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Abstract: Polarization resistance and potentiodynamic scan testing were performed on 316L stainless
steel (SS) at room temperature in carbon nanotube (CNT)-water nanofluid. Different CNT loadings
of 0.05, 0.1, 0.3 and 0.5 wt% were suspended in deionized water using gum arabic (GA) surfactant.
Corrosion potential, Tafel constants, corrosion rates and pitting potential values indicated better
corrosion performance in the presence of CNTs with respect to samples tested in GA-water solutions.
According to Gibbs free energy of adsorption, CNTs were physically adsorbed into the surface of
the metal, and this adsorption followed Langmuir adsorption isotherm type II. Samples tested in
CNT nanofluid revealed a corrosion performance comparable to that of tap water and better than
that for GA-water solutions. Among all samples tested in CNT nanofluids, the lowest corrosion rate
was attained with 0.1 wt% CNT nanofluid, while the highest value was obtained with 0.5 wt% CNT
nanofluid. At higher CNT concentrations, accumulated CNTs might form active anodic sites and
increase the corrosion rate. SEM images for samples of higher CNT loadings were observed to have
higher pit densities and diameters.

Keywords: carbon nanotubes; Gum Arabic; 316L Stainless steel; potentiodynamic; corrosion;
polarization parameters

1. Introduction

Since the early discovery of nanofluids by Choi [1], these fluids have proven to possess unique
properties due to the presence of particles that are of nanometer size (1–100 nm). Nanofluid can be
formed of different fluid bases such as water, ethylene glycol (EG), oils, and so on, and nanoparticles
introduced to the base fluids can be metals [2–5], oxides [4,6–8], carbon nanotubes (CNTs) [9,10],
among others. This two-phase mixture has distinctive electrical, optical and thermal properties [11–13],
which have allowed it to be used in many applications such as industrial heat transfer [14,15],
transportation [16–18], biomedical [19,20] and solar applications [21–23]. Implementations of nanofluids
in such applications have allowed energy savings, reduced emissions and design flexibility [24–27].
In addition, fine sizes of dispersed particles have conquered problems associated with the use of
micro-particles, such as clogging, high operating costs and high pumping requirements [28].
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CNT-water nanofluid have grabbed the attention of researchers, as it enhances the thermal
properties of heat transfer fluids. The presence of nanoparticles enhances energy transport through
one or more of the following four mechanisms [29,30]: (1) liquid layering on the surface of the particles,
(2) particle aggregates, (3) Brownian motion and (4) Brownian motion-induced convection. CNTs have
extraordinary properties that include a high modulus of elasticity [31], high aspect ratios, excellent
thermal and electrical conductivity and magnetic properties [32]. Heat transport improvements in
these nanofluids depend on several factors, such as CNT loading, base fluid, temperature, surfactant,
and so on. A 1.14 wt% of single walled carbon nanotubes (SWCNT) in water-based nanofluid showed
a 19.4% enhancement in thermal conductivity of the base fluid, water [33]. CNT-water nanofluids
have been recorded to achieve 38% and 34% thermal conductivity enhancements when the nanofluids
were prepared with sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB)
surfactants, respectively [34,35]. In another study, gum arabic (GA) was proven to provide the best
thermal conductivity amongst sodium dodecylbenzene sulfonate (SDBS) and SDS surfactants, with
an optimum sonication time of 40 min and at 45 ◦C [36]. Furthermore, thermal conductivity was
shown to increase with increasing CNT loading and temperature. A multiwalled carbon nanotube
(MWCNT) with 0.25 wt% GA suspended in water achieved 18% and 37% improvements in the thermal
conductivity of 0.1 and 0.5 wt% CNT-water nanofluids, respectively [37]. In addition, a maximum
thermal conductivity enhancement of 35.9% was recorded when 1 wt% CNT-water nanofluid was
prepared with CTAB surfactant at 60 ◦C [38].

A lot of research work has been conducted to check the heat transport properties of nanofluids
for utilization as a heat transfer fluid. However, less effort was placed on understand the corrosion
effect of nanoparticles on metallic substrate [39]. Introduction of nanoparticles to the base fluids alters
their thermo-physical properties, which might cause a secondary mechanical (abrasive, erosion) or
chemical (corrosion) effect [40]. In addition, the presence of some chemical surfactants like GA might
provide an inhibition act [41–44], and might affect the electrochemical behavior of metals exposed to
such solutions of nanoparticles and surfactant.

Studying the corrosion of exposed surfaces to the nanofluid is essential not only from an economic
perspective, but also for safety and health. Corrosion is the deterioration of metal due to a reaction with
corrosive elements [45]. Corrosion can cause problems of degradation, failure and serious accidents in
many industrial plants and domestic systems. Economic influence due to corrosion can include loss of
materials, repair and maintenance cost, decrease in efficiency, and so on. Corrosion can also cause fires
and explosions, in addition to other health impacts of personal injuries and pollution [46]. Globally,
the impact of corrosion are estimated to be $2.5 trillion USD, which counts for 3.4% of the global gross
domestic product (GDP) [47].

Until now, no comprehensive research work has been carried out to understand corrosion behavior
in the presence of heat transfer fluids. Most of the research work has focused on the investigation of
heat transfer properties along with corrosion properties [40,48], while others have focused on erosion
properties [49,50] or the effects of some experimental conditions [51]. For example, Baghalha and
Kamal Ahmadi found that increasing the concentration of SDS surfactant caused an increase in the
corrosion of copper, while stirring did not change the corrosion behavior of tested samples. In addition,
it has been observed that exposing copper samples to CNT-water nanofluid reported lower current
densities compared with samples tested in pure water [51]. Corrosion of different metals exposed
to CNTs in water with suspended carboxylate additives were examined through an immersion test
for 14 days at 80 ◦C. It was concluded that this nanofluid with different CNT loadings and different
additives was suitable to use in automotive environments, and that the presence of CNTs did not
affect the corrosion properties of the water that contained a carboxylate additive [48]. On the other
hand, the corrosion rates of copper, stainless steel (SS) and aluminum samples exposed to CNT-water
and CNT-ethylene glycol (EG) nanofluids increased with the temperature. At a fixed temperature,
copper and aluminum had the highest and lowest corrosion rate values, respectively [40]. Celata et al.
examined the erosion effect of metallic samples exposed to different nanofluids using a Hydraulic
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Experiment on Thermo-mechanical of Nanofluids (HETNA) experimental rig. The measured thickness
loss obtained was not identified, whether it was due to an erosion or to corrosion effect [49]. Continuing
from the work of Celata et al., Bubbico et al. changed the pH in the presence of the same nanofluids,
and concluded that the measured material loss was mainly due to chemical corrosion, rather than from
mechanical erosion [50].

