 

respectively. It is observed that adding a sinusoidal disturbance to the feed rate 

introduces sinusoidal disturbance in the distillate purity and bottoms impurity 

respectively.   

 

 

Figure 7. Plot of distillate purity for 0.5% change in feed flow rate. A step change of 5 

mole/hr is applied to reflux rate at 50 hours during simulation. 
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Figure 8. Plot of bottoms impurity for 0.5% change in feed flow rate. A step change of 

5 mole/hr is applied to reflux rate at 50 hours during simulation. 

 

2.3 Aspen Plus Dynamics based design, simulation and control of a binary 

distillation column  

As part of this dynamic simulation scheme the column has been first designed 

using Aspen Plus which is then imported to Aspen Plus Dynamics in order to perform 

the dynamic simulation. Then closed loop control scheme has been designed to regulate 

the column output parameters in Simulink. Following that, the closed-loop control in 

Simulink integrated with the dynamic model in Aspen Plus Dynamics in order to 

perform dynamic simulation.  The distillation column is design using Aspen Plus and 

then the dynamic model is derived using Aspen Plus dynamics. Table 6 summarizes the 

composition of the raw feed condensate used to design the DC in Aspen Plus. 

 

Table 6. Composition of the raw condensate. 

Component Mole % 

Propane 40.00 
Iso Butane 60.00 

 

There are 32 trays inside the column in total. The raw crude stock is fed to tray 
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15 in the distillation column. The column has been designed to operate at a pressure of 

14 atm at the top, i.e. the pressure at the reflux drum is 14 atm. The differential pressure 

between the stages is set to 0.1 psi. The height and length of the both the reflux drum 

and the reboiler have been set to 1 meter respectively.  

The aim is to collect more than 98% propane in the distillate and more than 99% 

isobutene (or less than 1% propane) in the bottoms product. There are two inventories 

in a binary DC which are the liquid level in the reflux drum and the sump (column base) 

which needs to be controlled. The level of liquid in these drum have to be maintained 

around a constant value to operate the column under mass balance. The column has 

been designed to operate under constant pressure hence the pressure has to be controlled 

as the excessive pressure can risk the mechanical integrity of the column. So in total 

there are five variables which have to be controlled using five inputs mentioned in the 

Table 7. In addition to that, feed flow rate is another input to the plant.  

 

Table 7. Control configuration for a distillation column 

Controlled variables Manipulated variables Control valve  

Column pressure, P Condenser duty, QC Coolant flow 
Concentration of distillate, xD Reflux flow rate, R Flux flow 
Liquid level, LC Distillate flow rate, B Distillate flow 
Concentration of bottoms, xB Re-boiler duty, Qr Heat flow 
Liquid level in column base, LR Bottoms flow rate, B Bottom flow 

 

The column dynamic model is linked to Simulink and the controllers are 

designed and tuned. PID controller is used to control each variable. The performance 

of the closed-loop system along with the controllers are validated in simulation by 

running the model in open loop for 3.1 hours and then switching to the closed loop 

control scheme till 8 hours. The distillate and bottoms purity setpoints are selected as 
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0.98 and 0.01 respectively, the column pressure is set at 14 atm and the level set at the 

reflux drum and reboiler are selected at 0.75 m. Result of the simulation has been 

presented in Figure 9. The results shows with the introduction of feedback control the 

PID controllers are able to track the outputs around their desired set-points. Figure 10 

presents the control loop diagram of the system.  

  

 
(a) Distillate purity plot against time. (b) Bottoms impurity plot against time.

(c) Reflux drum level vs time. 
(d) Reboiler level plot against time. 

 
(e) Condenser pressure plot against time. 

Figure 9. Aspen Plus Dynamics DC Modeler with controllers in Simulink. 
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Figure 10.  Simulink and Aspen Plus dynamics closed loop model of DC. 

 

2.3.1 Emergency shutdown 

All five controlled variables are critical for the safe operation of the column 

following its performance specifications. Hence it is necessary to include shutdown 

thresholds for each of these parameters to avoid operating the column if their values 

violated the thresholds. Table 8 summarizes the thresholds set for each of the five 

parameters for emergency shutdown. 

  

Table 8. Emergency shutdown threshold for each controlled variables. 

Controlled variables Maximum value Minimum value 

Column pressure (atm) 20 -- 
Concentration of distillate (mole fraction) -- 0.90 
Liquid level in reboiler (m) 1.0  -- 
Concentration of bottoms (mole fraction) 0.10 .05 
Liquid level in column base (m) 1.0 .05 
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2.3.2 Effect of feed disturbance of Distillation Column: 

The effect of disturbance in the feed flow rate is observed using simulation by 

injecting a sinusoidal disturbance input with amplitude of 10% of the nominal feed rate 

and its effect on the system output is observed which has been presented in Figure 11.  

 

 
(a) Distillate purity plot against time. (b) Bottoms impurity plot against time. 

(c) Reflux drum level vs time. 
(d) Reboiler level plot against time. 

 
(e) Condenser pressure plot against time. 

Figure 11. Effect of feed disturbance on Distillation Column in closed loop. 
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The sinusoidal disturbance in feed introduces sinusoidal fluctuation in each 

output with same frequency as the frequency of the feed disturbance. This is expected 

as the feed rate is one of the inputs of the DC and thus has a gain with each output. 

However, the level of fluctuation is different for every output. This is attributed to the 

fact that the sensitivity of every output is different to the feed flow rate input.  
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CHAPTER 3: MODELLING CYBER ATTACKS AND THEIR BEHAVIOR ON 

DISTILLATION COLUMN 

This chapter begins by enlisting the attack models under the four categories 

mentioned previously which are i. sensor attacks, ii. actuator attacks, iii. sensor and 

actuator attacks, and iv. controller attacks. Following that the effect of these attacks on 

the performance of the DC has been presented. In case of the grey box model, as there 

are two feedback control loops hence attacks are primarily injected in these loops. The 

Aspen Plus Dynamics based hybrid model had five control loops. However, since the 

column is operated under constant pressure hence attacks are injected in the remaining 

four control loops. The results of the attacks have been presented in this section. 

3.1 Mathematical modelling of cyber attacks 

 Industrial control systems (ICS) for any physical plant consists of a number of 

control loops that are responsible for controlling various parameters related to the plant. 

Each control loop fundamentally contains a controller, sensors, and actuators. The 

sensors monitor and feed the output data to the controller. The controller evaluates the 

outputs and accordingly adjusts the actuators to achieve the desired control objective. 

The evolution in computing and internet technology has encouraged increasing number 

of these industrial systems to be linked to cyber world which gives rise to a new class 

of systems called Cyber Physical system (CPS). It is crucial to ensure security of these 

systems as attacks can not only potentially damage plant infrastructure but also cause 

financial damage and risk human lives. Figure 12 presents a diagram of a networked 

CPS under attack under the assumption that the attacker has managed to sneak through 

the IT security infrastructure to the control systems operating the plant and is capable 

of launching attack on these systems. This is the worst attack scenario possible. 
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This chapter will outline the different types of cyber-attacks which can be 

carried out on cyber physical systems along with their mathematical models. 

Mathematically modelling of a cyber-attack provides a means of evaluating its effect 

on the dynamics of a physical plant with the aid of computer simulation. Cyber threats 

can be categorized in the attack space illustrated in Figure 13, which depicts several 

attack scenarios as pointed out in [6], [53]. The attacks have been modelled for a 

nonlinear physical system. 

 

 

Figure 12. Block level illustration of Cyber Physical System under attack. 

 

Consider the dynamics of a continuous time nonlinear plant as given, 

ሶ࢞ ሺ࢚ሻ ൌ ,ሺ࢞ሺ࢚ሻࢌ ෥࢛ሺ࢚ሻ, ሻݐ ൅ 	࢝ሺݐሻ 

࢟ሺ࢚ሻ ൌ ,ሺ࢞ሺ࢚ሻࢍ ሻݐ ൅ ࢜ሺݐሻ                                                                                                      (15) 

And the dynamics of a discrete time digital nonlinear controller described as below.  

ሶࢠ ሺ࢑ሻ ൌ ,ሺ࢑ሻࢠሺ࢖ ෥࢟ሺ࢑ሻ, ݇ሻ 

࢛ሺ࢑ሻ ൌ ,ሺ࢑ሻࢠሺࢗ ෥࢟ሺ࢑ሻ, ݇ሻ                                                                                                                 (16) 

where ࢞ሺ࢚ሻ ∈ 	ܴ௡, ෥࢛ሺ࢚ሻ ∈ 	ܴ௠, ࢛ሺ࢑ሻ ∈ 	ܴ௠, ෥࢟ሺ࢑ሻ ∈ 	ܴ௢ and ࢟ሺ࢚ሻ ∈ 	ܴ௢  represents 

the system states, input to the plant actuators, controller output, controller input and 
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output from the plant sensors respectively with n states, m inputs and o outputs. 

Functions f and g are nonlinear functions describing the system state dynamics and 

relationship between system output and states. ࢝ሺ࢚ሻ and ࢜ሺ࢚ሻ represents the process 

noise and measurement noise, respectively.  

Similarly functions p and q represent the nonlinear controller dynamics and 

relationship between controller states and output. It should be noted that the plant is 

considered as a continuous time system and the controller as discrete time digital system 

as a controller can be viewed as a tailored computer en-tasked to control the plant.  

The controller parameters includes the controller internal state ࢠሺ࢑ሻ, the plant 

sensor input ෥࢟ሺ࢑ሻ and the output of the plant actuator input from the controller u(k). 

The sampling is done following zero order hold model. If the network integrity is 

maintained, at every sampling instant k, the output from the plant should be available 

precisely at the input of the controller i.e. ෥࢟ሺ࢑ሻ ൌ ࢟ሺ࢚ ൌ ࢑ሻ and similarly the output 

from the controller should be available to the actuators precisely i.e. ࢛ ሺ࢑ሻ ൌ 	 ෥࢛ሺ࢚ ൌ ࢑ሻ.  

The attacks can be modelled in a three-dimensional attack space each of which are 

described below: 

I. Adversary's a priori system model knowledge resource: This represents the 

resource available to the attacker which is used to launch complex attacks which are 

hard to detect and can cause fatal consequences if not mitigated.  

II. Adversary's disclosure resource: The attacks uses these resources to gather 

and accumulate sensitive plant related data. The resources accessible to the attacker are 

the real plant output measurements y(k) and the actuator control actions u(k). These 

attacks do not directly affect the plant dynamics but can be used to launch more deadly 

attacks like the replay attack which is the case in Stuxnet attack.  
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III. Adversary's disrupting resource: This resource can be used by the adversary 

to affect the system operation, which happens for instance when data integrity or 

availability properties are violated.  These kinds of attacks modify the control actions 

u and sensor measurements y from their calculated or real values to the corrupted 

signals ෥࢛ and ෥࢟, respectively. The various existing cyber-attacks found in literature has 

been mapped in a three dimensional attack space which is illustrated in Figure 13. 

There has been ongoing research in the area of attack modelling from Control 

systems engineers to design attack diagnosis, detection, recovery, tolerance and 

elimination tools for ICS. Every attack mathematically modelled is placed under one of 

the four attack categories which includes: i. Sensor attacks, ii. Actuator attacks, iii. 

Sensor and Actuator attacks, iv. Controller attacks.  

 

 

Figure 13. A three dimensional attack space containing mapping of various attacks 

which can be launched on ICS of CPS [53]. 
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3.1.1 Sensor attacks 

List of sensor attacks modelled are presented below. For all attacks ܶ ௔  represents 

the attack period, ݕ௜ሺݐሻ and ݕ෤௜ሺ݇ሻ are the the i-th sensor measurement and sensor 

reading to the controller respectively.  

 Scaling Attack [54]: During this attack the true sensor measurements are scaled 

to a different (higher or lower) value depending on the scaling parameter value ߣ௦ as 

shown below.  

ሻݐ෤௜ሺݕ ൌ ൜
	ݐ																		ሻݐ௜ሺݕ ∉ ௔ܶ

ሺ1 ൅ 	ݐ				ሻݐ௜ሺݕ௦ሻߣ ∈ ௔ܶ		
                                                                                      (17) 

where ߣ௦ is a constant.  

 Ramp Attack [54]: As part of this attack the true sensor measurements are 

modified by adding a ramp function which gradually increases/decreases with time 

based on the gradient of ramp denoted by ߣ௥, as shown below.   

ሻݐ෤௜ሺݕ ൌ 	 ൜
	ݐ																												ሻݐ௜ሺݕ ∉ ௔ܶ

ሻݐ௜ሺݕ	 ൅	ߣ௥. 	ݐ															ݐ ∈ ௔ܶ			
                                                                                        (18) 

 Pulse Attack: This type of attack involves modifying measurements through 

temporally-spaced short pulses with attack parameter ߣ௣ [54]. 

ሻݐ෤௜ሺݕ ൌ 	 ൜
	ݐ																													ሻݐ௜ሺݕ ∉ ௔ܶ

	ܽሺݐሻ	ݕ௜ሺݐሻ																					ݐ	 ∈ ௔ܶ			
                                                                              (19) 

where a(t) is a binary signal which can either be 0 or 1.   

 Random Attack: This attack involves the addition of randomly generated 

positive attack values generated by a uniform random variable rand(a,b) as [5], [54]. 

ሻݐ෤௜ሺݕ ൌ ൜
	ݐ																																										ሻݐ௜ሺݕ ∉ ௔ܶ

ሻݐ௜ሺݕ 	൅ ,ሺܽ	݀݊ܽݎ	 ܾሻ															ݐ	 ∈ ௔ܶ			
                                                                       (20) 
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 Bounded time varying attack [20]: The attack signal ݕప෥ሺݐሻ is assumed to be 

bounded with unknown bound i.e.  

ሻݐ෤௜ሺݕ ൌ 	 ൜
	ݐ																													ሻݐ௜ሺݕ ∉ ௔ܶ

ሻݐ௜ሺݕ ൅ ܽ௜ሺݐሻ																	ݐ	 ∈ ௔ܶ			
                                                                           (21) 

where,  ‖ݕ௜ሺݐሻ‖ଶ ൑ ܽ		for	t ൒ 	0,	  where a is unknown constant. 

Moreover, it is assumed that, 

ሻ‖ଶݐሶ௜ሺݕ‖ ൑ ܾ		for	t ൒ 	0,	  b is small number, i.e. ݕ௜ሺݐሻ is a slow time varying signal. 

