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Abstract
Ocean circulation, geological history, geographic distance, and seascape heterogene‐
ity play an important role in phylogeography of coral‐dependent fishes. Here, we 
investigate potential genetic population structure within the yellowbar angelfish 
(Pomacanthus maculosus) across the Northwestern Indian Ocean (NIO). We then dis‐
cuss our results with respect to the above abiotic features in order to understand the 
contemporary distribution of genetic diversity of the species. To do so, restriction 
site‐associated DNA sequencing (RAD‐seq) was utilized to carry out population ge‐
netic analyses on P. maculosus sampled throughout the species’ distributional range. 
First, genetic data were correlated to geographic and environmental distances, and 
tested for isolation‐by‐distance and isolation‐by‐environment, respectively, by ap‐
plying the Mantel test. Secondly, we used distance‐based and model‐based methods 
for clustering genetic data. Our results suggest the presence of two putative barriers 
to dispersal; one off the southern coast of the Arabian Peninsula and the other off 
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1  | INTRODUC TION

Coral‐dependent fishes occupy relatively discrete patches of habitat 
as adults that can be separated by areas of unsuitable habitat rang‐
ing in scale from few meters to thousands of kilometers (Morrison 
& Sandin, 2011; Planes, 2002). Patterns of distribution and inter‐
change across such habitat patches will be predominantly associ‐
ated with species pelagic life stage, as subadults and adults present 
species‐specific levels of homing behavior (Mumby, 2006). Nearly all 
demersal marine teleosts have a bipartite life cycle in which adults 
produce tiny propagules (i.e., ichthyoplankton) that undergo a pe‐
lagic larval phase, potentially migrating between patches before set‐
tling and metamorphosing into juveniles (Leis, 2006). Therefore, this 
life stage represents the first and most predominant opportunity for 
dispersal, and consequently where interpopulation connectivity may 
likely occur (Cowen, Lwiza, Sponaugle, Paris, & Olson, 2000; Cowen, 
Paris, & Srinivasan, 2006).

The inter‐patch distance and the movement capacity of the 
larvae may strongly impact population structure by the accumula‐
tion of local genetic differences through space. For example, if the 
distance of larval migration is much smaller than the species range, 
the population will be structured such that genetic and geographic 
distance between populations is positively correlated, resulting in 
patterns of isolation‐by‐distance (IBD; Wright, 1943). On the other 
hand, independent of geographic distance, the population may be 
structured due to the influence of seascape heterogeneity on gene 
flow and population connectivity. In this scenario, genetic differenti‐
ation increases with environmental differences (i.e., Isolation‐by‐en‐
vironment; IBE) due to natural selection against immigrants, sexual 
selection against immigrants, reduced hybrid fitness, and/or biased 
dispersal (Wang & Bradburb, 2014).

In contrast to these thoughts, the high fecundity of marine fishes 
combined with prevailing oceanographic currents and extended pe‐
lagic larval durations (PLD) would be expected to result in substantial 
larval dispersion potential, in which adult populations are variously 

interconnected (i.e., panmictic) and, therefore, no correlation exists 
between geographic and genetic distances. Biogeographic studies 
of marine fishes have demonstrated the existence of numerous en‐
demic species around isolated oceanic islands and in peripheral areas 
(e.g., Red Sea), suggesting that larval retention can occur in a myriad 
of ways even in short spatial scales. Indeed, in addition to distances 
and heterogeneous seascapes, historical and oceanographic barriers 
are also thought to be important factors affecting larval dispersal 
and consequently population structure (Bowen et al., 2016; Bowen, 
Rocha, Toonen, & Karl, 2013). For example, the biogeographic pat‐
terns of adult reef fishes inhabiting the Northwestern Indian Ocean 
(NIO) indicate no single, repeated, or uniform explanation to larval 
retention. Instead high variance in contemporary species distribu‐
tions is likely the outcome of a number of vicariance events that in‐
volve historical and contemporary barriers (Berumen, DiBattista, & 
Rocha, 2017).

In the NIO, historical sea level changes within the Red Sea and 
Arabian Gulf associated predominantly with Pleistocene epoch gla‐
cial cycles have impacted the historical availability of habitat, direc‐
tion, or magnitude of oceanographic currents, and abiotic conditions 
within both regions, substantially impacting on current levels of bio‐
diversity (Riegl & Purkis, 2012). Water exchange between the Red 
Sea and the rest of the Indian Ocean, through the Strait of Bab al 
Mandab, has been repeatedly restricted during Pleistocene glacial 
cycles (Stevens et al., 2014) when sea level was lowered by ~130 m 
(Clark et al., 2009). In comparison, the Arabian Gulf reached its pres‐
ent levels just 6–9 K years ago, with the entire seabed therefore ex‐
posed during the Pleistocene period (Vaughan, Al‐Mansoori, & Burt, 
2019; Lokier et al., 2015).