As CNT-water nanofluid has the potential to be used in many applications, it is important to keep
safety considerations in regard to corrosion issues. Very limited work has been conducted in this regard,
and none of it has been comprehensive or standardized. This paper measures the corrosion parameters
of 316L stainless steel exposed to a potential heat transfer fluid, CNT-water nanofluid. Three corrosion
tests were conducted in series: an open circuit test, a polarization resistance test and potentiodynamic
scans. Examinations were done at different CNT loadings of 0.05, 0.1, 0.3 and 0.5 wt% CNTs that
were homogenously dispersed in deionized water using GA surfactant. Corrosion potential, Tafel
constants, corrosion rate and pitting potential were measured and analyzed. For further understating
of the corrosion effects of CNT addition, the same tests were conducted for GA-water solutions using
the same GA concentrations as in the preparation of the CNT nanofluids. In addition, the same tests
were performed in deionized water, tap water and 3.5 wt% NaCl solutions. The adsorption process
of CNTs and/or GA molecules were examined by calculating Gibbs free energy of adsorption and
finding the adsorption isotherm. In the end, these data were gathered to propose a mechanism for
corrosion/inhibition of steel in presence of CNTs.

2. Experimental Work

2.1. Nanofluid Synthesis

CNT-water-based nanofluid was prepared using a two-step method, where the MWCNTs are
synthesized first and then dispersed into deionized water. Multiwalled CNTs were purchased from
Cheap Tubes. They were manufactured through a catalytic chemical vapor deposition (CCVD) process
and refined to a purity of >95% using a concentrated acid chemistry method. Specifications for the
MWCNTs used are shown in Table 1.

Table 1. Specifications of multiwalled carbon nanotubes (MWCNTs) used in the present research.

Outer
Diameter

Inside
Diameter Purity Length Specific

Surface Area
Electrical

Conductivity
Bulk

Density
True

Density

20–30 nm 5–10 nm >95% 10–30 µm 110 m2/g >100 S/cm 0.28 g/cm3 ~2.1 g/cm3

For synthesizing a homogenous nanofluid, gum arabic (GA) from Sigma-Aldrich was used as a
surfactant, as it proved to sustain high temperatures without foaming, unlike SDBS surfactant [52].
A weight ratio of 1:3 (CNT:GA surfactant) was used. The solutions were then sonicated by an
ultrasonication probe (vibra-cell) from Sonics & Materials. The sonication parameters were fixed
at 20 kHz and 450 watts for 1 h at room temperature. The prepared CNT-water-based nanofluids
were homogenous for a long time, with no visual sedimentation observed after one month. Finally,
for comparison purposes, samples were tested in deionized water, GA-water solutions (of the same
concentrations used in CNT-water nanofluids), tap water and 3.5 wt% NaCl solutions. The last two
solutions were chosen because CNT-water nanofluid has the potential to replace fresh water and
seawater when used for cooling/heating purposes. Tap water used was analyzed in Gulf Laboratories
CO. W.L.L., with the composition listed in Table 2 [53].
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Table 2. Composition of tap water used in testing [53].

Constituent Bromide (Br−) Bicarbonate
(HCO3−)

Carbonate
(CO3−)

Fluoride
(Fl−)

Chloride
(Cl−) Nitrate (NO3−)

Amount
(mg/L) 0.3 76.9 <1.0 0.1 16.3 <0.01

Constituent Total Organic
Carbon (TOC)

Total
Nitrogen

Sulphate
(SO4

−2) Calcium (Ca) Magnesium
(Mg)

Total Dissolved
Solids (TDS)

Amount
(mg/L) 0.3 0 <2.0 25 1.2 92

2.2. 316L Stainless Steel Samples Preparation

The 316L stainless steel (SS) samples (composition shown in Table 3) were purchased from the
company Metals Samples. Samples were processed by drawing and chamfering, then roller polishing
into cylindrical rods of 1/4” (6.35 mm) diameter X 2 1/2” long (63.50 mm), with no threads or slots.
Purchased samples were prepared into a working electrode by having the rods cut, glued into a copper
wire and mounted in an epoxy resin on all sides except the surface to be tested. The final step of sample
preparation was the wet polishing of the mounted samples with 1200-grit silicon carbide paper. The
AutoMet Grinder Polisher (Buehler AutoMet 250), was used for this step.

Table 3. Composition of 316L stainless steel purchased from the company Metals Samples
(weight percentages).

Fe Cr Ni Mo C Mn Si Cu Co Others

68.28 16.65 10.1 2.03 0.019 1.48 0.48 0.46 0.37 0.14

2.3. Corrosion Testing

Studying the corrosion behavior was conducted by running three corrosion tests in series for
each sample, including an open circuit potential test (OCP), a polarization resistance test and a
potentiodynamic scan test. Experiments were conducted using a 600 Potentiostat and EuroCell kit
from Gamry Instruments. Experimental procedures implemented the ASTM G59-97 and ASTM G5-14
standards to perform polarization resistance testing and potentiodynamic scanning, respectively [54,55].
The mounted 316L SS samples were wet-polished with 1200-grit silicon carbide paper and washed
with ethanol, then with deionized water. A graphite rod was used as a counter/auxiliary electrode, and
a saturated calomel electrode (SCE) was used as a reference electrode. To avoid any shorting between
working electrodes and counter electrodes due to the presence of carbon nanotubes, the graphite rod
was placed inside a nafion membrane that allowed chemical (but not physical) contact with the test
solution. Samples were immersed in the test solution for 10 h to allow the surface of the metal to settle
and form an oxide layer, and to establish equilibrium potential, that is; the open circuit potential (OCP).
This test conducted for the polarization resistance test was run at a scan rate of 0.6 V/h (0.167 mV/s),
and under a potential range of 0.25 V above and below the EOCP that was obtained from the OCP test.
The potentiodynamic test was performed at the same scan rate, and was run from −0.25 V below EOCP

to 1.5 VSCE. After potentiodynamic scanning, samples were removed from the cell and allowed to
air-dry for SEM observation. Mounted 316L SS samples were exposed to four concentrations (0.05, 0.1,
0.3 and 0.5 wt%) of CNT-water nanofluids. Three replicates for each solution were tested to ensure
consistency of the results. All experiments in this part were performed at room temperature (22 ◦C),
and the measured pH of nanofluids had an average value of 5.6.
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3. Discussion of Results