 Denial-of-Service (DoS) Attack: The DoS attack can be launched by jamming 

the communication channels, flooding packets in the network, and compromising 

devices to prevent data transfer, etc. [5].  

As the lack of available sensor data, the DoS attack can be modeled as: 

෤௜ሺ݇ሻݕ ൌ 	 ൜
	݇																																																																												௜ሺ݇ሻݕ ∉ ௔ܶ

	ሺ1	 െ ௜ሺ݇ሻݕ	௦ሺ݇ሻሻܦ	 	൅ 	௜ሺ݇ݕ	௦ሺ݇ሻܦ	 െ 	݊ሻ																݇	 ∈ ௔ܶ			
                       (22)                        

where ܦ௦ is a binary index and takes a value of 1 to resemble a scenario when a packet 

is denied and becomes 0 to resemble a scenario when a packet is not denied. To 

encompass energy limitations in [4], it is assumed that, within the attack time horizon 

Ta,  the sensor can send at most M data packets, while the attacker can launch DoS 

attack at most N times where N<M. In (22) n is the number of consecutive packets 

which are jammed by the attacker and hence can take values from n = {1, 2, …….. N}. 

DoS attack is able to make the data channels unavailable by accessing the disruption 

resources. Note, a priori knowledge of the disruption resources are needed [6]. 

 False Data Injection (Bias injection) attack: In case of a False Data Injection 

attack, it is assumed that the attacker knows the system model and also has access to 

disruption resource [6].  
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A vector ya(k) in (16) is called a (a,b)-data injection attack if there exists an 

index set ݅ ∈ A, where A is the set of manipulated measurements and A ⊂ P ≜ {1, . . . 

, ݉}, such that 

(i) ‖࢟ࢇሺ࢑ሻ‖ℓ଴ ൑ ܽ   

(ii) ݕ௔,௜ሺ݇ሻ ൌ 0 , ∀݅ ∈ P\ A; 

(iii) ݕ௔,௜ሺ݇ሻ 	് 0, ∀݅ ∈ A. 

To implement this class of attack, it requires the attacker to have the knowledge of 

either the measurements information y(t) or the topology configuration f and g.  

Specifically, data injection attack can be written in the form of  

ሻݐ෤௜ሺݕ ൌ 	 ൜
	݇																						௜ሺ݇ሻݕ ∉ ௔ܶ

	݇																								௔ሺ݇ሻݕ		 ∈ ௔ܶ			
                                                                          (23) 

where ݕ௔ሺ݇ሻ is the sensor measurement during attack. 

3.1.2 Actuator attacks: 

The attacks have been modelled for the plant and controller model given in (14) 

and (15) respectively. In all attacks ௔ܶ  represents the attack period, ݑ௜ሺݐሻ and ݑప෥ ሺݐሻ are 

the the i-th controller output and plant actuator input respectively.  

 Data injection attack: The data injection attack is modeled as follows  

ሻݐ෤௜ሺݑ ൌ 	 ൜
	ݐ																							ሻݐ௜ሺݑ ∉ ௔ܶ

ܽ௥	ݑ௜ሺݐሻ																				ݐ	 ∈ ௔ܶ			
                                                                                      (24) 

Where ܽ௥ is a constant. As per [9], the attacker has the knowledge of closed-loop 

dynamics, or of open-loop dynamics and the network operator's control law and hence 

can choose ܽ௥ accordingly to impart maximum damage. 

 Denial-of-Service (DoS) Attack: The DoS attack can be modeled similar to 

that for the sensor as: 

෤௜ሺ݇ሻݑ ൌ 	 ൜
	݇																																																																																	௜ሺ݇ሻݑ ∉ ௔ܶ

	ሺ1	 െ ௜ሺ݇ሻݑ	௔ሺ݇ሻሻܦ	 	൅ 	௜ሺ݇ݑ	௔ሺ݇ሻܦ	 െ 	݊ሻ																݇	 ∈ ௔ܶ			
                       (25)                         
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where ܦ௔ is a binary index that can be 1 (for packet jam) and 0 otherwise. Due to energy 

restriction, if M data packets have been transmitted during attack period Ta the attacker 

can launch DoS attack at most N times where N<M.  In (22) n can take values from {1, 

2, ……. N} and corresponds to the number of successive data packets jammed during 

an attack. 

3.1.3 Sensor and actuator attacks: 

Cyber-attacks corrupting states (sensors) and outputs (actuators) of the non-

linear cyber-physical systems are addressed in this section. The plant and controller 

model in (14) and (15) under sensor and actuator attacks can be described in an 

alternative form given below.  

ሶ࢞ ሺ࢚ሻ ൌ ,ሺ࢞ሺ࢚ሻࢌ ࢛ሺ࢚ሻ ൅	࢛ࢇሺݐሻ, ࢚ሻ ൅ 	࢝ሺݐሻ 

࢟ሺ࢚ሻ ൌ ,ሺ࢞ࢍ ሻݐ ൅ ࢜ሺݐሻ                                                                                                                   (26) 

And the dynamics of a discrete time digital nonlinear controller described as below.  

ሶࢠ ሺ݇ሻ ൌ ,ሺ࢑ሻࢠ൫࢖ ࢟ሺ࢑ሻ ൅	࢟ࢇሺ࢑ሻ, ࢑൯ ൅  ሺ࢟ሻࢋ

࢛ሺ݇ሻ ൌ ,ሺ࢑ሻࢠ൫ࢗ ,࢟ࢇ ݇൯                                                                                                                   (27) 

where ࢛ࢇ 	∈ 	ܴ௠ and ࢟ࢇ 	∈ 	ܴ௢ are vector functions representing attack signals. 

 Bounded time-varying attack [12]: The following model for attack signals is 

considered both in the case of actuator and sensors attacks: 

ሻݐሺ࢛ࢇ ൌ ሻݐሺ࢟ࢇ	 ൌ ,ሺ࢞ࢽ	  ሻ                                                                                               (28)ݐ

where ࢽሺ࢞,   .ሻ is an unknown but bounded functionݐ

Available bounds for the function ࢽሺ࢞,  ሻ and for its time derivative are considered asݐ

,ሺ࢞ࢽ| |ሻݐ ൑ ,ଵሺ࢞ߩ	 ሶࢽ|	;ሻݐ ሺ࢞, |ሻݐ ൑ ,ଶሺ࢞ߩ	                                                                        (29)	ሻ;ݐ
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 Replay Attack [10]:  In case of replay attack the models given by (14) and (15) 

have been used. The replay attack has access to disclosure and disruption resources. At 

first, the adversary gathers sensor readings with a disclosure attack. Subsequently the 

attacker replays this collected data to the controller, which renders his primary 

interference invisible for any diagnosis system on the controller side. 

Stage 1 (0 ≤ t < to): gather sensor readings 

൤
ሻݐሺ࢛ࢇ
ሻݐሺ࢟ࢇ

൨ ൌ 0 

௄ܫ ൌ ൤
௨ߛ 0
0 ௬ߛ

൨ ൤
࢛ሺݐሻ
࢟ሺݐሻ൨                                                                                                                  (30) 

The collected data is stored in IK.  

Stage 2 (0 ≤ t < 2to): relay and interfere: 

൤
ሻݐሺ࢛ࢇ
ሻݐሺ࢟ࢇ

൨ ൌ ൤
െ࢛ሺݐሻ ൅	࢛ࢇሺݐ െ ௢ሻݐ
െ࢟ሺݐሻ ൅	࢟ࢇሺݐ െ ௢ሻݐ

൨ 

௄ܫ ൌ  ௄ିଵ                                                                                                                              (31)ܫ

3.1.4 Controller attacks  

The controller attack has been modelled as the following presented in [7].  

ሶࢠ ሺ݇ሻ ൌ ,ࢠሺ࢖ ෥࢟, ݇ሻ ൅△ ,ࢠሺ࢖ ෥࢟, ݇ሻ	  

࢛ሺ݇ሻ ൌ ,ࢠሺࢗ ෥࢟, ݇ሻ                                                                                                            (32)  

where, ࢠ, ෥࢟	and	ܝ represents the controller states, input from the plant to the controller 

and output of the controller to the plant respectively. △ ,ࢠሺ࢖ ෥࢟, ݇ሻ corresponds to a 

moderate change in the controller state dynamics. It is assumed that the attacker has the 

capability to intrude the logical part of the cyber physical system and change the 

dynamics of the controller.  
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3.2 Cyber attack and effect on distillation column: 

3.2.1. Attack surface identification 

Advancement in the area of computer science and IT has led to critical physical 

infrastructures being increasingly connected to the cyber world giving rise to CPS. This 

has led to these systems becoming more vulnerable to cyber-attacks. The attackers 

usually launch attacks to cause maximal damage to the physical infrastructure with the 

aim of either causing financial damage or damage to human lives. The thesis assumes 

that the attacker has breached the IT security configurations and firewall settings and 

has access to the hardware linked to the physical plant.  

In order to protect these systems from external intruders the first step is to draw 

a footprint of the system highlighting the infrastructures that are critical to ensure 

normal operation of the system which can be potentially targeted by the attackers.  

Identification of the attack surface is the first step towards designing attack 

detection, diagnostics, recovery and elimination tools for CPS.  As mentioned before a 

continuous binary DC has five DoF as there are five manipulated variables, which 

includes distillate and bottoms flow rate, reflux and vapor flow rate and condenser duty 

cycle. The five variables are responsible for controlling five outputs of the system, 

which are distillate and bottoms product concentration, condenser liquid level, bottoms 

liquid level and column pressure.  

In the steady state operation, the distillation column is made to operate around 

steady state operating values and the control objective is to maintain the output at their 

desired values.  This is achieved by using mass and energy balance. Mass balance is 

achieved by balancing the feed flow rate against the distillate and bottoms flow rate. 

This is necessary as the amount of lighter component which can be extracted per hour 

from the column (as distillate and bottoms product) cannot exceed the amount of lighter 

component fed to the column per hour. Similarly rate at which the heavier component 
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is extracted from the column can’t exceed the rate it is fed to the column. Energy 

balance is done by balancing the energy input to the column against the energy output 

from the column. A distillation column has primary and secondary energy ports. There 

are two primary energy input ports which are the feed preheater power and reboiler 

power and one energy output port which is the condenser duty. On the other hand, the 

secondary energy port is the reflux flow rate which can be used to extract energy from 

the DC. Energy imbalance alternates the temperature and pressure inside the column 

which affects the quality of the product streams. The aim of the attacker will be to upset 

the mass and energy balances to disrupt the normal operation of the distillation column. 

In order to determine the critical points in a DC, motivation has been drawn 

from the research done in the area of fault diagnosis, fault recovery and fault tolerant 

control for DCs. These literatures predominantly propose online fault diagnosis and 

control tools thereby only considering faults on systems which are directly connected 

to the company network. The literatures aim to identify the most critical parts of the 

system which are susceptible to faults and their effect on the performance of the DC. It 

will be a fair assumption to believe the attacker is limited to targeting the controllers, 

sensors and actuators as they are the only hardware which are part of the control loop 

and are integrated to the cyber world. The proposed model of binary DC in section 2.2 

and 2.3 have 2 and 5 control loops, respectively. It is assumed that each of these control 

loop will be networked. The attacker can upset the control loop by injecting one of the 

attacks modelled in section 3.1 by either targeting the sensor, actuator, sensor and 

actuator, controller or a combination of these hardware’s. 
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3.2.2: Modelling effect of attack on proposed model of a distillation column 

This section demonstrates the effect of the attack models proposed in the former 

section on the performance of the DC. As mentioned previously the proposed control 

scheme contains two control loops one of each are used to maintain quality of one of 

the two products. Thus attacks are injected in these two control loops and their effect 

on the products quality are observed which have been included in this section. All the 

attacks are injected between t = 100 – 200 hours during simulation. During simulation 

process noise and measurement noise have been added as following: 

࢞ሺ࢚ሻ ൌ ,ሺ࢞ሺ࢚ሻࢌ ሻݐ ൅ ࢝ሺ࢚ሻ                                                                                                       

࢟ሺ࢚ሻ ൌ ,ሺ࢞ሺ࢚ሻࢍ ሻݐ ൅ ࢜ሺ࢚ሻ                                                                                                      (33) 

where ࢟ሺ࢚ሻ and ࢜ሺ࢚ሻ are output vector and noise vector, and ࢞ሺ࢚ሻ, and ࢝ሺ࢚ሻ are state 

vector and process noise vector, respectively.  Zero mean Gaussian White random noise 

are added to outputs and states. The system has 2 outputs and 58 states in total which 

includes the molar holdup, liquid and vapor flow rates and molar concentration of 

lighter product in each tray. 

3.2.2.a Sensor attacks: 

 Scaling Attack: This attack combines disclosure and disruption of resources. 

Once the sensor output is available the attacker can inject the modified measurement 

and disrupt the resource. This attack is injected as in equation (17) by setting the value 

of  ߣ௦ as 0.1 for distillate purity measurements and ߣ௦ ൌ െ0.95 for bottoms impurity 

measurements. The results are presented in Figure 14 and Figure 15 respectively. 

It can be observed from the results in Figure 14 that by affecting data integrity 

the distillate purity can be reduced below the required specification, thus making the 

product less valuable incurring financial loss; however the bottoms product quality is 

regulated within the required level by the controller with some transients.  
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Similarly illustrated in Figure 15 is effect of attacking the bottoms impurity 

sensor integrity which manifests on the column by increasing the impurity levels in the 

bottoms product thus causing financial loss; however the top product quality is 

maintained within required specification by the controller. In case of both the attacks 

had no impact on the remaining column outputs. To summarize the motive for this 

attack will be primarily to incur financial loss. 

 

 
(a) Injected value of distillate purity 

 
(b) Actual distillate purity sensor 

reading 

 
(c) Impurity in bottoms product 

Figure 14. Results illustrating effect of a attack on the distillate purity sensor. 
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(a) Injected bottoms product impurity 
data 

(b) Actual bottoms product impurity 
measurement sensor reading 

 
(c) Distillate purity reading 

Figure 15. Effect of a scaling attack on the bottoms impurity sensor. 
 

 Ramp attacks: Results are presented in Figure 16 and Figure 17 respectively. 