In turn, contemporary dispersal barriers for coral reef fishes 
within the NIO are mainly structured by southwest monsoonal 
activity, resulting in seasonal cold‐water upwelling events, which 
can hinder planktonic dispersal of species intolerant to low tem‐
peratures (Hoeksema, 2007). In addition, such oceanographic 
event have also led to large areas of unsuitable larval settlement 

northern Somalia, which together create three genetic subdivisions of P. maculosus 
within the NIO. Around the Arabian Peninsula, one genetic cluster was associated 
with the Red Sea and the adjacent Gulf of Aden in the west, and another cluster was 
associated with the Arabian Gulf and the Sea of Oman in the east. Individuals sam‐
pled in Kenya represented a third genetic cluster. The geographic locations of genetic 
discontinuities observed between genetic subdivisions coincide with the presence of 
substantial upwelling systems, as well as habitat discontinuity. Our findings shed light 
on the origin and maintenance of genetic patterns in a common coral reef fish inhabit‐
ing the NIO, and reinforce the hypothesis that the evolution of marine fish species in 
this region has likely been shaped by multiple vicariance events.
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habitat in the upwelling zones, potentially isolating populations 
by restricting stepping‐stone connectivity and thereby increas‐
ing the chance for vicariant splits (Burt et al., 2016; Priest et al., 
2016).

The geographic position and consequences of such barriers 
on reef fish distribution within the NIO have been previously in‐
vestigated, with such works relying predominantly on species 
occurrence data (Burt et al., 2011; DiBattista, Choat, et al., 2016; 
DiBattista, Roberts, et al., 2016; Kemp, 1998, 2000; Klausewitz, 
1972, 1989). Increasing work about these barriers has now focused 
on surveying the population genetic structure of conspecifics 
throughout their range, as genetic discontinuities may provide in‐
sight into past and present barriers and allow historical inferences 
on dispersal (Berumen et al., 2017). Despite these endeavors, there 
is still little understanding of the mechanisms underlying the dis‐
tribution of biodiversity of coral reef fishes within the NIO (see, 
Bowen et al., 2013; DiBattista, Choat, et al., 2016; DiBattista, 
Roberts, et al., 2016).

In this paper, we investigate population genetic structure of 
the yellowbar angelfish Pomacanthus maculosus (Pomacanthidae; 
Forsskål 1775), a common coral‐dependent fish found throughout 
the NIO. We first examine whether intraspecific genetic variation 
has been driven by either IBD or IBE, and if not, we examine whether 
genetic variation within P. maculosus aligns with contemporary spe‐
cies distribution patterns by investigating the role of the putative 
marine barriers in the NIO.

2  | MATERIAL AND METHODS

2.1 | Study area

The study region comprised the Northwestern Indian Ocean (NIO): 
northeast of Kenya on the eastern African coastline (hereafter re‐
ferred to as Kenya), and the seas surrounding the Arabian Peninsula, 
that is the Red Sea, the Gulf of Aden, the Arabian Sea, the Sea of 
Oman, and the Gulf (also known as the Arabian Gulf or Persian Gulf; 
Figure 1). Coral reef habitat persists across the NIO, despite sub‐
stantial gradients in environmental features. In the Arabian Gulf, for 
example, sea surface temperature (SST) ranges from 12°C in winter 
to over 36°C in summer, and salinity is often >45 (Reynolds, 1993). 
In the Red Sea, salinity can reach 42.5 (Medio et al., 2000), and SST 
can rise to values of between 36 and 38°C in the south, while tem‐
peratures as low as 10°C have been recorded in the Gulf of Suez in 
the north. In contrast, both the Arabian Sea and the ocean off Kenya 
exhibit moderate salinity (36–37) and relatively cool temperatures 
(20–26°C and 25–29°C, respectively; Burt et al., 2011; Kayanne et 
al., 2006).