3.1. Potentiodynamic Scans

3.1.1. Potentiodynamic Scans in the Presence of CNT-Water Nanofluids

After immersing the samples for 10 h in an OCP test, a potentiodynamic test was conducted. The
potentiodynamic curves were constructed and the results are illustrated in Figure 1. Potentiodynamic
curves are plotted for log current density versus potential [45]. These curves represent the anodic and
cathodic reactions occurring simultaneously, but some of these reactions will proceed at relatively
higher rates, depending on the applied potential. Few turning points were observed, which was
due to the change in the kind of oxides formed on the surface of the metal [54]. Figure 1 shows the
potentiodynamic curves for 316L stainless steel exposed to CNT-water nanofluid with 0.05, 0.1, 0.3
and 0.5 wt% of CNT. Lower CNT loadings of 0.05 and 0.1 wt% were shown to have almost the exact
behavior in terms of passivation region and oxide film formation. On the other hand, increasing the
CNT loadings to 0.3 and 0.5 wt% seemed to affect that corrosion behavior, as was seen from their
potentiodynamic curves. In general, the stainless steel tested in the CNT-water nanofluids revealed a
passive–active–transpassive–active behavior, as was observed from the change of current density with
the increase in potential in their polarization curves.
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Figure 1. Potentiodynamic scans for 316L stainless steel (SS) exposed to 0.05, 0.1, 0.3 and 0.5 wt%
CNT-water nanofluids at room temperature.

Each regime in the curve represented an electrochemical reaction occurring on the surface of the
sample. In the current neutral aerated environment, a series of anodic and cathodic reactions can occur
at the surface of the electrode that can include cathodic oxygen reduction (H2O + 1

2 O2(g) + 2 e− →
2OH−), anodic iron dissolution (Fe→ Fe+2 + 2e−) and hydrogen evolution reaction (2H+ + 2 e− →
H2(g)). At a lower potential, cathodic reactions are expected to proceed at higher rates than the anodic
reactions, according to the Eh-pH diagram, particularly with neutral or alkaline media. At higher
potentials, anodic reactions proceed at higher rates, causing metal dissolution, while at the same time
oxides are formed on the surface of the metal.

With the oxidation of the surface of the metal, a film starts to develop on the surface that consists
of different oxides such as iron hydroxide (Fe (OH)2), hematite (αFe2O3) and magnetite (Fe3O4). Some
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of these oxides are formed according to reactions (1)–(4) reported in the literature [55]. In addition,
chromium oxides in aqueous solutions to produce Cr2O3 according to reaction (5).

Fe + H2O ←
→ FeO(s) + 2H+

(aq) + 2 e− (1)

Fe + 2 H2O → Fe(OH)2(s) + 2H+
(aq) + 2 e− (2)

3 FeO + H2O → Fe3O4(s) + 2H+
(aq) + 2 e− (3)

2 Fe3O4(s) + H2O → 3(γ− Fe2O3)(s) + 2H+
(aq) + 2 e− (4)

4 Cr(s) + 3 O2 → 2 Cr2O3(s) (5)

These oxides and hydroxides precipitate on the surface of the metal and cause the metal to transfer
from an active state to a passive state. It was reported that a bi-layer film formed on the surface of
the 316L SS consisting of an inner and deeper chromium oxide layer, and that another outer layer
consisting of iron oxides formed on the surface of the steel [56,57]. This barrier film formed on the
surface restricted electrical conductivity and reduced the current density.

Formation of such oxides allowed the sample to passivate, which caused the current density to
have a minimum change in a specific potential regime. Few turning points were detected within the
passive regime for all curves. These turnings are an indication of different oxide formations [54], as each
oxide is found to be stable and to dominate in a specific potential range. The passivation region started
with all nanofluids almost at the same passivation potential (Epp) between 0.20–0.30 VSCE, and with a
passivation current density ranged between 0.5 and 1.0 µA/cm2. The thickness of the film is expected
to increase with increasing potential according to the availability and the activity of the hydroxide
and ferrous ions on the metal–electrolyte interface [58,59]. Such film formations are supposed to bring
clear straight passive regions in the polarization curves, as observed by Lothongkum [60] when 316L
SS was tested in aqueous solutions without any chloride ions. Curves (1) and (2) of Figure 1 show
the potentiodynamic scans for 0.05 and 0.1 wt% CNT-water nanofluids, respectively. For these two
nanofluids, passivation appeared in the potential window of 0.30–1.15 VSCE without a significant shift
in Ecorr between the two CNT loadings. However, higher CNT concentrations of 0.3 and 0.5 wt%
(curves (3) and (4) of Figure 1, respectively) passivated in the potential window of 0.20–0.95 VSCE

with less repassivation behavior, especially for the 0.3% CNT nanofluid. In addition, increasing CNT
loading showed a higher shift of Ecorr towards more negative values. A shift towards more negative
values of Ecorr indicates a higher susceptibility of the material to corrode, as it can be attacked at lower
potentials. Such passivation behavior indicates that the presence of CNTs and GA surfactant influenced
the film formation on the surface of the metal, especially for higher CNT loadings.

3.1.2. Potentiodynamic Scans for GA-Water, Tap Water and NaCl Solutions

For a better understanding of the real effect of CNTs on the corrosion of the tested samples,
potentiodynamic scans in GA-water solutions were also performed at different concentrations of GA.
Corrosion behavior in presence of CNT-water nanofluids was also compared with conventional heat
transfer fluids such as tap water and 3.5 wt% NaCl solution, with the latter solution having the same
sodium chloride composition as sea water that is commonly used for cooling purposes.