 

(a) Injected distillate purity data 
(b) True distillate purity sensor reading 

 
(c) Bottom product purity reading 

Figure 16. Effect of a ramp attack on the distillate purity sensor. 
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(a) Injected bottom product impurity 
reading 

 
(b) Actual bottom product impurity 

reading 

 
(c) Distillate purity plot  

Figure 17. Effect of a ramp attack on the bottoms impurity sensor. 

 

This type of attack involves disclosure and disruption of resources similar to 

scaling attack.  Once sensor measurements are available they are modified and injected 

to the controller. The attack on distillate purity measurement sensor is simulated setting 

௥ߣ ൌ 0.006 and the results are presented in Figure 16. The effect of ramp attack on 

bottoms impurity measurement sensor is carried setting value of ߣ௥ = -.000025 and the 

simulation results are shown in Figure 17. Results shows that the attacks only degrade 

the quality of the product whose sensor is under attack; the remaining outputs remain 

unaffected by the attack. Presence of controller adds robustness to the control loop 

which is unaffected by attack by maintaining the product quality within specification 

during attack. 

 Pulse attack: The attack on distillate purity is carried out by setting a(t) as a 

continuous time unit amplitude pulse with period of 30 hours and pulse width of 90%.  
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(a) Injected value of distillate purity 
(b) Actual distillate purity sensor 

reading 

 
(c) Impurity in bottoms product 

Figure 18. Effect of a pulse attack on the distillate purity sensor. 

 

(a) Injected bottoms product impurity data (b) Actual bottoms product impurity 
measurement sensor reading 

 
(c) Distillate purity reading 

Figure 19. Effect of a pulse attack on the bottoms impurity sensor. 

 

From the result presented below in Figure 18 it can be seen that the attack causes the 

distillate purity to fluctuate in a periodic manner dropping marginally below the 98% 
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requirement without any significant degradation in product quality. In case of bottoms 

impurity, the short pulses caused significant increase in bottoms impurity violating the 

product specification. Once the attack is removed the controller is able to return the 

purity back to the required level for both the products. It is observed that the greater the 

pulse width the greater the drop in the quality for both the distillate and bottoms purity. 

 Random Attack: The attack vectors generated using random signals normally 

disturbed as N ~ (.15, .00005) and N ~ (-.08, 0.0000001) are fed separately as distillate 

purity readings and bottom impurity measurements respectively and there effects of on 

the column performance have been illustrated in Figure 20 and Figure 21 respectively. 

It is observed that the attacks are capable of upsetting the product qualities causing 

financial loss. However, except the control loop which is attacked, the feedforward and 

feedback controllers are able to regulate the remaining outputs around their desired 

values thus providing some degree of robustness against the attacks.  

 

(a) Injected distillate purity reading 
(b) True distillate purity reading 

 
(c) Bottom product impurity plot 

Figure 20. Illustration of the effect of a random attack on the distillate purity sensor. 
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(a) Injected bottoms impurity reading  (b) True bottoms impurity reading 

 
(b) Distillate purity plot 

Figure 21. Effect of a random attack on the bottoms impurity sensor. 

 

 Bounded time varying attack:  The attack signal is chosen as yi (t)= .75-sat 

((t-100)/50) for the distillate purity measurement sensor and the results obtained have 

been presented from Figure 22. For bottoms impurity, the attack signal is chosen as yi 

(t) = 1.58-tan-1(t) and the effect has been demonstrated in Figure 23.  

  

(a) Injected distillate purity plot (b) Actual distillate purity plot 

 
(c) Bottoms product impurity plot 

Figure 22. Effect of a bounded attack on the distillate purity sensor. 
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(a) Injected bottoms impurity reading (b) True bottoms impurity readings 

 
(c) Bottoms product impurity plot 

Figure 23. Effect of a bounded attack on the bottoms impurity sensor. 

 

Both the attacks cause damage to the product quality of the loop being attacked 

violating the purity specifications which will introduce financial loss. The remaining 

outputs are unaffected by the attacks suggesting that the presence of control scheme 

provides some degree of robustness against the attack. Besides that, once the attack 

subsided the controller is able to return the product qualities back to the desired levels 

thus providing attack recovery. 

 Denial-of-Service (DoS) Attack: The attack is simulated using square wave 

pulses with period of 5 hours and pulse width of 5 % with amplitude 1 and 0. When the 

value of the pulse is zero the data exchange between the controller and actuator is 

blocked. This is achieved by sending the last available output value from the controller 

before the blockage in every subsequent sample. As the pulse width is 95% hence for 

4.75 hours the communication between the controller and actuator is interrupted during 

each pulse thus denying data availability. The attack results are presented in Figure 24. 
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(a) Injected bottoms impurity data plot 
 

(b) True bottoms impurity plot data 

 
(c) Distillate purity plot 

Figure 24. Effect of a DoS attack on the bottoms impurity sensor. 

 

Looking at Figure 24, the attack upsets the quality of bottoms product reducing 

its purity. The distillate purity increases during the attack which is due to increase in 

bottoms impurity. Once the attack subsides, the controller is able to track the output 

back to the desired value.  

 False Data Injection (Bias injection) attack: The false data has been generated 

using normally distributed random signals multiplied by a continuous time pulse in 

order to bias the sensor output data. The random signals for distillate measurement and 

bottoms impurity measurements are chosen as N~ (1.02, .00002) and N ~ (.01, .000001) 

respectively. In case of distillate measurements, the pulse time period is selected as 30 

hours with pulse width of 90% while for bottoms impurity the pulse time period is set 

to 5 hours with pulse width of 80%. The results of attacks on distillate purity and 

bottoms impurity have been presented in Figure 25 and Figure 26 respectively. 
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(a) Injected distillate purity data (b) Actual distillate purity 
measurement 

 
(c) Bottoms impurity plot 

Figure 25. Column performance against a false data injection attack on distillate purity 

sensor. 

 

(a) Injected bottoms impurity data (b) Actual bottoms impurity 
measurement 

 
(c) Distillate purity plot 

Figure 26. Column performance against a false data injection attack on bottoms 

impurity sensor. 
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The results presented illustrate that the quality of the distillate and bottoms 

products are degraded in presence of attack which will lessen their market price; thus 

incurring financial loss. However, for every attack, except the control loop attacked the 

remaining outputs are maintained around their desired values by the controllers thus 

adding robustness to a certain extent against the arrack. Once the attack subsides the 

controller returns the product quality back within the specification. 

3.2.2.b Actuator attack:  

The actuators associated with the two closed loop control network responsible 

for maintaining the distillate and bottoms product qualities (using reflux flow rate and 

reboiler duty cycle respectively) are primarily attacked and the effect of the attacks have 

been illustrated using the presented results. 

 Data injection attack: This attack is simulated by independently attacking the 

controller outputs by setting ܽ௥ as 0.8 for reflux flow rate and ܽ௥ = 0.6 for reboiler duty 

cycle. Results for the attack have been presented in Figure 27 and Figure 28 

respectively. The results only include the key column parameters which have been 

affected by the attack. As can be seen the attacked degraded product qualities thus 

incurring financial loss. Similar to what is observed for sensor attacks, only the output 

associated with the control loop under attack is affected by attack while the remaining 

outputs are regulated around their desired value by the proposed control scheme. The 

bottoms impurity is returned to desired set point once attack subsided as shown in 

Figure 28 providing inherent attack recovery however the distillate purity is higher than 

desired set point once attack subsided as seen in Figure 27 due to large controller 

integral error. There is high frequency chattering observed in reflux flow rate actuator 

data which is due to presence of process and measurement noise which the controller 

counteracts by changing the actuator input to maintain the outputs at their desired set 
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points. The chattering has been reduced by applying a running average filter on the 

reflux flow rate output from controller since averaging is the optimal method for 

filtering random noise.  

(a) Injected reflux flow rate valve data. (b) Actual distillate purity plot. 

 
(c) Bottoms impurity plot. 

Figure 27. Effect of a data injection attack on the reflux flow rate. 

 

(a) Injected boil up rate data (b) Bottoms impurity plot 

 
(c) Distillate purity plot 

Figure 28.  Effect of a data injection attack on the reboiler duty cycle. 
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 Replay Attack:  This attack is simulated by combining eavesdropping and 

replay attack. At first the data between 0 – 100 hours is recorded which is then replayed 

between 100 – 200 hours during simulation to emulate replay attack. The attack is 

launched on reflux flow rate valve data. 

 The results from the attack has been provided in Figure 29. It can be observed 

that the attack results in the degradation of the product quality causing financial loss. 

Apart from the output associated with the attacked loop, the remaining outputs are 

unaffected by the attack by the presence of control scheme. Once the attack subsides 

the distillate becomes purer that 98% which is the setpoint for the controller. This is 

caused by the large integral error which causes the controller output to saturate thus 

setting the actuator at its maximum value.  

 

(a) Injected reflux flow valve data (b) Distillate purity plot 

 
(c) Bottoms impurity plot 

Figure 29. Effect of a replay attack on the reboiler duty cycle. 
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3.2.2.c Controller attacks:  

The attack is injected by changing the proportional and integral gain of the PID 

controllers responsible for maintaining the distillate quality given in (10) as following.  

ሻݐሺݑ ൌ ሺܭ௉ ൅	△ ௉ሻܭ ൅	ሺܭ௜ ൅△ ௜ሻܭ ׬ ݁ሺݐሻ݀ݐ ൅	ܭௗ
ௗ௘ሺ௧ሻ

ௗ௧
                                              (34) 

The value of △ܭ௉ and △ܭ௜ is chosen to reduce the nominal proportional and integral 

gains by 40% and 70% respectively.  From the results presented in Figure 30 it can be 

seen that the attack degrades the distillate quality however the quality of the bottom 

product along with the remaining outputs are unaffected (with minor transients) by the 

attack due to the presence of the control scheme which added some level of robustness 

against it. Once the attack subsided the controller is able to restore the product quality 

within the required specification however the purity is higher than 98% which is the 

controller set point. This is due to the large integral error which saturated the controller 

output. 

 

(a) True controller output vs injected 
controller output 

(b) Distillate product quality plot 
 

 
(c) Bottoms product impurity plot 

Figure 30. Controller attack and its effect on the column performance. 
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3.2.2.d Chaining attack: 

 Controller and sensor attack: The attack is simulated by combining the 

controller attack from section 3.2.2c and scaling attack on distillate measurements (ߣ௦ 

= 0.1)  from section 3.2.2.a. The results obtained from simulation is presented below. 

Sensor data for distillate purity measurement are replaced with corrupted data. And the 

controller parameters for the distillate purity controller are altered. The attack is injected 

from time 100 to 200 hours during simulation. 

The result of the attack has been presented in Figure 31. Combining more than 

once attack caused the distillate quality to degrade while the remaining outputs 

including the bottoms impurity level are regulated around their set-point by the 

proposed control scheme thus adding robustness. Once the attack subsided the 

controller successfully brings the product qualities within their quality specification 

providing attack recovery. The motivation for chaining attack is to add stealth to the 

attack thus reducing the likelihood of detection. 

 

 
(a) Injected Distillate purity plot  (b) Distillate purity plot 

(c) Actual vs injected reflux flow rate  (d) Bottoms impurity plot 

Figure 31. Illustration of effect of chaining attack on the column performance. 
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Provided below in Figure 32 and Figure 33 are summary of the effect of different 

attacks on the distillate and bottoms product quality.  

 

 

Figure 32: Illustration of effect of cyber attacks on quality on distillate.  

 
Figure 33: Illustration of effect on cyber attacks bottoms product quality.  

 

From the results presented the maximum degradation on distillation purity is caused by 

the Pulse attack and the bottoms product suffers the worst quality decline by DoS attack 

and scaling attack respectively based on the selected attack parameters. 
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3.2.3. Modelling effect of cyber attack on Aspen Dynamics based model of the column 

The attacks are simulated on a DC using their mathematical model on Simulink. 

All the attacks discussed in this report are injected in simulation from t = 1 – 2 hours. 

The attacks are intended to deviate the plant outputs from their specified requirement. 

As per the specification the distillate purity has to be equal or greater than 98% and the 

bottom product impurity has to be equal or less than 1%, and the liquid levels in the 

two drums has to be 0.75 m. The simulated attacks along with their effect on the column 

performance have been illustrated using the provided results in the rest of this section.   

3.2.3.a Sensor attack: 

 Scaling attack: 

Distillate purity sensor attack: The attack is simulated by setting ߣ௦ as 0.05 and results 

have been presented in Figure 34. 

 

 
(a) Injected distillate purity vs time 

 
(b) Actual distillate plot against time 

 
(c) Bottoms product impurity vs time 

Figure 34. Results of a scaling attack on the distillate purity sensor. 
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It is observed that feeding increased distillate purity readings results in the 

controller taking countermeasure by decreasing the true purity level in the distillate. 

The attack caused some transients in bottoms impurity which is counteracted by the 

controller. There is no effect on the performance of the other control loops associated 

with the remaining outputs due to the presence of feedback controllers during this attack 

thus providing some degree of robustness against the attack. Once the attack subsided 

the controllers returned the output to its desired value thus providing attack recovery. 

Bottoms impurity sensor attack: Using ߣ௦ as -0.6 the attack is injected to emulate a case 

where the impurity level is lower than 0.01 and results are presented in Figure 35. The 

controller responds to a lower injected bottoms impurity level by increasing the true 

bottoms impurity level beyond 1%. The remaining outputs are regulated around their 

desired values by the feedback controllers except the distillate purity which increases 

momentarily before the controller bring it back to the set value. Once the attack subsides 

the outputs are returned back to their desired values by the feedback controllers. 

 

(a) Injected bottoms impurity vs time (b) True bottoms impurity against time 

 
(c) Distillate purity vs time 

Figure 35. Results for a scaling attack on the bottoms impurity measurement sensor. 
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Reboiler drum level measurement sensor attack: The attack is simulated for ߣ௦ = -0.9. 

This resulted in feeding liquid level data which is lower than the true liquid level in the 

reboiler drum. Hence the controller reduces the bottoms product flow rate which results 

increase in the true level of liquid in the reboiler causing it to overflow causing an 

emergency shutdown. Results presented in Figure 36 confirms this. 

 

 
(a) Injected reboiler liquid level  

(b) Actual liquid level in reboiler 

Figure 36. Results for a scaling attack on the reboiler drum level measurement. 

 

Reflux drum level measurement sensor attack: Attack results are shown in Figure 37. 

