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ABSTRACT 

It is well known that the Newmark’s method is considered one of the most popular methods for structural 

dynamic analysis. In this study, starting from the basic Newmark’s method, a new accurate method is 

investigated and developed. The basic idea of the proposed method is to use Richardson’s extrapolation to 

improve the basic Newmark’s method. To observe the accuracy of the proposed method, several numerical 

tests are performed for a single degree-of-freedom (SDM) dynamic system and the results are compared with 

results from Newmark’s method and the exact solution. The results show that the proposed method improves 

the solution accuracy of the structural dynamic problems compared to the Newmark’s method. Moreover, the 

results of the free oscillating case show that the modified Newmark’s method has more computational 

efficiency compared to the Newmark’s method. 

KEYWORDS: Newmark’s method, Richardson’s extrapolation, Structural dynamic analysis, 
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INTRODUCTION 

 

It is usually not possible to find an analytical solution 

of the equation of motion for a structural system if the 

system is non-linear or the excitation force varies 

arbitrarily with time. Such problems can be solved by 

direct numerical integration of the dynamic equilibrium 

equations. The ease of implementation of direct 

integration methods has tended to enhance rapidly the 

popularity of these approaches (Owren et al., 1995; Kim 

et al., 1997; Laier, 2000; Williamson et al., 2002; Chen 

et al., 2008; Chang, 2015). In direct integration, the 

governing equation of motion for the structural system 

is integrated using a numerical step-by-step procedure 

(Bathe et al., 1976). Basically, the direct integration 

method is divided into two general classes; explicit 

methods and implicit methods. In the explicit methods, 

the solution at time step tt    is obtained by 

considering the equilibrium condition of equation of 

motion at time t (Subbaraj, 1989a). On the other hand, 

in the implicit methods, the equation of displacement at 

the current time step involves the velocity and 

acceleration at the current time step itself (Subbaraj, 

1989b). The most popular explicit methods are: second-

order central difference methods (Krieg, 1973), Runge-

Kutta methods (Kutta, 1901), stiffly stable methods, 

predictor-corrector methods, Taylor series schemes, 

dynamic relaxation method (Namadchi et al., 2016) and 

the KR-α method (Kolay and Ricles, 2014, 2016, 2017). 

Likewise, the most popular implicit methods are 

Newmark’s family methods (Newmark, 1959), Wilson-

 (Wilson et al., 1973) and Houbolt methods (Houbolt, 

1950). Surveys of both classes of direct time integration 
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methods can be found in papers by Subbaraj (1989 a,b). 

These methods have different characteristics of 

accuracy and stability and each one has its specialty for 

a specific problem (Bathe, 1996; Bathe, 2012). 

However, for general purposes, Newmark’s method is 

one of the most popular methods for earthquake 

response analysis. In this study, Newmark’s method 

based on Richardson’s extrapolation is developed. The 

key idea of using Richardson’s extrapolation in 

Newmark’s method is to minimize the numerical error.   

 

THEORY 

 

Newmark’s Beta Method 
In 1959, N. M. Newmark developed a whole series 

of time-stepping solution methods (Newmark, 1959). In 

this method, the acceleration is assumed to vary in a 

specific manner over the time step. The finite difference 

relationships for the Newmark-β method are: 

 

      1     11  iutiutiuiu  
                (1) 

 
 

       1  2  2 5.0  1 



 



  iutiutiutiuiu     (2) 

 

where: 

 

1iu :  Velocity at time step “i+1”; 

iu :  Velocity at time step “ i ”; 

1iu :  Acceleration at time step “i+1”; 

iu :  Acceleration at time step “I ”; 

 t:  Time step. 
 

The parameter  controls the manner in which the 

acceleration varies over the time step. For  = 0, the 

acceleration is assumed to remain constant over the time 

interval.  = 0.25 corresponds to the assumption of 

constant average acceleration and  = 1/6 corresponds 

to the assumption of linear variation of acceleration. 

Newmark- method is stable if (Chopra, 2013): 
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t
              (3) 

 

where: 

 

Tn : Natural period. 