Furthermore, corrosion testing in GA solutions was performed in order to examine the effects of
GA in CNT-water nanofluids, since GA is considered as a natural corrosion inhibitor [41,61]. The same
weight of GA used in CNT-water nanofluid was tested in this section, but without CNTs. GA was
introduced in the nanofluids with a 3:1 ratio (GA:CNT). Similarly, the same concentrations of GA were
sonicated in the deionized water and used for testing. The tested GA-water solutions had GA weight
percentages of 0.15%, 0.3%, 0.9% and 1.5%, which corresponded to the same amounts of GA present in
CNT-water nanofluids of 0.05, 0.1, 0.3 and 0.5 wt%, respectively. Figure 2 shows the potentiodynamic
scans for 316L SS tested in different GA-water solutions.
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Figure 2. Potentiodynamic scans for 316L stainless steel exposed to GA-water solutions of 0.15, 0.3, 0.9
and 1.5 wt% gum arabic (GA).

Polarization curves of GA-water solutions shown in Figure 2 presented almost the same passivation
behavior found in CNT-water nanofluids (Figure 1). In both Figures, active–passive–transpassive–active
behavior was noted and the same turnings were observed. This is an indication of different oxide
formations on the surface as the result of the presence of GA, regardless of whether CNTs were
present in the solution or not. However, CNT affected the corrosion rate, corrosion potential and Tafel
constants, as will be discussed later in detail. The passive region starts at around 0.2 VSCE, passes
through a transpassive state and secondary passivity at 0.8 VSCE, then returns to the active state at
around 1.15 VSCE. The passivation current was observed to be in the range of 0.5–1.1 µA/cm2.

Figure 3 shows the potentiodynamic curves of 316L SS tested in different solutions. Comparing
the passivity region between all solutions, it is evident that the steel did not show a passive behavior in
the presence of NaCl solution due to the presence of aggressive chloride ions, which is to be expected.
On the other hand, the active–passive region of tap water and deionized water was different from
that of the nanofluid and GA solutions. Tap water and deionized water showed a passive behavior
in the region of 0.43–0.97 VSCE, unlike the CNT-water nanofluid and the GA-water solutions. Tap
water had clear turnings of the curve at around 0.07 and 0.13 VSCE due to the formation of stable iron
and chromium oxides on the surface. A firm passive film was noticed in the potential range of 0.49
and 0.97 VSCE, unlike the CNT-water nanofluid and the GA-water solutions. The tap water had clear
turnings on the curve at around 0.067 and 0.126 VSCE due to the formation of stable oxides on the
surface. A firm passive film was noticed in the potential range of 0.4 and 1.0 VSCE. Such behavior for
tap water is consistent with what was reported elsewhere [60,62]. However, the passivation region
for the GA-water solution and CNT-water nanofluids did not have clear turnings, nor did they have
a sharp reduction in current density. This could be due to the existence of the surfactant GA and
CNTs that were adsorbed on the surface of the metal and added extra resistance in the bulk electrolyte.
Presence of these species covered parts of the sample surface and affected oxide formation on the
tested surface.
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3.2. Inhibiting Effect of CNT-Water Nanofluid

3.2.1. Corrosion Potential (Ecorr)

Table 4 shows the corrosion potential values obtained after conducting the OCP and polarization
resistance tests followed by potentiodynamic scans, for 316L stainless steel tested in different solutions
at room temperature. Corrosion potential (Ecorr) is essential for understanding the mechanisms of
corrosion inhibition with the addition of species to electrolyte solutions. Ecorr values are obtained from
the polarization curve with the extrapolation of the Tafel lines. Comparing Ecorr values of solutions
with and without CNTs can help identify the dominant effect of corrosion inhibition due to the addition
of the CNTs. Having no change or small change (less than 85 mV) in Ecorr with the addition of a
component is an indication that this component affected both reactions. A change or a shift in the Ecorr

value signifies that the added species affected one of the reactions more than the other, depending on
the direction of shifting [63–65].

Table 4. Corrosion potential values for 316L stainless steel tested in different solutions at
room temperature.

Solutions in Deionized Water (Percentages in wt%) Ecorr (mVSCE) ∆Ecorr (mVSCE)

0.05% CNT + 0.15% GA −49 27
0.1% CNT + 0.3% GA −38 39
0.3% CNT + 0.9% GA −130 59
0.5% CNT + 1.5% GA −108 41

0.15% GA −76 -
0.3% GA −77 -
0.9% GA −189 -
1.5% GA −149 -

In this neutral solution, the anodic reaction is the dissolution of 316L stainless steel ions into
the solution from the metal surface. Cathodic reactions are overall associated with the reduction of
metal cations and water to deposit metal and form hydrogen gas, respectively. A compound can be
classified as anodic type or cathodic type if the change in Ecorr values is higher than 85 mV [65,66].
Since the displacement for Ecorr between GA-water solutions and the corresponding Ecorr values for
CNT nanofluids was less than 85 mV, the CNT in the solution was affecting both anodic and cathodic
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reactions. The presence of CNTs and GA in deionized water solution reduces the dissolution of 316L
SS and retards the hydrogen evolution and hydroxyl formation reactions.

The addition of CNT affected both reactions, but there was a dominant effect towards one of the
cathodic or anodic reactions. A positive displacement of Ecorr values was observed for CNT-water
nanofluids compared with their corresponding GA-deionized water solutions. The highest positive
displacement (59 mV) was observed in 0.3 wt% CNT-water nanofluid, compared with that for the
corresponding 0.9 wt% GA-deionized water solution. This signifies that CNTs were more affective
towards the anodic reaction; that is, CNTs occupied anodic sites and decreased metal dissolution at a
higher rate than they decreased cathodic hydrogen evolution reaction. With the positive shift of Ecorr

values, decreasing anodic reaction might have occurred as a result of the adsorption of GA and CNTs
on the surface of the metal, which led to an enhancement of the stability of the metal oxide layer and
the CNTs layer [67]. A small displacement of Ecorr was also noted with the addition of CNTs and SDS
surfactant to deionized water, but it was negative displacement [68].