 

 
(a) Injected reflux drum liquid level 

 
(b) Actual liquid level in reflux drum 

Figure 37. Results for a scaling attack on the reflux drum level measurement. 
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The value of ߣ௦ is set to -0.5 for generating attack vector. The attack vector fed 

controller liquid level values which are lower than the true liquid level in the drum 

which the controller acts against by increasing the liquid level in the drum until it 

overflows which results in an emergency shutdown which is confirmed from Figure 37. 

Ramp attack: 

Distillate purity sensor attack: The value of ߣ௥ is set as .01 and result is given in Figure 

38. It is observed that out of the five control loops only the top and bottom product 

qualities are affected. The fed distillate purity reading are higher than true purity value 

which resulted in reduced reflux flow thus reducing the true quality of the distillate 

below 98% and in the process reducing the bottoms impurity below 1% as confirmed 

from Figure 38 . It can be also observed that the controllers are able to bring the products 

back to their normal required specification upon removal of the attack.  

 

(a) Injected distillate purity vs time (b) True distillate purity vs time 

 
(c) Bottoms impurity plot vs time 

Figure 38. Results of a ramp attack on the distillate purity sensor 
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Bottoms impurity sensor attack: The attack is simulated using ߣ௥ as -0.005 and result is 

presented in Figure 39. This value is chosen to inject impurity readings which are less 

than the actual impurity sensor measurements to make the controllers act to increase 

the impurity level thus violating the specification of the bottoms product and thus its 

value. As can be seen from the results in Figure 39 the attack is able increase the 

impurity level in the bottoms product however due to this the purity levels of the top 

product is increased. All the remaining loops are controlled as per the specification 

without any hick-ups. 

  

(a) Injected bottoms impurity vs time 
(b) Bottoms impurity level 

 
(c) Distillate purity level vs time 

Figure 39. Results of a ramp attack on the bottoms impurity sensor. 

 

Attack on reflux drum level measurement sensor: 

Case i: High liquid level in the drum: The attack is injected by setting ߣ௥ to 0.40 to 

simulate a situation when the liquid level is higher than desired liquid level in the drum. 

Results presented in Figure 40 illustrates the effect of the attack. The controller 

counteracts the increased measurements by reducing the true liquid level in the reflux 



  

63 

 

drum below 0.05 m which causes an emergency shutdown which is necessary because 

an empty reflux drum will cause the degradation of the distillate quality thus violating 

the purity specification. The remaining outputs are regulated around its desired value 

by their respective controllers.  

 

 
(a) Injected liquid level in the reflux 

drum (m) 

 
(b) True liquid level in the reflux drum 

(m) 
 

Figure 40.  Effect of a ramp attack on the reflux drum level sensor. 

 

Case ii. Low liquid level in the drum: The attack vector is generated setting ߣ௥ to -0.20 

and the results for the attack is presented in Figure 41. 

 

(a) Injected liquid level (m) in reflux 
drum 

(b) Actual level of liquid (m) in reflux 
drum 

Figure 41. Effect of a ramp attack on the reflux drum level sensor. 

 

In this case the attack is simulated to inject liquid level readings in the reflux 

drum which are lower than the true liquid level in the drum. It is expected that the 
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controller will counteract this drop in liquid level by reducing the distillate flow rate 

which in turn will increase the true level in the reflux drum thus potentially causing the 

liquid to overflow. This effect can be observed from results acquired using this attack 

illustrated in Figure 41. As mentioned previously the length of the drum is 1 meter. As 

can be seen from the results, the DC is shutdown when the liquid level exceeds 1 meter 

to avoid any spillage. Since hydrocarbons are highly flammable; hence a spillage poses 

fire hazard.  

Attack on reboiler drum level measurement sensor: 

Case I. High liquid level in reflux drum: The attack is simulated setting ߣ௥ as 0.40 which 

simulated a case where the injected liquid level data is higher than the true liquid level 

in the reboiler drum to which the controller is expected to respond to by increasing the 

bottoms product flow resulting in a drop in true liquid level in the reboiler drum. This 

can be confirmed from the results presented below in Figure 42.   

 

(a) Injected reboiler liquid level (m) vs 
time 

(b) True liquid level in reboiler drum 
(m) 

Figure 42. Effect of a ramp attack on the reboiler drum level sensor. 

 

Case ii. Low liquid level in reboiler drum:  

This case simulates an attack scenario where the attacker fiddles with liquid 

level in reboiler drum data by feeding readings which are lower than true readings. The 

value of ߣ௥ is set to -0.15 for the attack. The result for the attack is presented in Figure 
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43. As can be seen from the results, upon detecting low liquid level in the drum the 

controller ceases the distillate flow rate thus causing the actual level in the reboiler drum 

to rise and eventually overflow which causes the plant to shut down.  

 

(a) Injected reboiler liquid level (m) vs 
time 

(b) True liquid level (m) in the reboiler 
vs time 

Figure 43.  Effect of a ramp attack on the reboiler drum level sensor. 

 

 DoS attack: The results for the attack on distillate purity sensor and bottoms 

impurity sensor are presented in Figure 44 and Figure 45 respectively. The DoS attack 

is simulated using continuous time pulses. When the amplitude of the pulse is 1 the 

sensor measurements are transmitted to controller. And when the pulse value is 0 the 

sensor readings are denied to the controller by sending the last available sensor 

measurement available when the pulse amplitude is 1.  In case of both distillate purity 

sensor and bottoms impurity sensor, the pulse width is set to 30% with a period of 0.70 

hour i.e. the communication between the sensor and controller is blocked for 30% of 

the duration of attack. The attack is injected during simulation from t = 0 – 2 hour at 

the start of simulation because once the plant reaches steady state the outputs remains 

fairly constant; hence are unaffected by DoS attack. The results show that during the 

attack the controllers are unable to track the distillate purity and bottoms impurity at 

their desired set-points. 
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(a) Injected distillate purity vs time (b) True distillate purity vs time 

 
(c) Bottoms impurity vs time 

Figure 44. Effect of a DoS attack on the distillate purity sensor. 

 

 
(a) Injected bottoms impurity vs time (b) True bottoms impurity vs time 

 
(c) True distillate purity vs time 

Figure 45. Effect of a DoS attack on the bottoms impurity sensor. 

 

 False data injection (FDI) attack: The attack is generated using continuous 

time pulse biased by multiplying with a uniformly distributed random variable. 
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Attack on distillate purity sensor: The period of the pulse is set as 0.1 hour with the 

pulse width is set to 80% and the RV is selected with distribution U ~ (1, 1.05).  It is 

expected that when the pulse amplitude is 1, the RV will bias the pulse amplitude and 

generate distillate purity readings for the controller which are higher than .98 (since the 

range of RV is between 1 and 1.05) which the controller will act to by reducing the true 

distillate purity. This is confirmed from results presented in Figure 46. In fact, the 

controller reduces the distillate purity below the minimum purity threshold of 90% 

causing an emergency shutdown of the DC. 

 

(a) Injected distillate vs time (b) True distillate purity vs time 

 
(c) Bottoms impurity vs time 

Figure 46. Effect of a FDI attack on distillate purity sensor. 

 

Attack on distillate purity sensor: Similarly, as in the case of distillate purity sensor, for 

this attack the pulse time period is set to 0.1 hour and width to 80%. The RV is chosen 

as U ~ (.005, .01).  The result for the attack is presented in Figure 47. It can be seen that 

the attack causes the bottoms impurity to increase beyond its maximum threshold of 

10% thus causing an emergency shutdown. This happens because during the attack 
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when the pulse amplitude is 1, the RV causes the attack signal to be biased between 

0.005 and 0.01 which is sent to the controller. As the bottoms impurity setpoint is 0.01, 

the controller reacts to the attack vector by increasing the bottoms impurity. 

 

 
(a) Injected bottoms impurity vs time (b) True bottoms impurity vs time 

 
(c) Distillate purity vs time 

Figure 47. Effect of a FDI attack on the bottoms impurity sensor. 

 

Attack on reflux drum level sensor:  The attack result is presented below in Figure 48. 

   

(a) Injected liquid level in reflux drum (b) True liquid level in reflux drum 

Figure 48. Effect of a FDI attack on the liquid level in reflux drum. 
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The value of the pulse width is set to 20% with a period of 0.1 hour and the RV 

is chosen as U ~ (0.6, 0.7). Hence during attack the injected value will be between 0.6 

and 0.7 when the pulse amplitude is 1. Since the liquid level setpoint is 0.75 hence the 

controller will try to increase the liquid level in the drum which is verified from results 

in Figure 48. In fact, the controller increases the liquid level beyond 1 m. which causes 

an emergency shutdown to avoid spillage.  

Attack on reflux drum level sensor: Similar to attack on reflux level, the value of the 

pulse width is set to 20% with a period of 0.1 hour and the RV is chosen as U ~ (0.6, 

0.7) for this attack. The results for the attack is presented in Figure 49. It is seen that 

the attack causes the liquid level to exceed the 1 m. threshold thus causing the plant to 

shut down. This is because of the range of RV due to which the attack signal feeds 

reboiler liquid level values which are lower than the desired liquid level in reboiler 

drum. This causes the controller to increase the liquid level in reboiler drum causing it 

to overflow.  

   

(a) Injected liquid level in reboiler drum (b) True liquid level in reboiler drum 

Figure 49. Effect of a FDI attack on the liquid level in reboiler drum. 
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3.2.3.b Actuator attack:  

 Data injection attack:  

Attack on reflux flow rate: The results for the attack is presented below in Figure 50. 

 

 
(a) Distillate purity vs time (b) Bottoms impurity vs time 

 
(c) Actual reflux flow rate output from 
controller 

 
(d) Injected reflux flow rate 

Figure 50. Effect of a data injection attack on the reflux flow rate. 

 

This attack is simulated by independently attacking the reflux flow rate output 

from the controller by setting ܽ௥ as 0.6. It can be seen from the figure that the injected 

reflux flow rate is less than the flow rate output by the controller. As the reflux flow 

rate is used to control the distillate purity and the gain between reflux flow rate and 

distillate purity is positive hence the distillate purity is reduced below its desired value 

during the attack. The remaining outputs remain un-affected by the attack thus 

providing robustness against attack. Once the attack subsides the controller brings the 

output back to desired value thus providing attack recovery.  
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Attack on reboiler duty cycle: The value of ܽ௥ is set to 0.5 during this attack. From the 

results of the attack presented in Figure 51, it is observed that the attack causes an 

increase in the bottoms impurity level. This is because the injected reboiler duty cycle 

during attack period is less than the output from the controller. Since the reboiler duty 

cycle is used to control the bottoms impurity level hence a decrease in reboiler duty 

cycle causes increase in bottoms impurity. Once attack subsides the controller is able 

to bring the impurity level back at the desired setpoint thus providing attack recovery. 

 

 
(a) Distillate purity vs time (b) Bottoms impurity vs time 

(c) Actual reboiler duty cycle output from 
controller 

(d) Injected reflux flow rate 

Figure 51. Effect of a data injection attack on reboiler duty cycle. 

 

3.2.3.c Chaining attack:  

The attack combines controller attack and sensor attack to generate the attack 

vector. As part of the attack the bottoms impurity controller proportional gain and 

integral gain is increased by 10% and 20% of their nominal value and the bottoms 

impurity sensor is attacked with a scaling attack by setting	λୱ as -0.60.  
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The result for the attack is presented below in  Figure 52. The results show that 

the attack causes an increase in the bottoms impurity level. There are two reasons 

behind it. Firstly, during scaling attack the controller is fed bottoms impurity readings 

which are lower than the bottoms impurity setpoint. The controller responds to this by 

increasing the impurity level in the bottoms product. Besides that, increasing the 

controller gain causes the impurity level to rise more quickly. Once the attack subsides 

the controller is unable to bring the impurity level back within the required specification 

as it does during scaling attack.  

 

(a) Injected bottoms impurity vs time (b) Bottoms impurity vs time 

 
(c) Distillate purity plot 

Figure 52: Effect of chaining attack on the column performance. 
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CHAPTER 4: DETECTION OF CYBER ATTACKS 

This chapter will present the attack detection techniques developed based on the models 

of the two DC presented in Chapter 2. All the detection techniques have been designed 

based on the model of the columns and functions based on state estimation. There have 

been two techniques proposed for the grey box model of the DC based on EKF and 

UKF whereas a Luenberger observer based detection technique has been designed for 

the Aspen Plus Dynamics based model. Firstly, the mathematical implementation of 

the EKF and UKF has been presented along with the simulation results to validate and 

compare their ability in detecting attacks. Finally, the mathematical model and results 

for Luenberger observer have been presented to validate its ability in detecting attacks.  

4.1 State estimator based attack detection for DC model 

This section presents two attack detection techniques along with illustrating 

their performance and efficiency using results for the attacks presented in Section 3.2.2. 

The two techniques are based on Extended Kalman Filter (EKF) and Unscented Kalman 

filter (UKF). Fundamentally both techniques rely on state estimation for detection. The 

detector is integrated to the ICS as shown in Figure 53 for detection of attack on sensor, 

actuator or both. 

 

 

Figure 53. Illustration of state estimation based attack detection for ICS. 
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4.1.1 Implementation of Extended Kalman Filter  

A Kalman filter estimates the system states and outputs from the knowledge of 

input and output measurements in the presence of measurement and process noise with 

limitation to linear systems. An EKF is able to predict nonlinear system states provided 

the state transition functions and output measurement functions are differentiable. 