The NIO exhibits more dramatic seasonal variations in abiotic pa‐
rameters than the rest of the Indian Ocean (Benny, 2002). The water 
mass distribution and upper ocean circulation in the NIO changes 
in response to biannual wind stress reversals, creating seasonality 
in oceanographic conditions (Shetye & Shenoi, 1994). During winter 
(November–March), the monsoon wind blows from the northeast, 

F I G U R E  1  Locations of the 27 
sampling sites for Pomacanthus maculosus 
across the Western Indian Ocean
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away from the Asian continent, and the ocean surface circulation in 
the Arabian Sea is approximately counter‐clockwise. This pattern is 
reversed during the summer monsoon (May–September) when the 
wind blows strongly from the southwest, and the circulation in the 
Arabian Sea is clockwise (see Cutler & Swallow, 1984).

2.2 | Sampling design and DNA extraction

The sampling scheme was designed to maximize the geographic 
and environmental distances covered, so as to best investigate the 
importance of these factors for population genetic variation within 
P. maculosus. Therefore, a total of 151 tissues samples (fin clips) were 
collected from 27 locations that together covered an extensive part 
of the distributional range of the species, including the Red Sea, the 
Gulf of Aden, the Sea of Oman, the Arabian Gulf and Kenya (Figure 1 
and Table 1). Fin clips were preserved in 96% ethanol and kept at 
−20°C until DNA extraction. High‐molecular‐weight genomic DNA 
was isolated in a final elution volume of 100 μl following the manu‐
facturer's instructions using either the Qiagen DNeasy® Blood & 
Tissue Kit or the KingFisher Cell and Tissue DNA Kit. DNA concen‐
trations in the extracts were measured using the Qubit 2.0 dsDNA 
BR Assay Kit (Invitrogen™) Fluorometer and checked for high‐mo‐
lecular‐weight bands on a 1% agarose gel.

2.3 | Genotyping and de novo assembly of RAD tags

RAD tag libraries were constructed by Floragenex from two 96‐
well  plates, following the protocol outlined by Baird et al. (2008), 
Hohenlohe et al. (2010) and Etter (2011). In brief, high‐molecular‐
weight genomic DNA was digested into small fragments with a high 
fidelity SbfI restriction enzyme, and an adapter (P1) containing a 

matching sticky‐end TGCAGG and in‐line barcode sequence was 
ligated to the fragment's overhanging ends. Tagged restriction frag‐
ments from all individuals were then pooled (multiplexed), randomly 
sheared and size‐selected to an appropriate length for sequencing 
(typically 300–500 bp, average of ~380 bp). Thereafter, fragments 
were ligated to a Y‐adapter (P2), which ensures that all amplified 
fragments have the P1 and barcode, followed by the partial re‐
striction site, a few bases of flanking sequence, and a P2 adapter 
(Davey & Blaxter, 2010). Finally, the DNA fragments representing a 
much‐reduced part of the original genome were PCR amplified using 
P1 and P2 primers and the RAD‐seq libraries were sequenced on 
the Illumina HiSeq2000 platform applying single‐read (1 × 100 bp) 
sequencing. Each plate was processed separately, with all samples 
within a plate pooled into a single library and sequenced on one lane.

Raw reads obtained from 100 bp single‐end Illumina sequencing 
were assessed for sequence quality, AT/GC content, and duplicate 
or overrepresented sequences using FastQC v.0.11.5. After initial 
quality assessment, reads were filtered and detection of single nu‐
cleotide polymorphism (SNP) was performed in Stacks v.1.42 pipe‐
line (Catchen, Amores, Hohenlohe, Cresko, & Postlethwait, 2011; 
Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013; Hohenlohe 
et al., 2012) using the modules process_radtags, denovo_map.pl and 
populations.

As a reference genome was not available for P. maculosus, RAD 
tags were analyzed de novo, with parameters chosen according to 
the criteria showed in Paris et al. (2017). This was undertaken by 
clustering in loci similar sequence reads, at individual level, that had 
a maximum of two base pairs mismatches (M = 2) between them, and 
using only sequences with a minimum read depth of three (m = 3) 
were required to create a stack. After building of loci at the individ‐
ual level, cstacks was used to match loci across samples and build a 

TA B L E  1  Geographic locations of sampling sites and sample sizes for P. maculosus

Region Country Sampling site Coordinates Number of samples

Gulf of Aden Djibouti Maskali N 11°41′, E 43°08′ 13

Gulf of Aden Djibouti Bay de Ghoubbet N 11°30′, E 42°40′ 4

Red Sea Saudi Arabia Farasan Island (North of Shuma, 
Mahama, Abulad Island)