 

For  = 1/2 and  = ¼, this condition becomes: 

 




nT

t
                 (4) 

 

For  = 1/2 and  = 1/6, “Eq. (3)” indicates that the 

linear acceleration method is stable if: 
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Newmark’s Method: Linear System 
The time stepping solution using Newmark’s method 

can be summarized in the following algorithm (Bathe, 

1996; Chopra, 2013): 

 

1. Initial calculations 
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where: m, c and k are mass, viscous damping 

coefficient and stiffness of the system, respectively. 

 

2. Calculation for each time step, i 

2.1     iubiuaiPiP     ˆ                (9) 
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3. Repetition for the next time step. Replace i by i+1 and 

implement steps 2.1 to 2.5 for the next time step. 

 

Richardson’s Extrapolation 
This method is very powerful in improving the accuracy 

of an integration scheme (Chapra et al., 1998). It is a 

procedure which combines several approximations of a 

certain quantity I in such a way to yield a more accurate 

approximation of I. It can be expressed in a general form 

as follows: 
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Newmark’s Method Based on Richardson’s 

Extrapolation 

The basic idea is to use the Richardson’s 

extrapolation to improve the Newmark’s method. The 

first step in developing the Newmark’s method is to 

determine successive estimates of the response at a 

given time by using Newmark’s method by 

progressively doubling the number of sub-intervals. 

These estimated values can be assigned to Eq. (14). The 

time stepping solution using Newmark’s method based 

on Richardson’s extrapolation for linear structural 

systems can be summarized in the following algorithm. 

 
1- Calculate Tiu ,1 , Tiu ,1 , Tiu ,1  by using time step 

Tt   by using Newmark’s method. 
 

2- Calculate 2/,1Tiu  , 2/,1Tiu  , 2/,1Tiu   by using 

time step 
2

 
T

t   by using Newmark’s method. 

3- Calculate 4/,1 Tiu  , 4/,1Tiu  , 4/,1Tiu   by using 

time step 
4

 
T

t   by using Newmark’s method. 

4- Calculate liu ,1 , liu ,1 , 
liu ,1  by using 

Richardson’s extrapolation by using the following 
equations: 
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5- Repeating for next iteration. Replace i +1 by i+2 and 

repeat calculation steps 1 to 4 for the next time step. 

This procedure extends also to non-linear systems. 

 

EVALUATION OF THE PROPOSED METHOD 

 

To observe the accuracy of the present integration 

method, several numerical examples are solved and the 
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predicted solutions are compared to those of Newmark’s 

method and the exact solution. Very important aspects 

in the evaluation of any numerical time integration 

methods are: convergence, stability and accuracy. In this 

study, the proposed integration method is 

unconditionally stable, because it is based on constant 

average acceleration method. Accuracy and 

convergence can be evaluated by examining period 

elongation and amplitude decay. The percentage error of 

period elongation can be defined by the difference of the 

numerical period Tnum and the exact period T as: 

 

100



T

TnumT
PE                           (16) 

 

The displacement error edisp is the cumulative 

difference of numerically calculated displacement unum 

(t) and exact solution u (t) as: 

 

 )()( tutnumudispe                                         (17) 

 

Numerical Example 

 

Harmonic Vibration with Viscous Damping 

Newmark’s method based on Richardson’s 

extrapolation is applied on an SDM system with zero 

initial displacement and velocity, that is subjected to P 

(t) defined by a half sine pulse force ( tP  sin  ). The 

equation of motion is: 

 
)(   tPukucum                           (18) 

 

The response of the system is evaluated by exact 

solution, Newmark’s method and Newmark’s method 

based on Richardson’s extrapolation. It is evaluated for 

different values of system period (Tn), damping ratio (ζ) 

and time stepping (Δt). Table 1 shows all cases of SDF 

systems evaluated.  

 
Table 1. Cases of system the dynamic response of which is evaluated 

Case 
Natural 
Period 

(Tn) 

Damping 
Ratio 
( ) 

Time Stepping 
( t) 

R= t / Tn 

Case 1 0.1 0.05 0.005,  0.01,  0.02,  0.05 0.05,  0.1,  0.2,  0.5 

Case 2 0.25 0.05 0.005,  0.01,  0.02,  0.05 0.02,  0.04,  0.08,  0.2 

Case 3 0.25 0.8 0.005,  0.01,  0.02,  0.05 0.02,  0.04,  0.08,  0.2 

Case 4 2 0.05     0.005, 0.01,  0.02,  0.05, 0.1     0.0025, 0.005,  0.01,  0.025, 0.05 

Case 5 2 0.8    0.005,  0.01,  0.02,  0.05, 0.1     0.0025, 0.005,  0.01,  0.025, 0.05 

Case 6 3 0.05     0.01,  0.02,  0.05, 0.1, 0.15     0.0033,  0.0167,  0.033, 0.1, 0.05 

The exact solution of the above system would be in 

the form of: 
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where A, B, C and D are real-valued constants 

determined by standard procedures.  