Consider the following discrete time system  

࢞࢑ ൌ ݂ሺ࢞࢑, ࢛࢑ሻ ൅ ࢝࢑		 

࢟࢑ ൌ ݃ሺ࢞࢑ሻ ൅ ࢜࢑		                                                                                                                  (34) 

where ࢞࢑࢛ ,࢑, ࢟࢑࢝ ,࢑࢛ ,࢑ and ࢜࢑ are system states, inputs, outputs, process noise and 

measurement noise, respectively, and functions f and g correspond to state transition 

function and output measurement function respectively. Qk and Rk, are process noise 

and measurement noise covariance matrices respectively.   There are two steps in the 

estimation process namely Prediction and Update steps as given below 

Prediction step: 

ො௞|௞ିଵݔ ൌ ݂ሺݔො௞ିଵ|௞ିଵ,  ௞ሻ                                                                                                 (35a)ݑ

௞ܲ|௞ିଵ ൌ ௞ܨ	 ௞ܲିଵ|௞ିଵܨ௞
் ൅	ܳ௞                                                                                            (35b) 

Update step: 

௞ܭ ൌ 	 ௞ܲିଵ|௞ିଵܪ௞
்ሺܪ௞ ௞ܲିଵ|௞ିଵܪ௞

் ൅ ܴ௞	ሻ	                                                                         (36a) 

ො௞|௞ݔ ൌ ෝ࢞࢑ି|࢑૚ ൅ ෤௞ݕ௞ሺܭ െ ݃ሺݔො௞|௞ିଵሻሻ	                                                                                       (36b) 

௞ܲ|௞ ൌ 	 ሺܫ െ ௞ሻܪ௞ܭ	 ௞ܲ|௞ିଵ                                                                                            (36c) 

where 	ܨ௞ ൌ 	
డ௙

డ௫|ෝ࢞࢑ష૚|࢑ష૚,࢛࢑
 and  ܪ௞ ൌ 	

డ௚

డ௫|ෝ࢞࢑|࢑ష૚
 ෤௞ represent the predicted meanݕ and	ොݔ ,

state estimate and measurement input available at the controller side respectively, 

respectively. Jacobians ܨ௞ and ܪ௞ are state transition and observation matrices, matrices 

௞ܲ|௞	and ܭ௞ are error covariance estimate and optimal Kalman gain, respectively, and 

the subscript ݇|݇ െ 1 is parameter value at sampling instant k based on samples up to 
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and including k-1. 

The state distribution is approximated by a Gaussian Random Variable (GRV). 

Fundamentally EKF relies on linearizing the nonlinear system equations using Taylor 

series and then generating the linear model of the system in the state space form by 

computing the Jacobians using the approximated mean value of previous state 

estimates. The previous mean state estimates are used to approximate the Gaussian 

distribution (mean and covariances) of the posteriori state which are used to estimate 

the error covariance. The posterior state covariance, error covariance along with the 

Jacobians are used to compute the optimal Kalman gain. Finally, the filter gain along 

with previous mean state estimates and output measurements are used to predict the 

state of the system. The main limitation of the filter is that it uses an approximated 

Gaussian distribution (and approximated mean) to linearize the system. This 

approximated state distribution can induce large errors in the posteriori mean and 

covariances of the nonlinear transformed GRV. All these limitations can collectively 

introduce errors in the state prediction.  

4.1.2 Unscented Kalman Filter 

Unscented Kalman Filter (UKF) relies on unscented transformation to predict 

the states of a nonlinear discrete time system. Unscented transformation is a method for 

calculating the statistics for a random variable (RV) which undergoes a nonlinear 

transformation. Consider the nonlinear system model is described by equation (34). The 

state distribution similar to EKF is Gaussian. However, in this case the distribution is 

represented by a set of sample points called sigma points. These sample points 

accurately captures the state mean and covariance and when evaluated using the 

nonlinear system equations accurately gives the mean and covariance of posteriori state 

up to second order Taylor series expansion for any nonlinearity [55]. 
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Similar to EKF there are two main steps in UKF implementation as follows: 

Prediction step: 

࢑ି૚ࢄ
ࢇ 	ൌ 	 ሾෝ࢞࢑ି૚

ࢇ 	േ	ඥሺܮ ൅ ሻߣ ௞ܲିଵ
௔ ሿ                                                                                  (37a) 

࢑ି૚|࢑ࢄ
࢞ ൌ ݂ሾ࢑ିࢄ૚

࢞ , ࢑ି૚ࢄ
࢝ ሿ                                                                                                     (37b) 

ෝ࢞࢑ି|࢑૚ ൌ 	∑ ௜ܹ
ሺ௠ሻଶ௅

௜ୀ଴ ࢑ି૚|࢑,࢏ࢄ
࢞                                                                                                    (37c) 

௞ܲ|௞ିଵ ൌ 	∑ ௜ܹ
ሺ௖ሻൣ࢑ି|࢑,࢏ࢄ૚

࢞ െ	 ෝ࢞࢑ି|࢑૚൧ൣ࢑ି|࢑,࢏ࢄ૚
࢞ െ	 ෝ࢞࢑ି|࢑૚൧

்ଶ௅
௜ୀ଴                                      (37d) 

Update step: 

࢑ି૚|࢑ࢅ
࢞ ൌ ࢑ି૚|࢑ࢄൣ݄

࢞ , ࢑ି૚ࢄ
࢜ ൧                                                                                                     (38a) 

ෝ࢟࢑ ൌ 	∑ ௜ܹ
ሺ௠ሻଶ௅

௜ୀ଴  ࢑ି૚                                                                                                     (38b)|࢑,࢏ࢅ

ܲ࢟෥࢑,෥࢟࢑ష૚ ൌ	ൌ 	∑ ௜ܹ
ሺ௖ሻൣ࢑ି|࢑,࢏ࢅ૚ െ	 ෝ࢟࢑൧ൣ࢑ି|࢑,࢏ࢅ૚ െ	 ෝ࢟࢑൧

்ଶ௅
௜ୀ଴                                                           

(38c) 

ܲ࢞
࢑࢟,࢑ ൌ	ൌ 	∑ ௜ܹ

ሺ௖ሻൣ࢑ି|࢑,࢏ࢄ૚
࢞ െ	 ෝ࢞࢑ି|࢑૚൧ൣ࢑ି|࢑,࢏ࢅ૚ െ	 ෝ࢟࢑൧

்ଶ௅
௜ୀ଴                                            (38d) 

ܭ ൌ	 ܲ࢞
࢑࢟,࢑	, ܲ࢟෥࢑,෥࢟࢑

ିଵ 		                                                                                                                 (38e) 

ෝ࢞࢑|࢑ ൌ 	 ෝ࢞࢑ି|࢑૚ ൅ ሺ࢟࢑ܭ െ	 ෝ࢟࢑ሻ                                                                                                 (38f) 

௞ܲ|௞ ൌ ௞ܲ|௞ିଵ െ ܭ෥࢟࢑,෥࢑࢟ܲܭ
்                                                                                                       (38g) 

where ࢞ࢇ ൌ ሾ்࢞ ்ݓ , ܺ௔	ሿ்்ݒ ൌ ሾሺܺ௫ሻ் ሺܺ௪ሻ் ሺܺ௩ሻ்ሿ, ௜ܹ
ሺ௠ሻ ൌ 1/ሼ2ሺܮ ൅

ሻሽ, ௜ܹߣ
ሺ௠ሻ ൌ 	 ௜ܹ

ሺ௖ሻ, ߣ ൌ ܮଶሺߙ	 ൅ ݇ሻ െ ݅ and ,ܮ ൌ ሼ1, ……… . . ,  is the composite ߣ ,ሽܮ2

scaling parameter, L is the dimension of augmented state, ෝ࢞  is the mean state estimate, 

ෝ࢟ is the mean output estimate, P is the covariance matrix, and ࢏ࢄ are the sigma points. 

The parameter ߙ determines the spread of the sigma points around ෝ࢞ and is usually set 

to a positive value (between 0 – 1) [35] and k is a secondary scaling which is usually 

set to 0.  
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The discrete time model of the system is generated using Euler method using 

the controller sampling time. The residual which will be used for detection is defined 

as following. 

ሺ݇ሻ	஽ݎ ൌ 	 ො஽ሺ݇ሻݔ| െ	ݔ෤஽ሺ݇ሻ|                                                                                                                39(a) 

ሺ݇ሻ	஻ݎ ൌ 	 ො஻ሺ݇ሻݔ| െ	ݔ෤஻ሺ݇ሻ|                                                                                                                  39(b) 

Where ݔ෤஽, ,෤஻ݔ  ,ො஻ corresponds to distillate purity measurement to the controllerݔ and	ො஽,ݔ

bottoms impurity measurement to the controller, estimated distillate purity, and 

estimated bottoms impurity respectively. ݎ஽ and ݎ஻ denotes the residual in distillate 

purity estimation and bottoms impurity estimation respectively. 

4.2 Validation of attack detection techniques 

This section illustrates the application of EKF and UKF in detecting attacks 

presented in Section 3.2.2. Fundamentally, during the normal operation there will be no 

difference between the estimated filter output and sensor measurements to the 

controller. However, during attack there will be a difference which can be used for 

detection. The sampling time for the controller is set as 0.001 hour. In our case, any 

residual value larger than 0.02 for both the distillate and bottoms product will trigger 

an attack warning.   

4.2.1 Sensor attack: 

 Scaling attack:  The value of ߣ௦ is set to 0.1 for attack on distillate measurement 

while for attack on the bottom impurity measurement ߣ௦ is selected as -0.95. The results 

using EKF  and UKF for the scaling attack is presented in Figure 54 and Figure 55, and 

Figure 56 and Figure 57, respectively. EKF and UKF detected scaling attack on 

distillate purity measurements in 0.003 and 0.005 hours as shown in Figure 54 and 

Figure 56 respectively. Both estimators are able to successfully identify the loop being 

attacked as confirmed from the result below which can be used for attack diagnosis.  
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(a) Filter output vs sensor measurement 

for distillate purity 

 
(b) Residual signal corresponding to 

the distillate purity measurement 

 
(c)  Filter output vs sensor measurement 

for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 54.  Scaling attack detection on the distillate purity sensor using EKF. 

  

 
(a) Filter output vs sensor measurement 

for distillate purity 
(b) Residual signal corresponding to 

the distillate purity measurement 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 55. Detection of scaling attack on the bottoms impurity sensor using EKF. 

 

In the case of attack on bottoms impurity sensor as seen from Figure 55 and 

Figure 57 EKF and UKF detects the attack in .010 and 0.007 hours respectively. Both 
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algorithms facilitate attack isolation by estimating un-attacked outputs correctly. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 56. Scaling attack detection on the distillate measurement using UKF. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity

Figure 57. Scaling attack detection on the bottoms impurity measurement using UKF. 
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 Ramp attack: The results for EKF and UKF have been presented in Figure 58, 

and Figure 59, and Figure 60, and Figure 61 respectively. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity. 

(c) Filter output vs sensor measurement 
for bottoms impurity 

 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 58. Ramp attack detection on the distillate measurement sensor using EKF. 

 

(a) Distillate purity output. (b) Residual for distillate purity. 

 
(c) Bottoms impurity output. (d) Residual for bottoms impurity. 

Figure 59. Ramp attack detection on the bottoms impurity sensor using EKF. 
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(a) Filter output vs sensor measurement 

for distillate purity 
(b) Residual between filter and sensor 

measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 60. Detection of a ramp attack on the distillate purity sensor using UKF. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

 
(c) Filter output vs sensor measurement 

for bottoms impurity 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 61. Ramp attack detection on the bottoms impurity measurement using UKF. 

 

The ramp attack is simulated setting ߣ௥ ൌ 0.006 for distillate purity 

measurements and ߣ௥ = -.000025 for bottoms impurity measurement. Both ݎ஽and ݎ஻  

can be used to detect the attack as can be seen from Figure 58 and Figure 60 respectively 

attack on distillate measurements. But for both EKF and UKF, ݎ஽ detected the attack 
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faster in 0.007 and 0.003 hour respectively. Since both outputs get corrupted for both 

filters during attack it is not possible to trace the location of attack.  

Comparing results for bottoms impurity attack in Figure 59 and Figure 61 the 

main difference lies in detection times. EKF detected the attack in 0.002 hours whereas 

UKF took 0.005 hours to detect the attack. In this case location of the attack can be 

traced since both filters only give corrupted output for sensors that are under attack.   

 Pulse attack: In case of the distillate purity measurements the pulse signal is 

chosen with period of 30 hours and 90% pulse width whereas the period is set to 30 

hours with 40% pulse width in case of attack on the bottoms impurity measurements. 

The model of pulse attack provided in Section 3.1.1 either latches to the true sensor 

measurements and outputs them or sends zeros to the controller. During the first few 

hours, for both the attacks, it sends the true sensor measurements to the controller. 

Although such case indicates disruption of resources but the attack detection time will 

be counted from the time the attacks starts to affect the outputs. 

  From the results in Figure 62 and Figure 64 it can be observed that, in case of 

both EKF and UKF, there appears discrepancy between the filter estimated output and 

controller input in both control loops which can be used for attack detection. The 

distillate purity attack is detected in 0.008 and 0.013 hour by EKF and UKF 

respectively. Since both the outputs gets corrupted hence neither EKF nor UKF 

provides any attack diagnosis feature for this attack. In the case of attack on the bottoms 

impurity measurements, the simulation results presented in Figure 63 and Figure 65 

indicate that EKF and UKF detected the attack in 4.7 hours and 3.8 hours respectively. 

Besides that, it can be seen that both EKF and UKF based detection methods allows for 

isolation of attack since only the output measurements being tempered with by the 

attacker is affected by the attack. 
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(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

 
(c) Filter output vs sensor measurement 

for bottoms impurity 

 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 62. Detection of a pulse attack on the distillate purity sensor using EKF. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 63. Detection of a pulse attack on the bottoms impurity sensor using EKF.  
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(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 64. Detection of a pulse attack on the distillate purity sensor using UKF. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 65. Detection of a pulse attack on the bottoms impurity sensor using UKF.  
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 Random attack: The attack detection results for EKF are given in Figure 66 

and Figure 67 and results for UKF are presented in Figure 68 and Figure 69.  

 

(a) Filter output vs controller input for 
distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 66. Detection of a random attack on the distillate purity sensor using EKF. 

 

(a) Filter output vs sensor 
measurement for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor 
measurement for bottoms impurity 

 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 67.  Detection of a random attack on the bottoms impurity sensor using EKF. 
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(a) Filter output vs sensor measurement 

for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 68. Detection of a random attack on the distillate purity sensor using UKF. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 69. Detection of a random attack on the bottoms impurity sensor using UKF. 
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The attack vectors are generated using random signals normally disturbed as N 

~ (.15, .00005) and N ~ (-.08, 0.0000001) for the distillate purity and bottoms impurity 

measurements respectively.  

Looking at Figure 66 and Figure 68 it can be seen that the attack detection time 

for EKF and UKF are 0.011 and 0.005 hour respectively. Besides that, both EKF and 

UKF are able to track outputs which are unaffected by attacks accurately thus 

facilitating attack diagnosis by identifying the location of the attack. 