N 16°45′, E 41°36′ 11

Red Sea Saudi Arabia Jazirat Burcan N 27°54′, E 35°03′ 1

Red Sea Saudi Arabia Gulf of Aqaba N 28°24′, E 34°44′ 2

Red Sea Saudi Arabia Dolphin Lagoon N 19°31′, E 39°39′ 2

Red Sea Saudi Arabia North Abu Latt, Saut, S. Sulaym N 19°57′ E 40°09′ 9

Red Sea Saudi Arabia Al‐Fahal, Om Al Balak, Al Wusul N 22°13′, E 38°57′ 10

Red Sea Saudi Arabia Middle Reef, Shib Habil, Manila Bay N 20°07′ E 40°12′ 10

Red Sea Saudi Arabia Abu Shosha N 22°18′ E 39°02′ 6

Sea of Oman Oman Fahal Island N 23°40′ E 58°30′ 13

Arabian Sea Oman Masirah Island N 20°09′, E 58°38′ 3

Arabian Gulf Abu Dhabi Saadiyat N 24°31′, E 54°26′ 24

Arabian Gulf Qatar Umm Al‐Arshan, Al Rayan Reef, Al 
Zubara

N 26°31′, E 50°17′ 34

Africa Kenya Lamu N 2°16′ E 40°54′ 9
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catalog, which allowed a maximum of one base pair mismatch (n = 1; 
Final coverage for each individual: mean = 57.77 X; stdev = 14.01). 
Subsequently, RAD tags for all individuals were used to detect only 
the first SNP (‐‐write_single_snp) by identifying at the same locus 
a marker that was present in one set of individuals but absent in 
another.

2.4 | Filtering procedures

A second filtering step was performed in Plink 1.9. Individuals with 
more than 10% missing genotypes were excluded and only SNPs 
with a 90% genotyping rate (10% missing) and a minor allele fre‐
quency (MAF) higher than 5% were included. We also filtered data 
in respect to linkage among SNPs using a window size of 100 bp 
and a pairwise r2 threshold of 0.2. Finally, markers that did not 
meet the Hardy–Weinberg Equilibrium (HWE) assumptions were 
excluded.

2.5 | Summary statistics

We used the FST statistic (Wright, 1950) in order to relate the amount 
of genetic variation between populations from different sampling 
sites to the total genetic variation across populations (Meirmans & 
Hedrick, 2011). These indexes, as well as the expected heterozygo‐
sity (He) within each population, were obtained in GenoDive v.2.0.

2.6 | Isolation‐by‐distance and isolation‐by‐
environment

Correlation between genetic divergence and geographic distances 
was tested for IBD by applying the Mantel test to the linearized 
FST [FST/(1  − FST)] values and geographic distances (in kilometers). 
Geographic distances between sampling locations (i.e., the minimum 
distance between the locations by sea) were determined in Google 
Earth Pro v.7.3, and the Mantel test was executed in GenoDive v.2.0.

To test for IBE, we acquired geographic information systems (GIS) 
data for a total of nine water environmental variables (temperature, 
salinity, nitrate, phosphate, silicate, dissolved oxygen, chlorophyll, 
phytoplankton and primary productivity) from Bio‐ORACLE (Assis 
et al., 2018), and in addition, substratum rugosity was obtained from 
the QGIS terrain ruggedness index. The environmental matrix was 
filled out with values extracted for each variable at every location 
where tissue samples were collected. This information was centered 
and scaled before performing a principal components analysis (PCA) 
in R. All procedures were conducted using the R statistical software 
(R Development Core Team, 2017), by means of the following pack‐
ages: raster (Hijmans, 2017), rasterVis (Lamigueiro & Hijmans, 2018), 
maptools (Bivand & Lewin‐Koh, 2015), gridExtra (Auguie, 2017), 
lattice (Deepayan, 2008) and fields (Nychka et al., 2017). A Mantel 
test was then performed in GenoDive v.2.0 to measure the linear 
relationship between environmental distance, as defined by the 
Euclidian distances in the PCA, and genetic distance, as measured 
by the FST statistic.

2.7 | Distance‐based method (PCA)

We performed a PCA with the EIGENSOFT v.6.1.3 program in order 
to identify patterns in the data, by highlighting similarities and differ‐
ences between samples and sampling sites.

2.8 | Model‐based clustering analyses

The most probable number of genetic clusters and the member‐
ship of each individual to these clusters were estimated using the 
ADMIXTURE software (Alexander, Novembre, & Lange, 2009). The 
most likely number of clusters was selected based on cross‐vali‐
dation error (CV) and the value of K that minimized the residuals 
(Pritchard et al., 2000). The prior expectation for the possible range 
of K (between 1 and 5) was based on the number of regions from 
which the samples were collected, that is the Arabian Gulf, the Sea 
of Oman, the Gulf of Aden, the Red Sea and Kenya.