GA is a natural inhibitor that is soluble in water and contains a mixture of polysaccharides, sucrose,
oligosaccharides, arabinogalactan and glucoproteins [69,70]. GA plays a great role in providing the
needed corrosion inhibition in the surface of metallic substrates. It is an anionic surfactant with a
hydrophobic tail and hydrophilic head, and it is connected to metal surfaces though its hydrophilic
head, which is attracted to the polar negatively charged surface of the oxides [61]. GA contains
constituents in the form of hetero atoms such as oxygen, which will provide active adsorption sites [71].
With the structure of GA shown in Figure 4 [71], the interaction happens between the ferrous ions
and the oxygen atom in the backbone of the polymer, which provides the right coordination for
bonding [72]. On the other hand, CNTs are hydrophobic in nature, hence their surfaces need to be
modified by attachment with some groups in order to overcome their weak interfacial interactions
with aqueous solutions and allow their dispersion in such solutions [73]. GA is added to CNT-water
solution as a surfactant to allow homogenous dispersion of the hydrophobic CNT in water.
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Adsorption on the surface of the metal is recognized as the mechanism to explain the retardation
action of organic inhibitors such as GA [64,75]. Adsorption of inhibitors usually decreases the corrosion
rate in two ways [63]: (1) by decreasing the available surface area for reactions, which is called
the geometry blocking effect; and (2) by changing the activation energy needed for cathodic/anodic
reactions. Determining the dominant effect is difficult, as more than one parameter can influence the
result. Theoretically, no change in the Ecorr for the solution after the addition of the inhibitor indicates
that the geometry blocking effect is stronger than the activation energy effect [63,64]. Ecorr values
for all GA-water solutions had a small shift towards more negative values compared with those for
deionized water, highlighting the blocking’s role in the inhibition of GA-only solutions in addition to
the activation energy effect. Furthermore, the small positive displacement observed for Ecorr values
of CNT nanofluids also indicated the small role of the surface energy effect in CNT adsorption, and
hence in corrosion inhibition. It can be said that the blocking effect of CNTs had a major contribution
to corrosion inhibition, without ignoring the surface energy effect.
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3.2.2. Polarization Parameters

Table 5 shows some corrosion parameters for 316L SS tested in different solutions. Polarization
parameters of anodic (βa) and cathodic (βc) Tafel constants, corrosion current density (icorr), polarization
resistance (Rp), pitting potential (Epit) and corrosion rate were gathered after conducting three tests in
series: OCP, polarization resistance test and the potentiodynamic scan.

Table 5. Corrosion parameters for 316L stainless steel tested in different solutions at room temperature.

Solution (Compositions in
wt%)

βa
(V/decade)

βc
(V/decade)

Epit
(VSCE)

icorr
(µA/cm2)

Rp
(kohm)

Corrosion Rate
(mmpy)

Tap water 0.1038 0.0894 0.963 0.0145 4649 4.53
3.5% NaCl 0.2641 0.1527 0.187 0.1488 839 44.34

Deionized Water 0.4668 0.0762 1.100 0.0106 7994 3.44
0.05% CNT + 0.15% GA 0.2729 0.1375 1.147 0.0244 4984 7.47
0.1% CNT + 0.3% GA 0.2644 0.1384 1.128 0.0199 5950 6.43
0.3% CNT + 0.9% GA 0.3917 0.1266 0.957 0.0236 5503 7.12
0.5% CNT + 1.5% GA 0.2973 0.1194 0.882 0.0304 3777 9.45

0.15% GA 0.8012 0.1302 1.061 0.0556 2634 17.31
0.3% GA 0.4370 0.1617 1.050 0.0496 2853 16.30
0.9% GA 0.5350 0.1320 0.961 0.0367 3667 11.40
1.5% GA 0.3749 0.1621 1.059 0.0410 3792 12.45

Potentiodynamic scans of CNT-water nanofluids and of the GA-water solutions are shown in
Figures 1 and 2, respectively. A passive–active–transpassive–active behavior was observed, with or
without CNTs. Typically, adding an inhibitor affects one of the redox reactions, or both reactions.
An inhibitor is supposed to decrease the anodic Tafel slope and slightly increase the OCP after the
immersion. No change or negligible change in the cathodic Tafel slope indicates that the hydrogen
evolution is diminished by the surface blocking effect of the inhibitor [63].

Tafel constant values βa and βc were found to change with the addition of GA to deionized water,
indicating that GA affected both reactions and confirming that GA is a mixed-type inhibitor [43,75,76].
Addition of CNTs to the GA-water solution decreased both βa and βc values; however, the change in
βa was higher. This confirms the same finding as the slight shift of Ecorr of a higher influence on the
anodic reaction. At the same time, the decrease in βc was not significant with the addition of CNTs,
indicating the blocking effect of CNT in diminishing the hydrogen evaluation reaction. Hence, it can
be acknowledged that presence of CNT inhibited the corrosion of the stainless steel by blocking parts
of the exposed surface, with some influence on the surface energy of the steel.

Pitting potential (Epit) is also a corrosion parameter that can give insight into understanding
the susceptibility of the tested sample to corrosion in a specific condition. Epit is usually obtained
from the potentiodynamic scan curve where an abrupt increase in current density is detected. In the
current solutions, an abrupt increase in current density was not noticeable, so Epit was considered as
the potential at which the current density increased at a higher rate and kept on increasing without
any passivation state (re-passivation is where there is retarding in current density value). However, it
is important to mention that an increase in the anodic current does not entirely represent pitting; it
can also result from oxygen evolution (water oxidation) reaction, although for this instance we can
assume that pitting was more dominant. Therefore, the average pitting potential values (Epit) can
be estimated from the curves, and are listed in Table 5. It is noticed from curve (1) in Figure 5 that
the pitting potential in the NaCl solution was the lowest compared to all other solutions due to the
presence of aggressive chloride ions. When tested in NaCl solution, pitting initiated at an average
potential of 0.187 VSCE. This value is lower than the 0.286 VSCE obtained by Saadi et al. when they
tested 316L in 3.5 wt% NaCl solution [56]. On the other hand, Table 5 shows that lower concentrations
of CNT nanofluids (0.05 and 0.1 wt%) had the highest Epit values, which were higher than those for
deionized water and tap water. This was due to the inhibition effect and adsorption of the GA and CNT
on the surface of the metal, which enabled the surface of the metal to sustain higher potentials. Higher
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CNT concentrations are associated with lower pitting potential values and with higher corrosion rates.
Such increases in metal dissolution with higher CNT concentrations might be due to the formation
of active anodic sites in the stagnant regions between the accumulated CNTs and the surface of the
metal. It might be also because of the desorption of the CNTs from the surface with increased CNT
concentration [64].
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Figure 5. Effect of different loadings of CNT-water nanofluids and of GA-water solutions on the pitting
potential of 316L stainless steel.