From the results in Figure 67 and Figure 69, it can be seen that during attack on 

the bottoms impurity measurements, the residual rB exceeds the threshold of 0.02 in 

0.004 and 0.002 hours for EKF and UKF respectively. Similar to distillate purity, both 

filters are able to isolate the attack by correctly estimating the un-attacks outputs.  

 Bounded time varying attack: Similar to section 3.2.2.a the attack 

signal is chosen as yi (t)= .75-sat ((t-100)/50) for the distillate purity measurement 

sensor and the attack signal for bottoms impurity measurement is chosen as yi (t) = 

1.58-tan-1(t). 

Results for EKF are illustrated in Figure 70 and Figure 71 and results for UKF 

are presented in Figure 72 and Figure 73. EKF and UKF detects the attack on the 

distillate purity measurement sensor at 0.007 and 0.003 hour respectively which can be 

confirmed from Figure 70 and Figure 72. The other notable thing is both estimators 

incorrectly estimates the bottoms impurity hence can’t be used for attack isolation. 

The detection time for attack on the bottoms impurity measurements is 2 hours 

and 3.710 hours for EKF and UKF respectively. Similar to the case during the distillate 

measurement attack both EKF and UKF provides attack diagnosis feature by correctly 

estimating the distillate purity during attack which can be used to trace the location of 

the attack in the control system. 
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(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 70. Detection of a bounded attack on distillate purity sensor data using EKF. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 71. Detection of a bounded attack on the bottoms impurity sensor using EKF. 
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(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 72. Detection of a bouned attack on distillate purity sensor using UKF. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 73. Detection of a bounded attack on the bottoms impurity sensor using UKF. 
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 False data injection attack (FDI): Results for detection using EKF and UKF 

are presented in Figure 74 and Figure 75, and in  Figure 76 and Figure 77 respectively. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

 
(c) Filter output vs sensor measurement 

for bottoms impurity 

 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 74. FDI attack detection on the distillate purity sensor using EKF. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

 
(b) Residual between filter and sensor 

measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 75. FDI attack detection on the bottoms impurity sensor using EKF. 
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(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 76. FDI attack detection on the distillate purity sensor using UKF. 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 77. FDI attack detection on the bottoms impurity sensor using UKF. 

 

The attack vectors are generated using normally distributed random signals with 

distribution N~(1.02, .00002) and N ~ (.01, .000001) for distillate purity and bottoms 
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impurity measurements respectively multiplied by continuous time pulses in order to 

bias the output data. The attack on the distillate purity measurement is detected by EKF 

and UKF in 0.003 and 0.001 hour respectively as can be seen from Figure 74 and Figure 

76. The attacks affect both outputs of the filters for both cases of EKF and UKF which 

prevents from identifying the location of attack in the control system. From the results 

for detection of bottoms impurity sensor attack presented in Figure 75 and Figure 77 

the detection times are 2.135 hours and 2.016 hours respectively. Both filtering 

algorithms are able to estimate the sensor measurements which are not under attack (i.e. 

distillate purity) correctly during the attack which can be used for attack isolation. 

4.2.2 Actuator attack: 

 Data injection attack: Attack detection results for EKF is presented in Figure 

78 and Figure 79, and for UKF in Figure 80 and Figure 81 respectively. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 78. Detection of data injection attack on reflux flow rate data using EKF. 
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(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 79. Detection of data injection attack on reboiler duty cycle data using EKF. 

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

 
(c) Filter output vs sensor measurement 

for bottoms impurity 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 80. Detection of data injection attack on reflux flow rate data using UKF. 
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(a) Filter output vs sensor measurement 

for distillate purity 

 
(b) Residual between filter and sensor 

measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms 

impurity. 

Figure 81. Detection of data injection attack on reboiler duty cycle data using UKF. 

 

To generate the attack vector the value of ܽ௥ is set as 0.8 for reflux flow rate 

and ܽ௥ is set to 0.6 for reboiler duty cycle.  The attack on reflux flow in Figure 78 and 

Figure 80 shows both ݎ஽	and ݎ஻	are large enough for attack detection. However, for 

both EKF and UKF, the attack is detected earlier by ݎ஽	in 1.760 and 1.783 hour 

respectively. This is expected since the reflux flow rate directly controls the distillate 

purity; thus it is more sensitive to any attack on the reflux flow rate. The comparatively 

large detection time compared to sensor attacks is because the distillate purity changes 

slowly to abnormality in reflux flow rate than distillate purity sensor.     

Similar to reflux flow rate when the reboiler duty cycle data is attacked both 

 detects attack in case of both EKF and UKF as can been seen from Figure 79	஻ݎ and	஽ݎ

and Figure 81. However since the bottoms impurity is more sensitive to changes in 

reboiler duty cycle hence ݎ஻	detects the attack faster. The detection times for EKF and 
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UKF are 0.210 and 0.133 hour respectively. As both control loops trigger attack 

warning hence the location of attack can’t be traced by neither of EKF and UKF during 

this attack.  

 Replay attack: The attack is injected by recording the reflux flow rate data up 

to t = 100 and then replaying this data to the plant between t = 100 – 200. The results 

for EKF and UKF is presented in Figure 82 and Figure 83 respectively. It can be seen 

that, for both filters, the attacks causes both ݎ஽	and ݎ஻	to exceed attack threshold. 

However ݎ஽ detects the attack faster in case of both EKF and UKF in 2.143 and 1.836 

hours respectively. This is expected since the distillate purity is more sensitive to 

changes in reflux rate than bottoms impurity (or in other words the gain for distillate 

purity vs reflux flow rate is higher than bottoms impurity vs reflux flow rate).  

 

(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

(c) Filter output vs sensor measurement 
for bottoms impurity 

(d) Residual between filter and sensor 
measurement for bottoms impurity 

Figure 82. Results for replay attack detection on reflux flow rate using EKF. 
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(a) Filter output vs sensor measurement 
for distillate purity 

(b) Residual between filter and sensor 
measurement for distillate purity 

 
(c) Filter output vs sensor measurement 

for bottoms impurity 

 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 83. Results for replay attack detection on reflux flow rate using UKF. 

  

4.2.3 Chaining attack: 

The ability of EKF and UKF in detecting the attack presented in Section 3.2.2.d 

whereby the controller is attacked by changing the controller gain and distillate purity 

sensor is attacked using a scaling attack is presented here. From the results in Figure 84 

and Figure 85 both EKF and UKF detects the attack and the detection times are 0.003 

and 0.001 hour respectively. The notable point here is both filters estimated the bottoms 

impurity accurately. It is observed previously in 4.1.1.a that during scaling attack on 

the distillate purity measurement the filters are able to locate the attack. However, in 

this case it can be seen that chaining scaling attack with controller attack makes the 

attack stealthy i.e. the only the sensor attack can be located. Thus the attacker uses these 

form of attacks to change controller parameters sneaking underneath the detection 

system.  
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(a) Filter output vs sensor measurement 

for distillate purity 

 
(b) Residual between filter and sensor 

measurement for distillate purity 

 
(c) Filter output vs sensor measurement 

for bottoms impurity 

 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 84. Detection of chaining attack using EKF. 

 

 
(a) Filter output vs sensor measurement 

for distillate purity 

 
(b) Residual between filter and sensor 

measurement for distillate purity 

 
(c) Filter output vs sensor measurement 

for bottoms impurity 

 
(d) Residual between filter and sensor 

measurement for bottoms impurity 

Figure 85. Detection of chaining attack using UKF. 
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Table 9 summarizes results for various attacks obtained using EKF and UKF. 

 

Table 9. Summary of attack detection result. 

Attack 
type 

Attack 
name 

Attacked 
parameter 

Filter 
Type 

Detection 
time (hour)

Attack 
detection 

Attack 
isolation

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sensor 
attack 

Scaling 
attack 

Distillate 
purity 

EKF 0.003 ✔ ✔ 
UKF 0.005 ✔ ✔ 

Bottoms 
impurity 

EKF 0.010 ✔ ✔ 
UKF 0.007 ✔ ✔ 

Ramp 
attack 

Distillate 
purity 

EKF 0.007 ✔ ✖  
UKF 0.003 ✔ ✖  

Bottoms 
impurity 

EKF 0.002 ✔ ✔ 
UKF 0.005 ✔ ✔ 

Random 
attack 

Distillate 
purity 

EKF 0.011 ✔ ✔ 
UKF 0.005 ✔ ✔ 

Bottoms 
impurity 

EKF 0.004 ✔ ✔ 
UKF 0.002 ✔ ✔ 

Bounded 
time 
varying 
attack 

Distillate 
purity 

EKF 0.007 ✔ ✖ 
UKF 0.003 ✔ ✖ 

Bottoms 
impurity 

EKF 2.000 ✔ ✔ 
UKF 3.710 ✔ ✔ 

False Data 
injection 
attack 

Distillate 
purity 

EKF 0.003 ✔ ✖ 
UKF 0.001 ✔ ✖ 

Bottoms 
impurity 

EKF 2.135 ✔ ✔ 
UKF 2.016 ✔ ✔ 

Pulse attack Distillate 
purity 

EKF 0.008 ✔ ✖ 
UKF 0.013 ✔ ✖ 

Bottoms 
impurity 

EKF 4.700 ✔ ✔ 
UKF 3.800 ✔ ✔ 

Actuator 
attack 

Data 
injection 
attack 

Reflux rate EKF 1.760 ✔ ✖ 
UKF 1.783 ✔ ✖ 

Reboiler duty 
cycle 

EKF 0.210 ✔ ✖ 
UKF 0.133 ✔ ✖ 

Replay 
attack 

Reflux rate EKF 2.143 ✔ ✖ 
UKF 1.836 ✔ ✖ 

 
Chaining 

attack 

Controller 
and sensor 
attack 

Distillate 
purity,  
Controller 
gain 

EKF 0.003 ✔ ✖  
UKF 0.001 ✔ ✖ 
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A summary of attack detection results using EKF and UKF have been illustrated 

with the aid of bar graphs in Figure 86 and Figure 87 respectively.  

 

 

Figure 86: Summary of detection results for EKF vs UKF for distillate purity. 

 

 

Figure 87: Summary of detection results using EKF and UKF for bottoms impurity. 
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As can be seen there are differences in detection times for EKF and UKF. One 

of the reason is the way fundamentally the algorithms are implemented; EKF uses mean 

state estimates for output estimation whereas UKF uses sigma points for estimation 

which makes it more accurate. Besides that, there is random process and measurement 

noise which also affects the detection times. The average detection times for EKF and 

UKF in case of distillate purity are .438 hour and .406 hour respectively, and for EKF 

and UKF are 1.29 hours and 1.22 hours respectively.  

4.3 Attack detection for Aspen Based Column Model: 

The proposed detection technique for the column model in Section 2.3 is based 

on the state estimation using an observer.  An observer can predict the output and the 

internal states of a system from the knowledge of the system inputs and outputs (i.e. the 

sensor and actuator readings) which can be used to check the integrity of the 

communication channels between the sensor and controller, and controller and actuator. 

At first we place our focus on the observer design following which the method of attack 

detection will be elaborated on. During the steady state the column operation is deemed 

to be stable. A linear model of the column is generated around the stable operating point 

using Aspen Plus Dynamics which is used for the observer design. Thus it is valid to 

design detection techniques using the linear model of the plant. 

4.3.1 Linearization of the distillation column model: 

The linearized model of the plant is obtained by applying Taylor series around 

the steady state stable operating point of the DC and is expressed in the state space form 

as follows. Table 10 presents the values of inputs and outputs used during linearization. 

The linearized state space matrices of the DC can be written as:  

ఋሶݔ ሺݐሻ ൌ ሻݐఋሺݔ	ܣ ൅  ሻݐሺ	ఋݑ	ܤ

ሻݐఋሺݕ ൌ ሻݐఋሺݔ	ܥ ൅  ሻ                                                                                          (40)ݐఋሺݑ	ܦ
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Where,  ݔఋሺݐሻ ൌ ሻݐሺݔ	 െ	ݔ௘;		ݑఋሺݐሻ ൌ ሻݐሺݑ െ	ݑ௘;	ݕఋሺݐሻ ൌ ሻݐሺݕ െ	ݕఋ, x(t), u(t) and 

y(t) represents the system states, input and output respectively. The delta quantities 

represent the deviation away from the stable equilibrium point by taking the difference 

between the current value and the equilibrium point.  For the case of a distillation 

column, molar holdup of the lighter and heavier product and the enthalpy across all 

trays in the column along with the condenser and reboiler are the system states. In total 

the proposed column in section 2.3 containing 32 trays including condenser and reboiler 

as mentioned in Table 7 has 96 states, 6 inputs and 5 outputs. Therefore, A ∈	R96x96, B 

∈ R96x6, C ∈ R5x96 and D ∈ R5x6. This model is used towards designing a Luenberger 

type observer which is described below.  

 

Table 10. Values of inputs and outputs during stable operation. 

Input parameter name Value Output parameter name Value 

Condenser duty 
(MMKCal/hr) 

-.527 Column pressure (atm) 14.18 

Reflux flow rate (kmole/hr) 124.28 Concentration of distillate 
(mole fraction) 

.974 

Distillate flow rate 
(kmole/hr) 

40.179 Liquid level (m) .749 

Re-boiler duty (MMKCal/hr) .602 Concentration of bottoms (mole 
fraction) 

.009 

Bottoms flow rate (kmole/hr) 59.763 Liquid level in column base (m) .751 
Feed flow rate (kmole/hr) 100   

 

4.3.2 Luenberger Observer design: 

In full order observer, given the system parameters ܦ ,ܥ ,ܤ ,ܣ and the values of 

the inputs and outputs over a time interval, it is possible to estimate the state when the 

system is observable if the pair (A,C) is observable. Unfortunately, the linearized model 

of the column acquired from Aspen Plus Dynamics is not observable. In order to resolve 

this issue the transfer function matrix of the linear model is derived using the step 
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response which is used to derive a reduced order linear model of the system. Since the 

reduced model is derived using transfer function that only contains the observable and 

controllable states hence the model is fully observable. The state space matrices for the 

reduced system is given below. 