2.9 | Maximum likelihood evolutionary tree

To further investigate historical relationships and patterns of gene 
flow between populations, we used the TreeMix program (version 
1.13; Pickrell & Pritchard, 2012), which provides a graphical repre‐
sentation of both population splits and migration events. TreeMix 
exhibits a branch‐and‐leaf structure, where the leaves represent 
populations and the branches are the inferred relationships between 
them. Additionally, the tree can account for situations where more 
than one branch may lead to the same leaf, suggesting population 
admixture and migration between populations.

Assuming the independence of SNPs (‐k 0), we ran TreeMix using the 
five sampled regions, and rooting the tree at the Red Sea, a suggested 
glacial refuge for many fish species during the last glaciation (DiBattista 
et al., 2013; DiBattista, Choat, et al., 2016). First, we assessed the tree 
topology with no migration events, which corresponded well with the 
ADMIXTURE and PCA results, and then we sequentially allowed for 
one to three migration events, performing 100 independent replica‐
tions for each of them using the bootstrap option. The log‐likelihood 
value of each model was compared pairwise with the following model 
using the likelihood ratio test (LRT). The best model was selected if 
a significant difference was found between two consecutive models, 
and the corresponding residuals were visualized with the in‐built R 
script plotting functions in TreeMix v.1.13. The amount of variance in 
the relatedness between populations explained by the model was cal‐
culated using the R script treemixVarianceExplained (Card, 2015).

3  | RESULTS

3.1 | RAD‐seq summary

The RAD library of 151 specimens yielded a total of 787,286,606 
reads, of which 633,985,956 remained after quality filtering and 
demultiplexing. These filtered reads were then used to create a 
catalogue containing 1,297,018 putative SNPs for construction of 
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genotypes for all individuals. After the first filtering steps, Stacks 
yielded 100,275 SNPs. Further filtering procedures in Plink, such as 
missing genotype rate, minor allele frequency, linkage disequilibrium 
and nonconformance with Hardy–Weinberg Equilibrium, excluded 
one individual from the Arabian Gulf due to missing genotype data. 
A total of 10,225 genome‐wide SNPs from 150 individuals were re‐
tained and used in all subsequent analysis.

3.2 | Summary statistics

Pairwise comparison between regions yielded values of FST rang‐
ing between 0.002 and 0.143 (p = .001) with the highest values ob‐
served in comparisons between the Arabian Gulf and the Kenyan 
coast, while the lowest values occurred between the Red Sea and 
the Gulf of Aden. Grouping the samples into three populations based 
on the clustering analyses (see ADMIXTURE and PCA results below), 
FST ranged from 0.043 between the Eastern Arabian Peninsula (EAP) 
and the Western Arabian Peninsula (WAP) populations, to 0.135 be‐
tween Kenya and the EAP (p = .001; Tables 2 and 3).

3.3 | Isolation‐by‐distance and Isolation‐by‐
environment

Geographic distances between sampling locations were signifi‐
cantly correlated (r2 = .421, p = .001) with pairwise genetic distances 
(Figure 2). In contrast, no significant linear relationship was found 
between genetic and environmental distances (r2 =  .019, p =  .523; 
Figure 3).

3.4 | Historical population parameters

The Admixture analysis indicated the presence of population struc‐
ture within the dataset. Cross‐validation error (CV) pointed to two 

  Arabian Gulf Sea of Oman Gulf of Aden Red Sea Eastern Africa

Arabian Gulf – 0.001 0.001 0.001 0.001

Sea of Oman 0.015 – 0.001 0.001 0.001

Gulf of Aden 0.052 0.033 – 0.001 0.001

Red Sea 0.049 0.032 0.002 – 0.001

Eastern Africa 0.143 0.130 0.112 0.103 –

Note: Significance p‐values are showed in the above diagonal.

TA B L E  2  Pairwise FST values (below 
diagonal) for P. maculosus based on 10,225 
SNPs

TA B L E  3  Pairwise FST values (below diagonal) for P. maculosus 
based on 10,225 SNPs

  EAP WAP EA

EAP – 0.001 0.001

WAP 0.043 – 0.001

EA 0.135 0.102 –

Note: Significance p‐values are showed in the above diagonal.
Abbreviations: EA, Eastern Africa; EAP, Eastern Arabian Peninsula; 
WAP, Western Arabian Peninsula.