Another parameter to investigate is polarization resistance (Rp). Table 5 shows that lower Rp

is associated with higher corrosion rates. Testing in NaCl solution resulted in a lowest resistance
of 839 kohm, while deionized water had the highest Rp value of 7994 kohm. In addition, testing in
GA-water had Rp values in the range of 2634–3667 kohm, while nanofluids and tap water had Rp

values in the range of 3777–5950 kohm. Presence of CNTs in nanofluids resulted in higher resistance in
the electrolyte solution. Among all concentrations of CNT nanofluids, 0.1 wt% resulted in the highest
polarization resistance, while further increases in CNT concentration led to a decrease in that resistance.
In addition to solution resistance and charge transfer resistance, CNTs formed a thin film carbon
coating on the surface of the metal that created extra resistance. However, at higher concentrations of
CNTs, anodic reaction accelerated at a higher rate and increased the corrosion rate. This is in agreement
with the increase in βa values obtained for the mentioned two highest CNT concentrations.

Table 5 shows the corrosion rate values of all tested solutions. As can be seen from the presented
average values, the highest corrosion rate was obtained with the NaCl solution, with a value of
44.34 mmpy (milli mil per year, equivalent to 0.0011 mm/yr) and a current density of 0.1488 µA/cm2.
Such a high corrosion rate was associated with the highest icorr and lowest Rp values among all other
tested solutions. Testing samples using deionized water resulted in lower corrosion rates than in tap
water, which was as expected since the latter solution contained more ionic species than deionized
water. For the same reason, the corrosion rate for GA in deionized water was higher than the corrosion
rates of deionized and tap water, despite the fact that GA is an inhibitor. Furthermore, adding CNTs to
the GA solution decreased the corrosion rate at all concentrations of CNT nanofluids. A minimum
corrosion rate of 6.43 mmpy was obtained with 0.1 wt% CNTs nanofluid. Increasing CNTs loading
higher than 0.1 wt% caused the corrosion rate to increase with increasing CNTs concentration. This
indicates that introducing CNTs to the GA-water solution increased the resistance of the bulk solution
and lowered the corrosion rate due to the adsorption of CNTs and the GA on the metal surface. The
presence of such species covered part of the metal’s exposed surface and decreased the anodic reaction.
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However, if the coverage was not uniform it could accelerate the corrosion by providing areas of
different potential values within the metal surface.

Previous work related to the present study was limited in scope and volume. Rashmi et al. tested
stainless steel in 0.1 wt% CNT-water nanofluid and achieved a corrosion rate of 2.48*10−5 mm/yr [40],
which is relatively close to our value of 1.63*10−4 mm/yr. In addition, an immersion test was used to
measure the corrosion rate of 316L stainless steel in de-mineralized water and in distilled water. It was
found that the corrosion rate in both de-mineralized water and distilled water were around 0.0608
and 0.0476 mm/yr, respectively [77]. Both values are higher than the corrosion rate obtained in the
current research (equivalent to 1.15 × 10−4 mm/yr), which might have been due to the method followed
in measuring the corrosion rate. An immersion test method is usually not recommended when the
material is expected to have low corrosion rates in the tested media [78]. Furthermore, Rashidi et al.
measured the corrosion rate of carbon steel in 0.1 wt% MWCNT dispersed in distilled water and found
corrosion rate values of 3.3402 and 1.643 mpy for SDBS and SDS surfactants used to stabilize the CNTs,
respectively [68].

Figure 6 shows corrosion rate values for samples tested in CNT nanofluids and for GA-water
solutions. A linear relation was proposed between the corrosion rate and the CNT loading that
appeared to be a positive relation. On the other hand, GA was revealed to have a negative linear
relation as the corrosion rate decreased with increasing GA concentrations. Similar results of decreasing
corrosion rates were found with increasing GA concentrations in potable water [76] and in an acidic
medium [42,75]. Furthermore, other surfactants such as SDS and SDBS used to disperse CNTs in
distilled water did not show an inhibition effect. Both surfactants were found to have higher corrosion
rates compared to those for distilled water [68].
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Figure 6. Corrosion rate for tested CNT-water nanofluids and for GA-water solutions.

The decrease in corrosion rate due to the presence of CNT can be evaluated by calculating the
inhibition efficiency (IE). Inhibition efficiency is the percentage of corrosion rate decrease with the
presence of CNT with respect to the corrosion rate value in CNT-free solution. Inhibition efficiency
(IE%) can be calculated as in Equation (6):

IE(%) =
CR (CNTs− f ree solution) − CR (CNTs nano f luid)

CR (CNTs− f ree solution)
× 100% (6)

where CR (CNT free solution) is the corrosion rate of 316L stainless steel samples tested in GA-water
solution, and CR (CNT nanofluid) is the corrosion rate of the same steel tested in CNT-water nanofluid.
The inhibitor’s surface coverage (θ) can also be calculated as the fraction of the inhibition efficiency
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(IE%/100), as listed in Table 6. A highest inhibition efficiency of 61% was obtained with 0.1 wt%
CNT nanofluid, while a lowest inhibition of 24% with 0.5 wt% CNT nanofluid. Comparing with the
inhibition effect of GA in the literature, it was found that a maximum inhibition of 96.8% was achieved
with the adsorption of acacia gum (600 ppm) on mild steel where the testing media were potable water
and at 80 ◦C [76].