 

The predicted solutions of the modified Newmark’s 

method are compared to those of Newmark’s method 

and the exact solution. As seen in Eq. (15), the modified 

Newmark’s method with time step ∆t=T relies on 

employing the Newmark’s method with three different 

time steps ∆t=T, T/2 and T/4. In order to observe the 
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efficiency of the modified Newmark’s method, the 

predicted solution of the present method with the time 

step ∆t=T is compared to Newmark’s solution with time 

step ∆t=T/4. Comparison of the results in Figures 1 and 

2 shows the difference in results obtained by the use of 

Newmark’s method with time step ∆t=T/4 and the 

modified Newmark’s method with time step ∆t=T/4. 

These results imply that: a) Both Newmark’s method 

and modified Newmark’s method are of superior 

accuracy 

 

for  small  time steps  (i.e., 025.0
 




nT

t
);   b) Modified 

Newmark’s method shows a good improvement in the 

solution accuracy although the used time step is larger 

 

than that used in Newmark’s method for 075.0


nT

t
; c) 

Damping ratio of the system does not affect the trend of 

the results of both methods; and d) Modified Newmark’s 

 

method with large time step (i.e., 08.0
 




nT

t ) shows less 

solution accuracy when compared with Newmark’s 
method. Hence, the improvement of solution accuracy 
of the proposed method is limited to the use of a small 
time step.  

 

Free Oscillating Case 
Free vibration motion with no damping is predicted 

in this case. The equation of motion is as follows: 

 
0   ukum                                           (20) 

 

with the initial conditions   m/sec  3 utu  and 

  0 utu  . 

 

The exact solution for the above system would be: 

 

     
w

tv
tutu

  sin
  cos

                                 (21) 

Different cases of the above system with different 

values of system period Tn and time stepping are 

simulated and the predicted results are compared with 

the exact solution. The simulated results show that the 

present method predicts the period of the dynamic 

system accurately as shown in Fig. 3. 

The computational efficiency is also an essential 

aspect in the evaluation of any time integration method. 

Modified Newmark’s method with time step ∆t=T will 

demand less computational time when compared with 

Newmark’s solution with time step ∆t=T/8. To observe 

the computational efficiency of the present integration 

method, the predicted solution of the present method 

with time step ∆t=T is compared to Newmark’s solution 

with time step ∆t=T/8 in the previous two numerical 

examples. The results of harmonic vibration with 

viscous damping show that there is no clear trend that 

confirms the higher computational efficiency of the 

present method than that of Newmark’s method. But, the 

results of the free oscillating case show that the modified 

Newmark’s method has more computational efficiency 

and accuracy than Newmark’s method. 

 

CONCLUSION 

 

A new step-by-step integration algorithm for 

structural dynamic systems is presented. The proposed 

method is a modification of the basic Newmark’s 

method. The basic idea of the proposed method is to use 

Richardson’s extrapolation to improve the basic 

Newmark’s method. Several numerical tests were 

carried out for an SDF dynamic system. The results 

confirm that the proposed method has a relative period 

error that is smaller than that of Newmark’s methods. 

Also, the results support that the proposed method 

possesses improved accuracy and can be an alternative 

for solving structural dynamic problems. 
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(c) Case 3 
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(e)  

(e) Case 5 

 

(f) Case 6 
Figure (1): Absolute displacement error of the proposed method compared with 

the Newmark’s method, where R= t/Tn 
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(c)
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(e)
 

(e) 

 
(f) 

Figure (2): Response of damped SDF system to harmonic load using different 
periods Tn, damping ratios  and time steppings T 
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(d) 

Figure (3): Predicted results of the proposed method compared with the exact solution and 
Newmark’s method to estimate the percentage period error 
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