F I G U R E  2  Relationship between pairwise geographic distance 
and genetic differentiation estimates (FST/[1 − FST]) for Pomacathus 
maculosus in the NIO

F I G U R E  3  Principal component analysis based on the 10 
environmental variables, dots represent the sampling sites where 
tissue samples were collected. chl, Chlorophyll; dis oxyg, dissolved 
oxygen; prim prod, primary productivity; rug, rugosity; SSS, sea 
surface salinity; SST, sea surface temperature; suf nit, surface 
nitrate; suf phyt, surface phytoplankton; surf phosf, surface 
phosphate; surf sil, surface_silicate
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values of K as the most likely number of clusters for P.  maculosus 
(Figure 4). At K  =  2 (CV  =  0.56700), the clusters were comprised 
by a Western (the Red Sea, the Gulf of Aden and Kenya) and an 
Eastern (the Arabian Gulf and the Sea of Oman) cluster. At K  =  3 
(CV = 0.57138), individuals from Kenya composed a distinct group, 
and therefore suggested a division into three distinct clusters; a 
Western Arabian Peninsula cluster (Red Sea and Gulf of Aden), an 
Eastern Arabian Peninsula cluster (Arabian Gulf and Sea of Oman), 
and an eastern Kenya cluster. Although the Sea of Oman consist‐
ently clustered with the Arabian Gulf, this area is a very clear admix‐
ture zone (Figure 4).

3.5 | Principal component analyses

The top two principal components (PCs) explained 6.74% of 
the total of genotypic variation. PC1 (4.3% of the variation) dis‐
tinguished individuals sampled on the east side of the Arabian 
Peninsula from those obtained on the west side of the peninsula. 
Whereas PC2 (2.44% of the variation), to a higher extent, discrim‐
inated between individuals sampled off the coast of Kenya and 
those collected around the peninsula. Thus, one cluster included 
individuals from the western Arabian Peninsula (i.e., the Red Sea 
and the Gulf of Aden), the second cluster comprised eastern 

sampling sites (Sea of Oman and Arabian Gulf), and the third clus‐
ter consisted only of individuals from the African coast off Kenya 
(Figure 5).

3.6 | TreeMix

The tree topology from TreeMix corresponded well with the 
ADMIXTURE and PCA results (Figure 6). The Red Sea and the Gulf of 
Aden clustered together in one branch, whereas the Arabian Gulf and 
the Sea of Oman clustered in another branch, and Kenya was placed in 
a third branch with a long drift parameter. The LRT showed no signifi‐
cant difference between the assessed models when allowing for either 
one, two or three migration events. Therefore, the most parsimoni‐
ous model with one migration edge was chosen. The selected model 
explained 99.92% of the variance and showed very weak migration 
(w = 0.006) from Kenya to the Sea of Oman (Figure 6).

4  | DISCUSSION

This work suggests the presence of two barriers that structure the 
population of P. maculosus into three genetic clusters across the sam‐
pled area: a subpopulation on the Eastern African coast represented 

F I G U R E  4  Population structure 
estimated by Admixture analysis. The 150 
sampled individuals are represented by 
the vertical lines, which are partitioned 
into K colored segments that represent 
the individual's estimated membership 
fractions in K clusters. 10,225 SNPs

F I G U R E  5  Principal component analysis of multilocus 
genotyped for 150 individuals of Pomacanthus maculosus from the 
NIO. The color scheme reflects geographic regions. 10,225 SNPs

F I G U R E  6  Maximum likelihood tree inferred by TREEMIX with 
the arrow indicating the migration event, the color represents its 
weight. 10,225 SNPs
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by the samples collected in Kenya, and one distinct subpopulation 
on each side of the Arabian Peninsula. Although there were some 
important exceptions, we demonstrate an overall concordance be‐
tween previously proposed biogeographic provinces, as defined by 
the taxonomic composition of fishes, and population genetic cluster‐
ing of P. maculosus.

4.1 | Searching for causes of genetic structure

4.1.1 | IBD and IBE

Dispersal has important consequences on the spatial distribution 
of genetic variation (Puebla et al., 2009). In coral reef fish, genetic 
structure driven by IBD is commonly attributed as the origin of the 
differentiation among populations (Planes & Fauvelot, 2002). Our 
study, however, showed that at the scale of the whole sample range 
(i.e., 3,000 km), IBD explained a significant but modest portion of 
the overall genetic variation in yellowbar angelfish. The decrease 
of the slope of IBD at such large spatial scales may be due to sev‐
eral factors (Puebla et al., 2009), such as the greater importance of 
mutation at large spatial scales (Rousset, 1997) and nonequilibrium 
conditions between migration and genetic drift (Slatkin, 1993).