Table 6. Inhibition efficiency (IE%) and surface coverage (θ) of 316L stainless steel samples tested in
different CNT nanofluids (mmpy is milli mil per year and µm/yr is micrometer per year).

Solution (Compositions
in wt%)

CNTs or GA
Concentration (C in g/L)

Corrosion Rate
(mmpy)

Corrosion Rate
(µm/yr)

IE
(%)

Surface
Coverage (θ)

0.05% CNT + 0.15% GA 0.05 7.47 0.190 57 0.57
0.1% CNT + 0.3% GA 1 6.43 0.163 61 0.61
0.3% CNT + 0.9% GA 3 7.12 0.181 38 0.38
0.5% CNT + 1.5% GA 5 9.45 0.240 24 0.24

0.15% GA 1.5 17.31 0.440 - -
0.3% GA 3.0 16.30 0.414 - -
0.9% GA 9.0 11.40 0.290 - -
1.5% GA 15 12.45 0.316 - -

3.2.3. Adsorption Isotherm

In order to evaluate the adsorption process of CNTs and the surfactant GA on the surface of the
metal surface, it is important to determine the adsorption isotherm that best fits our data. Adsorption
isotherms provide insights into the interactions between adsorption molecules and the surface by
plotting the surface coverage of the adsorbed inhibitor (θ) versus the equilibrium concentration of
the inhibitor (C). Different adsorption isotherms were checked for their applicability on the results
using Langmuir, modified Langmuir, Langmuir-Freundlich, Freundlich, Temkin, Flory–Huggins and
Frumkin equations. It was found that only the modified Langmuir type I, modified Langmuir type II
and Flory–Huggins equations were applicable to our experimental data. Adsorption isotherms were
obtained according to Equations (7)–(9) [79]:

Modified Langmuir isotherm type I:

C
θ

= nC +
n

Kads
(7)

Modified Langmuir isotherm type II:

θ
θ− 1

= nKadsC (8)

Flory–Huggins isotherm:
C
θ

= Kads(1− θ)
x (9)

where C is the equilibrium inhibitor concentration in g/L, θ is the surface coverage of the adsorbed
inhibitor, Kads is the adsorption equilibrium constant and n and x are parameters associated with the
number of displaced water molecules per active site on the surface of the metal and consequently the
number of adsorbed inhibitor molecules.

To determine which model would best fit the surface coverage of the adsorbed CNTs and GA
species, the linearized forms of these equations are plotted in Figure 7. The modified Langmuir type I
isotherm showed the best representation of the data, as it had a regression constant value (R2) of
0.9865. The Flory–Huggins isotherm matched the data better than modified Langmuir type II, with
both having R2 values of 0.9134 and 0.8543, respectively. The parameter n was obtained from the slope
of the modified Langmuir type I correlation, and had a value of 1.38, indicating that there was more
than one CNT and/or GA adsorbed at a particular active site on the surface. In addition, having an n
value in that model that was not equal to unity signifies that there were interactions between adsorbed
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CNTs and GA species [79]. The adsorption constant Kads was also obtained from the intercept of the
same correlation, and had a value of 0.61 L/g. The value of Kads represents how strongly and efficiently
the adsorbed species are attached to the surface [79,80]. A low value of Kads is expected with physically
adsorbed molecules.
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Figure 7. Adsorption isotherm plots for CNTs and gum arabic adsorbed on 316L stainless steel after
potentiodynamic testing at 22 ◦C.

Finding the value of Kads can also provide the amount of adsorption free energy (∆G◦ads) according
to Equation (10):

∆G
◦

ads = −R T ln(Kads Csolvent) (10)

where R is the gas constant, T is absolute temperature and Csolvent is the concentration of solvent (equal
to 999 g/L for water). A negative value of ∆G◦ads indicates that the adsorption of the surfactant is
spontaneous and that its interaction with the surface is strong. Having ∆G◦ads that is more positive than
−20 kJ/mol indicates that the adsorption is a physisorption process. On the other hand, if the process is
more negative than −40 kJ/mol, then the adsorption will be classified as chemisorption, as it involves
charge sharing or transfer to form bonds between surfactant and solid surface [61,64,65]. According to
our data, ∆G◦ads had a value of −15.73 kJ/mol, indicating it was a spontaneous adsorption. Since the
value of ∆G◦ads was more positive than −20 kJ/mol, then CNTs and GA were adsorbed physically to
the surface of the metal. Electrostatic interactions occurred between the negatively charged surface of
the metal and the adsorbed molecules, rather than chemical bonding. As the mechanism of adsorption
was a physical one, the process could be reversed, and a desorption of the molecules might happen,
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especially at higher temperatures or concentrations. A physical adsorption of GA on the surface of
steel was obtained in 0.1 M H2SO4 solution [71], in 0.1 M HCl solution [81] and in potable water [76].

3.3. Scanning Electron Microscope (SEM) Observations

The surface morphology of the tested samples were observed using scanning electron microscopy
(SEM) before and after washing with deionized water to inspect the effect of CNTs on the surface
coating. SEM images can also show pits’ size, shape and density. The presence of CNTs was clearly
observed on the surface of the metal, as shown in Figure 8a–d for samples tested in 0.05, 0.1, 0.3 and
0.5 wt% CNT-water nanofluid, respectively. The CNTs were randomly distributed on the surface of the
metal, and sometimes accumulated around and inside the pits more than the rest of the surface, as seen
in Figure 8b for the sample tested in 0.1 wt% CNT nanofluid. However, a uniform film coating of CNTs
on the metal surface was observed on the surface of 0.3 and 0.5 wt% of CNT nanofluid samples, as it is
shown in Figures 8c and 9d, respectively. In addition, this coating was found to have a weak adhesion
to the surface of the metal, as it was easily removed by rinsing the surface of the metal with deionized
water. Such weak adhesion might have been due to the high agglomerations and aggregations of CNTs
that reduced the attraction forces between CNTs and the metal surfaces. In Figure 9, washed samples
tested in all CNT concentrations were viewed to have pits’ diameter in a range of a few microns,
with a maximum diameter of 1.5 µm. However, the number of pits per surface area (pit density) was
examined to be higher for the samples tested in higher CNTs loadings of 0.3 and 0.5 wt% CNTs.
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Figure 9. SEM images for 316L stainless steel samples after the potentiodynamic testing in different
CNT loading of CNT-water nanofluid, after washing (a) 0.05, (b) 0.1, (c) 0.3 and (d) 0.5 wt%.