Ar   = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
           0 0 -1/1.45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
           0 0 0 -1/1.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
           0 0 0 0 -1/1.44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
           0 0 0 0 0 -1/4.56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
           0 0 0 0 0 0 -1/1.35 0 0 0 0 0 0 0 0 0 0 0 0 0 
           0 0 0 0 0 0 0 -1/1.60 0 0 0 0 0 0 0 0 0 0 0 0 
           0 0 0 0 0 0 0 0 -1/6.30 0 0 0 0 0 0 0 0 0 0 0 
           0 0 0 0 0 0 0 0 0 -1/3.73 0 0 0 0 0 0 0 0 0 0 
           0 0 0 0 0 0 0 0 0 0 -1/2.57 0 0 0 0 0 0 0 0 0 
           0 0 0 0 0 0 0 0 0 0 0 -1/2.53 0 0 0 0 0 0 0 0 
           0 0 0 0 0 0 0 0 0 0 0 0 -1/2.59 0 0 0 0 0 0 0 
           0 0 0 0 0 0 0 0 0 0 0 0 0 -1/3.20 0 0 0 0 0 0 
           0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1/1.45 0 0 0 0 0 
           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1/4.10 0 0 0 0 
           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1/1.60 0 0 0 
           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1/3.00 0 0 
           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1/3.70 0 
           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1/2.51] 
 
Br = [ -6/46.1 -.258/50 -137/50 -3.07/50 847/48.9 .645/50 
          -0.028/50 -.1666 144/50 3.96/50 -1150/50 7.77/50 
          1 0 0 0 0 0 
          0 1 0 0 0 0 
          0 0 1 0 0 0 
          0 0 0 1 0 0 
          0 0 0 0 1 0 
          0 0 0 0 0 1 
          1 0 0 0 0 0 
          0 1 0 0 0 0 
          0 0 1 0 0 0 
          0 0 0 1 0 0 
          0 0 0 0 1 0 
          0 0 0 0 0 1 
          1 0 0 0 0 0 
          0 1 0 0 0 0 
          0 0 1 0 0 0 
          0 0 0 1 0 0 
          0 0 0 0 1 0 
          0 0 0 0 0 1] 
 
Cr = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
         0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
         0 0 -.0134 -.0195 60.417 -.0029 66.148 -.0259 0 0 0 0 0 0 0 0 0 0 0 0 
         0 0 0 0 0 0 0 0 .000002 .00023 -.043 .00389 -1.143 .0014 0 0 0 0 0 0 
         0 0 0 0 0 0 0 0 0 0 0 0 0 0 .000036 -.000118/4.1 -.0000287 -.0000522 .1124 -.000693] 
  
Dr = 0; 
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The aim is to design an observer to estimate small changes in states around the 

equilibrium point. Based on the reduced linear system model the state space 

representation of the full order observer or Luenberger observer is determined as 

follows: 

ሻݐොሶఋሺݔ ൌ ሻݐොఋሺݔܣ ൅ ሻݐሺݑܤ ൅ ሻݐఋሺݕሺܭ െ  ሻሻݐොఋሺݕ

ሻݐොሶఋሺݕ ൌ ሻݐොఋሺݔܥ ൅  ሻ                                                                                              (41)ݐఋሺݑܦ

where ݔොఋ, ݕොఋ, ݕఋ , and K are estimated state, estimated output, output measurement and 

observer gain respectively. The actual output estimate is computed from the observer 

output estimate as following: 

ሻݐොሺݕ  ൌ ሻݐොఋሺݕ	 ൅		ݕ௘௤                                                                                                   (42) 

where ݕොሺݐሻ is the estimated output and ݕ௘௤ is the output value used during linearization. 

The error dynamics in estimation is given by, 

ሶ݁ ሺݐሻ ൌ ሺܣ െ  ሻ                                                                                                (43)ݐሻ݁ሺܥܭ

The poles of (A-KC) determine the error convergence rate. Thus they had to be 

selected large enough negatively to be able to track state changes of the system within 

an acceptable time period. The gain matrix is computed in Matlab using linear quadratic 

regulator (LQR) by arbitrarily choosing Q and R that rendered the largest negative poles 

of (A-KC) in order to guarantee fast convergence. LQR is a well-known technique used 

for computing the optimal gain for state feedback which for (40) is defined as follows. 

ሻݐఋሺݑ ൌ 	െݔܭఋሺݐሻ                                                                                         

Hence, ݔఋሶ ሺݐሻ ൌ ሺܣ െ  ሻ                                                                               (44)ݐఋሺݔ	ሻܭܤ

The transpose of (A-BK) takes the same form as the error dynamics in (43) and 

hence can be used to calculate the optimal observer gain for convergence. The observer 

design is validated by comparing its output against the output from the full order linear 

model of the column with 96 states for a step change of 5 kmole/hr in the reflux flow 
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rate applied at t= 5 hours during simulation; results have been presented in Figure 88. 

This scheme assumes that the attacker can only launch attack which has been 

mathematically modelled in Section 3.1; thus the observer is not targeted by the 

adversary. 

 

 
(a) Distillate purity (mole fraction) vs 

time 

 
(b) Bottoms impurity (mole fraction) vs 

time 

 
(c) Liquid level in reflux drum (m) vs 

time 

 
(d) Liquid level in reboiler (m) vs time 

 
(e) Column pressure (atm) vs time 

Figure 88. Validation of Luenberger Observer design. 

 

4.4 Validation of Luenberger observer based attack detection technique: 

In this section the ability of Luenberger observer in detecting attacks presented in 

Section 3.2.3 will be evaluated. The observer is connected to the ICS as in Figure 53. 

The fundamental concept is to use the residual between the sensor measurements fed to 

the controller and the observer output to detect attacks. The observer is used to estimate 
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the output based on the measured sensor and actuator data. The detection scheme relies 

on discrepancy between the sensor measurements and predicted output during attack 

scenario which can be computed as a residual as in (45) for attack detection. 

During normal operation the residual will remain small. During attack the 

residual value will increase. A threshold can be applied on the residual to detect attacks. 

The output residuals for the DC are defined as below. 

ሻݐሺ	௅௖ݎ ൌ 	 หܮ෠஼ሺݐሻ െ	ܮ෨஼ሺݐሻห                                                                                                               45(a) 

ሻݐሺ	௅௥ݎ ൌ 	 หܮ௥ሺݐሻ െ	ܮ෨௥ሺݐሻห                                                                                                               45(b) 

ሻݐሺ	௉ݎ ൌ 	 ห ෠ܲሺݐሻ െ	 ෨ܲሺݐሻห                                                                                                                45(c) 

ሻݐሺ	஽ݎ ൌ 	 ሻݐො஽ሺݔ| െ	ݔ෤஽ሺݐሻ|                                                                                                                45(d) 
ሻݐሺ	஻ݎ ൌ 	 ሻݐො஻ሺݔ| െ	ݔ෤஻ሺݐሻ|                                                                                                                45(e) 

where ܮ෨஼ and ܮ෨௥, ෨ܲ,	ݔ෤஽, and ݔ෤஻  are  the liquid levels (m) in the  reflux drum and 

the column sump, the column pressure at the top (atm), the distillate purity and bottoms 

impurity at the controller side, respectively. Any parameter ̂ݖ implies value of 

parameter z estimated by the observer. Table 11 presents the threshold set on the 

residuals for attack detection on different sensor measurements. Controller sampling 

time is set to 0.01 hour. The results are obtained for the same attacks mentioned in 

section 3.2.3. From the results it will be seen that there lies discrepancy between the 

observer and the sensor at start of simulation which is because the observer initial state 

is different to that of the model hence it takes time for observer to converge to true 

sensor measurements (i.e. error dynamics to converge). The convergence time observed 

is around 0.8 hours during simulation. Hence attack is injected between t = 1-2 hours. 

 

Table 11. Threshold values for the residuals. 

Residual Threshold value Residual Threshold value 

 ஻  .005ݎ ௅௖ (m) 0.2ݎ
 ௉ (atm) 5.0ݎ ௅௥ (m) 0.2ݎ
   ஽  0.01ݎ
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4.4.1 Sensor attack 

 Scaling attack: 

Distillate purity sensor attack: The attack is injected setting ߣ௦ as 0.05 and result is 

presented in Figure 89. Although there are multiple residuals which detected the attack 

but ݎ஽  detected in quickest time in .02 hour. Since the observer fails to estimate all un-

affected outputs correctly during attack hence it is not possible to isolate the attack. 

 

 
(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time. 

 
(b) ݎ஽ vs time. 

 
(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time.

 
(d) ݎ஻ vs time. 

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. 

 
(f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time. 

 
(h) ݎ௅௥ vs time. 

Figure 89. Detection of a scaling attack on distillate purity sensor using observer. 
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Bottoms impurity sensor attack: The value of ߣ௦ is set to -0.6 during this attack. The 

attack is detected using value of ݎ஻ in 0.03 hours. Since the remaining residuals do not 

cross the thresholds, hence this method allows for attack diagnosis for this attack. 

 

ሺܽሻ	ݔ෤஽ (red) vs ݔො஽ (blue) against time. 
 

(b)  .஽ vs timeݎ

(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. 

 
(d) ݎ஻ vs time. 

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. 

 
(f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time. (h) ݎ௅௥ vs time. 

Figure 90. Obserbed based attack detection for the bottoms impurity sensor attack. 
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Reflux drum liquid level sensor attack: The attack is injected setting ߣ௦ as -0.5. From 

the results presented in Figure 91 the attack is detected by ݎ஽ in 0.01 hour. The detector 

is able to detect attack before the emergency shutdown due to the flooding in reflux 

drum caused by the attack. Since only ݎ஽ violates the threshold during attack hence this 

method can be used for tracing the location of attack in ICS. 

 

 
ሺܽሻ	ݔ෤஽ (red) vs ݔො஽ (blue) against time. 

 
(b) ஽ݎ vs time.

 
(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. (d) ݎ஻ vs time. 

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. 

 
(f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time 

 
(h) ݎ௅௥ vs time. 

Figure 91. Observer based detection for attack on the reflux drum liquid level sensor. 
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Reboiler drum liquid level sensor attack: The value of ߣ௦ is set to -0.9. This attack 

triggers the emergency shutdown due to the overflow of liquid in the reboiler drum as 

can be seen from Figure 92. However, the observer is able to detect the attack in 0.01 

hour. Hence with the presence of detector an emergency shutdown can be prevented. 

The attack is detected by ݎ஻ only; hence this method provides attack isolation. 

 

 
ሺܽሻ	ݔ෤஽ (red) vs ݔො஽ (blue) against time. 

 
(b)  .஽ vs timeݎ

 
(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. 

 
(d) ݎ஻ vs time. 

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. 

 
(f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time 

 
(h) ݎ௅௥ vs time. 

Figure 92. Scaling attack detection on the liquid level in reboiler drum using observer. 
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 Ramp attack: 

Distillate purity sensor attack:  The attack is simulated by setting ߣ௥ as 0.01 similar to 

section 3.2.3. Results for the attack is presented below in Figure 93. The attack is 

detected using ݎ஽in 0.02 hour. The observer can be used for finding the location of 

attack in the ICS since only ݎ஽ crosses its threshold during attack. 

 

(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time. (b) ݎ஽ vs time. 

(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. (d) ݎ஻ vs time. 

(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. (f) ݎ௅௖ vs time. 

(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time. 
 

(h) ݎ௅௥ vs time. 

Figure 93. Detection of a ramp attack on the distillate purity sensor using ramp attack. 
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Bottoms impurity sensor attack: The value of ߣ௥ is selected as -0.005 for this attack and 

the result is presented in Figure 94. The attack is detected by ݎ஻ in 0.03 hour. Since the 

observer estimates the remaining outputs which are not attacked correctly hence this 

method allows for attack isolation. 

  

 
(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time. 

 
(b) ݎ஽ vs time. 

(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. (d) ݎ஻ vs time. 

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. 

 
(f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time. 

 
(h) ݎ௅௥ vs time. 

Figure 94. Detection of a ramp attack on the bottoms impurity sensor using observer. 
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Reflux drum level measurement sensor attack: The first attack is simulated setting ߣ௦ = 

0.40. As said in section 3.2.3, this attack reduces the reflux level below the minimum 

threshold causing an emergency shutdown. The results in Figure 95 shows that ݎ௅௖ 

detects the attack before the shutdown in 0.02 hour. Since remaining residuals doesn’t 

detect the attack hence this method can be used to trace the location of attack.  

 

 
(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time. 

 
(b) ݎ஽ vs time. 

 
(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. (d) ݎ஻ vs time. 

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time.

 
(f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time. 

 
(h) ݎ௅௥ vs time. 

Figure 95. Detection of a ramp attack on the reflux level for ߣ௦ = 0.40. 
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During the second case the attack is simulated setting ߣ௦ = -0.20. As mentioned in 

Section 3.2.3.a, this attack causes the liquid level in the reflux drum to overflow causing 

emergency shutdown. From the results in Figure 96 it is seen that ݎ௅௖ detects the attack 

in 0.04 hour long before the plant is shut down. This method can be used for attack 

isolation since the observer estimates the outputs which are not attacked correctly.  

 

(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time. 
 

(b) ݎ஽ vs time. 

(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. (d) ݎ஻ vs time. 

(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. (f) ݎ௅௖ vs time. 

(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time (h) ݎ௅௥ vs time. 

Figure 96. Detection of a ramp attack on the reflux level for ߣ௦=  - 0.20. 
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Reboiler drum level sensor attack: The value ߣ௦ is set to 0.40 for the first scenario. As 

said in section 3.2.3, this attacks drains the reboiler drum beyond minimum threshold 

causing an emergency shutdown. The results in Figure 97 shows that ݎ௅௥ detects the 

attack before the shutdown in 0.02 hour. The method allows for attack isolation as no 

other threshold except ݎ௅௥ detects the attack.  

 

 
(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time. 

 
(b) ݎ஽ vs time. 

 
(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. 

 
(d) ݎ஻ vs time.

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. 

 
(f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time 

 
(h) ݎ௅௥ vs time. 

Figure 97. Detection of a ramp attack on the reboiler level for ߣ௦ = 0.40 
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In case of this attack ߣ௦ is set to -0.20. As mentioned in Section 3.2.3.a, this attack 

causes the liquid level in the reboiler drum to overflow causing emergency shutdown. 

The results in Figure 98 shows that ݎ௅௖ detects the attack in 0.01 hour long before the 

emergency shutdown. This method can be used for attack isolation since the observer 

estimates the outputs which are not attacked correctly.  

 

 
(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time. 

 
(b) ݎ஽ vs time.

 
(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. 

 
(d) ݎ஻ vs time. 

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time.

 
(f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time (h) ݎ௅௥ vs time. 