We also sought to understand how the environment affects the 
distribution of genetic variation over populations by testing for IBE, 
but the analysis showed no significant relationship. Pomacanthus 

maculosus is distributed around the entire Arabian Peninsula, with 
the edges of the distribution (the Red Sea and the Arabian Gulf) 
being environmentally similar to each other (Figure 3). However, 
the genetic data showed that individuals from the Red Sea and the 
Arabian Gulf represent two distinct populations, and, therefore, no 
linear relationship between genetic and environment was detected.

We tested only for IBD and IBE, as alternative approaches such as 
Isolation by Biophysical Connectivity (IBC) requires biological informa‐
tion (e.g., PLD, larval vertical distribution, spawning season) that are 
not available for the majority of species inhabiting the NIO. Biophysical 
models would become oversimplified without sufficient biological in‐
formation, and will thus likely fail to represent the characters of a single 
target species (but see Foster et al., 2012; Truelove et al., 2017).

4.1.2 | Oceanographic barriers

A possible reason for the distribution of genetic diversity observed 
in this study is the direct impact of ocean circulation forces on lar‐
val recruitment, as modeled in the IBC approach. Assuming this hy‐
pothesis, it might be suggested that the short spawning period of 
P. maculosus in the southern Arabian Gulf (September and October; 
Grandcourt & Francis, 2010), combined with the large degree of sea‐
sonality in ocean circulation across the NIO, creates a window of 
oceanographic conditions through which the larvae are released into 
the prevailing currents. During September and October, strong and 

F I G U R E  7  Map of the study area 
showing coral-reef habitats available in 
the Western Indian Ocean (red squares)
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steady winds blowing along the shore induce offshore movement 
of the Ekman layer, with consequent depression of the sea surface 
height (SSH) in coastal areas. This is followed by vertical advection 
of cooler waters from deeper layers to the surface, especially in the 
region off Somalia (Bruce, 1979) and Oman (Elliott & Savidge, 1990; 
Vic et al., 2017). During this period, ichthyoplankton located within 
the Ekman layer therefore tend to be transported offshore into areas 
of unsuitable habitat for settlement (Lett et al., 2007).

Despite potential negative impacts on larval recruitment, ocean 
circulation could also favor connection between the subpopulations 
of P. maculosus. During summer, when P. maculosus (Grandcourt & 
Francis, 2010) and other marine fish species spawn (Claereboudt, 
McIlwain, Al‐Oufi, & Ambu‐Ali, 2005; McIlwain et al., 2006), the 
wind blows southwest and drives the prevailing clockwise circula‐
tion in the Arabian Sea (see Cutler & Swallow, 1984). This period of 
clockwise upper ocean circulation represents the best opportunity 
for northwards dispersal of larvae from east Africa (Kemp, 1998), 
and could explain the (very weak) migration event from Kenya to the 
Sea of Oman indicated in the TreeMix analysis.

4.1.3 | Seascape barriers

An alternative hypothesis for the observed population genetic struc‐
ture is that the lack of suitable habitats, in both the south of the 
Arabian Peninsula and along the Somali coast, creates an unbridge‐
able gap by restricting stepping‐stone connectivity between both 
the East and West side of the Arabian Peninsula and between the 
Arabian Peninsula and Kenya (Figure 7). According to this hypothe‐
sis, the seasonal upwelling events act as an indirect cause of genetic 
divergence by reducing the growth of suitable habitat (i.e., coral 
reefs) in these areas. For example, only four principal areas of reef 
coral occur along the Omani coast (Burt et al., 2016; Glynn, 1993), 
while a major break in habitat continuity occurs off the Somali coast 
where corals are reduced to patch reefs scattered within seagrass 
beds (Carbone & Accordi, 2000).

Besides the lack of suitable adult habitat between subpopula‐
tions, gene flow magnitude in fish (Rocha et al., 2002) and inver‐
tebrates (Ayre, Minchinton, & Perrin, 2009) may also vary due to 
differences in habitat specificities, such as rugosity. Coral reefs are 
topographically complex places that influence the associated organ‐
isms to various degrees either by increasing refuge from predators or 
by affecting the relationships between species (Gratwicke & Speight, 
2005; Luckhurst & Luckhurst, 1978). To account for this hypothesis 
that habitat complexity affects the connectivity, our study consid‐
ered the effect of rugosity on genetic structure in the IBE analysis, 
but this variable did not affect the relationship between genetic and 
environmental distance.