Figure 10 shows the surface SEM images of the metal samples tested in four different solutions:
deionized water, tap water, 1.5 wt% GA-water and 3.5 wt% NaCl solutions. The diameter of the pits
formed on the surface of metal in deionized and tap water samples were close to those formed in
nanofluid samples. However, pit density formed in deionized and in tap water samples were much less
than in the nanofluids. As for samples tested in GA-water solutions, all samples were shown to have
higher pit densities and bigger pit diameters (around 1–10 µm) than the corresponding ones obtained
for the CNT nanofluids. Bigger pits of around 30 µm diameters were formed with the corrosive NaCl
solution. These images highlighted the higher corrosion rate happening in NaCl solution samples
compared with all other samples. Samples tested in tap water and deionized water had the lowest
pit densities, which is in agreement with lowest corrosion rates found there. The increased corrosion
of samples tested in GA-solutions with respect to others exposed to all nanofluids was revealed too.
Covering part of the exposed surface with CNTs increased the resistance of charge movements, delayed
the propagation of these pits and, hence, decreased the corrosion rate, as can be seen from the smaller
diameter of pits formed with nanofluids compared with those when tested in GA-only solutions. On
the other hand, higher CNT concentrations exhibited higher pit densities, which indicates that CNTs
accumulate in stagnant areas and introduce active anodic sites underneath CNTs, therefore increasing
the chances to form pits there.
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3.4. Proposed Corrosion Inhibition Mechanism with the Presence of CNTs

MWCNTs have the tubular shape and consist of carbon atoms that are connected to each other
through covalent bonding. CNTs are suspended in solution using the anionic surfactant GA. The
hydrophobic part of the GA (hydrocarbon chain) is attached to the hydrophobic surface of the CNTs,
while the hydrophilic part of the surfactant (hydroxyl group) is connected to the polar molecules
in water [82]. GA surfactant is a natural corrosion inhibitor in acidic and alkaline solutions [41,61].
It works as an inhibitor by getting adsorbed on the surface of the metal through its oxygen atom, and
forcing the GA molecules to horizontally orient to the metal surface. Adsorption of the surfactant leads
to an increase in surface blocking and protection efficiency, even at low surfactant concentrations [41,42].
Such inhibition effects of GA were not as noticeable in the samples tested in the GA-water solution as
they were in deionized water, which had minimal amounts of ions and a very low corrosion rate.

The presence of CNTs and GA species influenced the passivation behavior of the metal, which
was observed from the potentiodynamic scans. Furthermore, adsorbed CNTs affected surface energy
and retarded both metal dissolution anodic reaction and hydrogen evolution reduction reaction, as
indicated by Ecorr shifts and Tafel slope values. However, from a thermodynamic perspective, it
was revealed that CNTs had a dominant blocking effect, as they were physically attached to the
surface of the metal by weak electrostatic forces. This physical adsorption followed the modified
Langmuir adsorption isotherm, and there were interactions between the adsorbed CNTs and/or GA
species. In addition, there were more than one of these species competing to occupy one active site of
the surface. These results conclude that the mechanism of inhibition was mainly through physical
blocking of CNTs/GA molecules. Surface blocking hinders corrosion reactions by increasing mass
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diffusion resistance and by providing obstructions that prevent the solution ions from reaching the
metal’s surface.

However, at higher concentrations, surface energy might dominate the blocking effect and increase
corrosion of the steel surface. This might be due to the formation of active anodic sites underneath the
CNTs, which were shown to cover the metal’s surface non-uniformly. The interfacial area between
CNTs and the metal surface is a stagnant area, which causes ion accumulations and lowers the pH site.
In addition, uncovered area have electrons liberated from metal dissolution that tend to react with
adsorbed oxygen and water molecules in the solution, creating cathodic regions there. This oxygen
reduction reaction tends to increase the site potential and create difference in the potential between
covered and uncovered areas. Therefore, active anodic sites are created under covered areas, which
increases the possibility of pit initiations. At the same time, CNTs cover part of the surface, which
increases diffusion resistance against the surrounding ions trying to reach the surface of the metal, and
retards corrosion. At higher CNT concentrations, the surface energy effect increases and dominates the
blocking effect. This will cause the metal to dissolute.

4. Conclusions

The corrosion properties of the 316L SS samples were tested under different types of solutions
including CNT-water nanofluids, GA-water, deionized water, tap water and 3.5 wt% NaCl solutions.
Samples tested in CNT nanofluids were shown to have relatively low corrosion rates and were
comparable to steel tested in tap water and in deionized water. In addition, lower corrosion rates
were obtained in all CNT nanofluids than in to those for GA-deionized water solutions of equivalent
GA concentrations. A lowest corrosion rate of 6.43 mmpy (milli mil per year) was obtained when
testing was conducted in 0.1 wt% CNT nanofluid at room temperature. These test conditions achieved
the highest inhibition efficiency of 61%. The inhibition performance of CNTs was due to the physical
adsorption of CNTs on the surface of the metal. CNTs formed an external layer that worked as a
barrier and prevented the solution ions from attacking the metal’s surface. From a thermodynamic
perspective, Gibbs free energy (∆G◦ads) value was −15.73 kJ/mol, indicating that CNTs and GA were
physically adsorbed on the surface of the metal. Furthermore, the adsorption process followed the
modified Langmuir type I adsorption isotherm, where there are interactions between adsorbed species,
and there is more than one CNT and/or GA molecule adsorbed at a particular active site.

The inhibition efficiency of CNTs was found to decrease with increasing CNT concentrations.
At higher CNT concentrations, a layer of CNTs formed on the surface of the metal in an uneven and a
non-uniform distribution. This could cause ion accumulation on stagnant regions that will become
active anodic sites and stimulate corrosion reactions. SEM images showed the biggest pit diameters
and highest densities for the steel tested in 0.5 wt% CNT-water nanofluids.
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