Figure 98. Detection of a ramp attack on the reflux level for ߣ௦=  - 0.20. 
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 FDI attack: The attacks presented in Section 3.2.3.a are used for detection. 

Distillate purity sensor attack: As said previously the attack causes emergency 

shutdown since the distillate purity drops below 90%. The attack is detected by ݎ௅௖ in 

the fastest time in 0.64 hour way before the emergency shutdown. The method provides 

no attack diagnosis for this attack as multiple residuals trigger attack warning. 

 

 
(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time.

 
(b) ݎ஽ vs time. 

 
(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time.

 
(d) ݎ஻ vs time. 

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. 

 
(f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time (h) ݎ௅௥ vs time. 

Figure 99. Detection of a FDI on the distillate purity sensor using observer. 
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Bottoms impurity sensor attack: The results of the attack presented in Figure 100 shows 

that ݎ஻ detects the attack in .53 hour. For this attack the observer is able to identify the 

location of the attack since all the remaining residuals other than ݎ஻ remains lower than 

their set threshold during attack. 

  

 
(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time.

 
(b) ݎ஽ vs time. 

 
(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. 

 
(d) ݎ஻ vs time. 

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time.

 
(f) ݎ௅௖ vs time. 

(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time (h) ݎ௅௥ vs time. 

Figure 100. Detection of a FDI attack on the bottoms impurity sensor using observer. 
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Reflux drum level measurement sensor attack: The attack as seen from the results in 

Figure 101 is detected by ݎ௅௖in 0.04 hour. As can be seen the observer estimates the 

outputs which are not being attacked correctly which can be used to trace the location 

of the attack in the ICS.  

 

 
(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time.

 
(b) ݎ஽ vs time.

(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. 
 

(d) ݎ஻ vs time. 

(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. (f) ݎ௅௖ vs time. 

(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time (h) ݎ௅௥ vs time. 

Figure 101. Detection of a FDI attack on the reflux level using observer. 
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Reboiler drum level measurement sensor attack: From the attack results presented in 

Figure 102 the attack is detected ݎ௅௥ in .02 hour. As the remaining residuals are 

unaffected by the attack hence the observer can be used to isolate the attack location in 

the ICS. 

 

(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time. 
 

(b) ݎ஽ vs time. 

(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. 

 
(d) ݎ஻ vs time. 

(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. 

 
(f) ݎ௅௖ vs time. 

(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time (h) ݎ௅௥ vs time. 

Figure 102. Detection of a FDI attack on the reflux level using observer. 
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4.4.2 Actuator attack 

 Data injection attack: 

Attack on reflux flow rate: Using ܽ௥ as 0.6 the attack is detected by ݎ஽ in 0.1 hour as 

shown in Figure 103. This method can’t detect the location of the attack as the observer 

fails to estimate multiple outputs correctly during this attack. 

 

 
(a) 	ݔ෤஽ (red) vs ݔො஽ (blue) against time. (b) ݎ஽ vs time. 

 
(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. (d) ݎ஻ vs time.

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time.

 
(f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time 

 
(h) ݎ௅௥ vs time. 

Figure 103. Detection of a data injection attack on the reflux flow rate using observer. 

 



  

121 

 

Attack on reboiler duty cycle: The value of ܽ௥ is set to 0.5 during this attack. Based on 

the results presented in Figure 104 the residual ݎ௅௖ detects the attack in the fastest time 

in 0.04 hour. As can be seen all the residuals cross their attack detection thresholds 

during this attack. Hence this method can’t provide attack isolation for this attack. 

 

(a) ݔ෤஽ (red) vs ݔො஽ (blue) against time.
(b) ݎ஽ vs time. 

 
(c) ݔ෤஻ (red) vs ݔො஻ (blue) against time. (d) ݎ஻ vs time. 

 
(e) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. (f) ݎ௅௖ vs time. 

 
(g) ܮ෨௥ (red) vs ܮ෠௥(blue) against time (h) ݎ௅௥ vs time. 
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Figure 104. Detection of a data injection attack on reboiler duty cycle using observer. 

 

4.4.3. Chaining attack 

The detection result for the chaining attack presented in section 3.2.3.c is given 

below in Figure 105.  

 

 
(i) ݔ෤஽ (red) vs ݔො஽ (blue) against time. (j) ݎ஽ vs time. 

 
(k) ݔ෤஻ (red) vs ݔො஻ (blue) against time. 

 
(l) ݎ஻ vs time. 

(m) ܮ෨஼ (red) vs ܮ෠஼(blue) against time. (n) ݎ௅௖ vs time. 

 
(o) ܮ෨௥ (red) vs ܮ෠௥(blue) against time

 
(p) ݎ௅௥ vs time. 
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Figure 105. Detection of chaining attack using an observer. 

 

From the results it can be seen that ݎ஻ detects the attack in 0.02 hour. However 

all the remaining residuals don’t exceed attack detection threshold thus implying the 

presence of attack in the bottom impurity control loop. However it fails to detect the 

controller attack. Hence injecting a controller attack in this manner makes it stealthy 

and non-detectable as has been illustrated using the results in Figure 105. 

 

Table 12. Summary of attack detection results uisng Luenberger Observer 

Attack 
type 

Attack 
name 

Attacked parameter Detection 
time 

(hour) 

Attack 
detection 

Attack 
isolation 

Sensor 
attacks 

Scaling 
attack 

Distillate purity 0.03 ✔ ✖  
Bottoms impurity 0.02 ✔ ✔ 

Liquid level in reflux 
drum 

0.01 ✔ ✔ 

Liquid level in reboiler 
drum 

0.01 ✔ ✔ 

Ramp 
attack 

Distillate purity 0.01 ✔ ✔ 

Bottoms impurity 0.03 ✔ ✔ 

Liquid level in reflux 
drum (case 1) 

0.02 ✔ ✔ 

Liquid level in reflux 
drum (case 2) 

0.04 ✔ ✔ 

Liquid level in reboiler 
drum (case 1) 

0.02 ✔ ✔ 

Liquid level in reboiler 
drum (case 2) 

0.01 ✔ ✔ 

FDI 
attack 

Distillate purity 0.64 ✔ ✖ 

Bottoms impurity 0.53 ✔ ✔ 

Liquid level in reflux 
drum 

0.04 ✔ ✔ 

Liquid level in reboiler 
drum 

0.02 ✔ ✔ 

Actuator Data Reflux flow rate 0.10 ✔ ✖  



  

124 

 

attack injection 
attack 

Reboiler duty cycle 0.50  ✔ ✖  

Chaining 
attack 

Controller 
and 
scaling 
attack 

Bottoms impurity 
sensor and controller 

0.02 ✔ ✖ 

5. CONCLUSION AND FUTURE WORK 

To conclude, the objectives set for thesis and how they have been achieved will 

be discussed. Besides that, this section will outline the future works that can be done in 

the field of this thesis. As mentioned previously, there are four objectives of this thesis. 

The remainder of this section will outline the objectives and elaborate on how they have 

been accomplished.  

 Mathematical modelling of cyber-attacks: As part of this thesis, the attacks 

commonly found in ICS have been modeled. It has been assumed that an ICS for a CPS 

can be characterized by its number of feedback control loops each containing sensors, 

actuators and controllers. Hence the adversary can target the communication channel 

between one or more of these devices to launch an attack. Thus the modeled attacks 

have been categorized under namely sensor attacks, actuator attacks, sensor and 

actuator attacks and controller attacks. The attack models in the existing literature have 

been modeled for linear plant models. However, considering that real world plants 

exhibit nonlinear dynamics, the attacks have been modeled for nonlinear CPS.  

 Mathematical modelling of a DC: This task has been aimed to facilitate in the 

analysis of the effect of cyber-attacks on the DC. As part of the thesis, a binary 

continuous DC has been modeled. A binary continuous DC is designed to process one 

specific feed stream and separate it into two product streams which are i. Distillate, and 

ii. Bottoms product during its entire life cycle. The distillate contains the more volatile 

lighter fractions in the feed stream and is collected from the top of column. On the other 

hand, the heavier fractions in the feed stream are collected as bottoms product from the 
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bottom of the column. The main objective is to maintain the quality of the two products 

under their desired specification which necessitates the introduction of control system 

to the plant. There have been two different DC models proposed as part of this thesis. 

The first column has been designed based on data from [45] and [46]. At first 

the data has been used to design the column in Aspen Plus. In order to simulate the 

dynamics of the DC, the model then has been transported to Aspen Plus Dynamics. The 

steady state calculations from Aspen Plus has been used to derive the dynamic model 

of the DC using MESH equations. However, the dynamics of some of plant parameters 

have been found to be dissimilar to the dynamics observed in Aspen Plus Dynamics. 

Hence those dynamics have been added to obtain a grey box model of the DC. After 

that the control system has been designed for the DC. There are two feedback control 

loops present in the control system of the DC one of which is used to control the 

distillate purity and the other one for controlling the bottoms impurity as per the quality 

specification. 

The second model has been designed using data presented in Section 2.3. At 

first the data has been used to design the column in Aspen Plus which is then transported 

to Aspen Plus Dynamics. Then, the feedback control system for the DC has been 

designed in Simulink. Finally, the Aspen Plus Dynamics based plant model and the ICS 

implemented in Simulink have been integrated to create a hybrid model of the CPS. 

The control system of the plant contains five feedback control loops which are used to 

control the column pressure at the top (atm), the liquid level (m) in reflux drum and 

reboiler drum, and the product quality of the distillate and bottoms product.  

 Analyze the effect of cyber-attacks on control performance of the DC: As a 

part of this task, the attacks have been injected to the two models of the DC and their 

effect on the column performance has been observed.  
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At first the attacks have been injected to sensors, actuators and controllers of 

the grey box model of the DC. Besides that, different types of attacks have been injected 

simultaneously in the form of chaining attack. The results of all different types of 

attacks on the DC has been presented in Section 3.2.2. It has been observed that the 

adversary can upset the column performance by targeting any aspect of communication 

(i.e. between sensor and controller, and controller and actuator) in control system. Since 

two different completely decoupled control loops have been used to control the product 

qualities independently hence every attack only upsets the performance of the loop it 

has been injected in. From the results, it has been observed that the adversary can launch 

attacks mainly to upset the product qualities of the DC to introduce financial loss (since 

the value of the product is dependent upon its quality). Besides that, it has been 

observed that the proposed control scheme provides a degree of robustness by providing 

attack recovery upon removal of attack. 

Similarly, the different attacks modeled have been injected to the various 

control loops of the hybrid model of the DC as sensor attacks, actuator attacks, 

controller attacks, and chaining attacks and the obtained results have been presented in 

section 3.2.3. Since each output of the plant is controlled by an input independently, 

hence it has been observed that injecting an attack in any control loop only upsets that 

particular control loop; although the attack introduces unprecedented transients in some 

other control loops (depending on type of attack) however the controller is able to 

suppress the transients and bring the output back to the desired set-point. Other than 

that, the control scheme is able to bring the outputs back to their desired set-points upon 

removal of attack thus providing attack recovery. The motivation behind attacks can be 

to introduce financial loss by violating product qualities or threaten the safety of the 

column operation by either increasing the pressure in the column or by causing flooding 
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in either of the two liquid drums.    

 

 

 Design and validation of attack detection techniques for ICS by using the 

model of DC: Finally, based on the results of the attacks on the two DCs, detection 

techniques have been designed for the modeled attacks. As part of this thesis, only 

model based detection techniques have been designed. The designed techniques mainly 

rely on estimating the outputs of DC using the knowledge of the sensor outputs to the 

controller side and controller outputs to detect the attacks. During the normal operation, 

the estimated outputs are expected to closely match the sensor measurements. However, 

if the integrity of any control loop is violated by attack there is expected to be 

discrepancy between the estimated output and the sensor output to the controller which 

is used for attack detection. This proposed detection scheme can only detect sensor and 

actuator attacks by integrating the detector across the controller as illustrated in Figure 

53. In total three different detection techniques for the two different models of the DC 

are proposed. 

The first two detection techniques have been implemented using EKF and UKF 

for the grey box model of the DC. EKF and UKF can be used to provide state estimation 

for nonlinear plants. The implementation details of EKF and UKF along with results 

for detection have been provided in Section 4.2 and 4.3, respectively. From the results 

it has been validated that both EKF and UKF are able to detect all the sensor and 

actuator attacks modeled as part of this thesis. However, the detection times using the 

two estimators for the attacks are different as can be seen from Table 9 which can be 

attributed to the difference in the implementation techniques for EKF and UKF, and 

process and measurement noise. Finally, it has been also seen that for certain attacks 
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the estimators are able to isolate the attack by tracing the location of the attack in the 

ICS. 

 

A Luenberger observer based detection technique has been proposed for 

detecting attacks on the Aspen Plus Dynamics based hybrid. The linear model required 

for the observer design has been acquired by linearizing the model around its closed- 

loop steady state operating point. It has been observed that the observer is able to detect 

sensor and actuator attacks. Besides that for some attacks, it is also able to pinpoint the 

location of attack in the ICS thus facilitating attack isolation. 

 Future work: There is many scope of work in the area of designing cyber 

secure ICS for crude oil DC as there are no literatures available in this area. The 

majority of the literatures on attack modelling focuses on linear plant model. However 

as stated, in real world most CPS exhibit nonlinear dynamics. The thesis consider 

various attack models from existing literatures on ICS of CPS and modelled them for 

nonlinear systems. But there is still scope for modelling other attacks found in 

literatures e.g. Covert attack, Zero dynamics attack and so on for the class of nonlinear 

systems. The thesis limits the study for the case of a binary continuous DC. However 

as said, DCs can be categorized based on mode of operation and number of output 

product streams. The existing study in this thesis can be extended for other categories 

of DCs. This thesis primarily addresses designing techniques for attack detection. So 

far, techniques based on availability of the plant model has been considered. 

Motivations can be drawn from data driven algorithms for designing further detection 

techniques as certain plant dynamics can be challenging to model. The next step 

following detection is attack isolation in order to trace the location of the attack in the 

ICS for attack mitigation and survivability. Although the presented detection 
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techniques offers attack isolation for certain attacks however it is not been included as 

an inherent feature in the proposed techniques which leaves room for investment of 

research effort in this area. Finally, the topic of attack mitigation and survivability can 

be addressed in order to put in place a definitive combat action to prevent plant 

disruption by drawing motivation from the field of fault tolerate control.     
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