4.1.4 | Geological history

The endemism assigned to the NIO has also likely been augmented 
by geological history, as the seascape features of this area were 
drastically altered during the last glaciation events. This created 

barriers and changes in environmental conditions that likely led to 
the radiation of subpopulations or even species (DiBattista et al., 
2013; DiBattista, Choat, et al., 2016; DiBattista, Roberts, et al., 2016; 
Klausewitz, 1972, 1989). For example, decreasing sea levels during 
glaciation caused significant alterations in environmental condi‐
tions by restricting water exchange between the Red Sea and Indian 
Ocean, and thereby creating a hypersaline environment within the 
Red Sea (DiBattista, Choat, et al., 2016; DiBattista, Roberts, et al., 
2016). Also, the exposure of the seabed in the Gulf during this period 
(Vaughan et al., 2019; Lokier et al., 2015; Sarnthein, 1972) decreased 
the availability of habitat within the NIO. Therefore, the population 
currently inhabiting the Gulf is likely younger and tends to be geneti‐
cally less diverse than neighboring populations  (Hume et al., 2016). 
Indeed, our results show that the Eastern population (0.285) pre‐
sented slightly lower heterozygosity compared to the Western popu‐
lation (0.293). Both populations showed higher heterozygosity than 
the African population (0.229), but this could potentially be explained 
by a smaller population size and/or by our restricted number of sam‐
pling sites along the African coast.

Although the radiation of P. maculosus is not clear to date, phy‐
logenetic reconstruction carried out with thirteen Pomacanthus spe‐
cies revealed strong evidence that speciation within the genus has 
likely been a consequence of historical vicariance events, such as 
the Terminal Tethyan Event and the rise of the Isthmus of Panama 
(Hodge et al., 2013). Molecular analyses suggest that the speciation 
of P. maculosus occurred ~5 Mya (Hodge et al., 2013), a period that 
coincides with the origin of most reef fish species endemic to the 
Red Sea (Hodge et al., 2014). Nevertheless, the wide distribution of 
P. maculosus within the NIO has also led to the hypothesis that the 
species originated earlier, in the Mediterranean Tethys during the 
Pre‐Pliocene (Klausewitz, 1972).

4.2 | Genetic population structure within the 
Western Indian Ocean (WIO)

Recent population genetic studies carried out within the WIO have 
supported a common geographic position of putative barriers across 
the Arabian Peninsula. The presence of a genetic discontinuity be‐
tween both sides of the Arabian Peninsula as shown here for P. mac‐
ulosus, coincides with previous population genetic reports from both 
mitochondrial DNA of Cephalopholis hemistiktos (Priest et al., 2016) 
and from double digest RAD sequencing (ddRAD‐seq) of Amphiprion 
bicinctus and A. omanesis (Saenz‐Agudelo et al., 2015), which in turn 
also presented a genetic break within the Red Sea (Nanninga et al., 
2014). In contrast, mitochondrial DNA from a multi‐taxon survey 
around the peninsula revealed no evidence of population structure 
in nine of eleven fish species within the WIO. The two exceptions, 
Chaetodon melannotus and Lutjanus kasmira, were genetically struc‐
tured by two different barriers, one between Oman and Socotra and 
one between Djibouti and Somalia, respectively (DiBattista et al., 
2017). With respect to the genetic barrier off Somalia, five of the 
seven species examined in DiBattista et al. (2013) were genetically 
differentiated between the Red Sea and the WIO.
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5  | CONCLUSION AND FUTURE RESE ARCH 
DIREC TIONS

There seems to be no single explanation or vicariance event that 
shaped the evolutionary histories of fish species within the NIO. 
Therefore, comparative phylogeography studies could represent an 
initial endeavor to detect and measure the relative importance of 
the major evolutionary forces preventing the gene flow and shap‐
ing the patterns of genetic diversity. Moreover, future genetic work, 
particularly studies using advanced genomic approaches (e.g., whole 
genome sequencing) could provide greater resolution for particular 
taxa of interest. On the other hand, biogeographic studies in the WIO 
are still hindered by socioeconomic and political restraints in some of 
the countries bordering the region, which have created a situation of 
limited access for scientists. For example, the sea off Somalia coin‐
cides with the major faunal change between the Arabian Peninsula 
and the WIO, but is largely unstudied, much like the understudied 
region off the coast of the Arabian Sea between the Gulf of Aden 
and southern Oman. These areas are not well characterized, and not 
solely in terms of species distributions, but also in terms of habitats.
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