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ABSTRACT

Hussein, Ealaf, S., Masters : June : 2020, Masters of Science in Computing

Title: Static and Dynamic Facial Emotion Recognition Using Neural Network Models

Supervisor of Thesis: Uvais, A., Qidwai.

Emotion recognition is the process of identifying human emotions. It is made

possible by processing various modalities including facial expressions, speech signals,

biometric signals, etc. With the advancements in computing technologies, Facial Emo-

tion Recognition (FER) became important for several applications in which the user’s

emotional state is required, such as emotional training for autistic children. The recent

years witnessed a major leap in Artificial Intelligence (AI), specially neural networks for

computer vision applications. In this thesis, we investigate the application of AI algo-

rithms for FER from static and dynamic data. Our experiments address the limitations

and challenges of previous works such as limited generalizability due to the datasets.

We compare the performance of machine learning classifiers and convolution neural

networks (CNNs) for FER from static data (images). Moreover, we study the perfor-

mance of the proposed CNN for dynamic FER (videos), in addition to Long-Short Term

Memory (LSTM) in a CNN-LSTM hybrid approach to utilize the temporal information

in the videos. The proposed CNN architecture outperformed the other classifiers with an

accuracy of 86.5%. It also outperformed the hybrid approach for dynamic FER which

achieved an accuracy of 74.6%
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CHAPTER 1: INTRODUCTION

The last few decades witnessed huge innovations that have opened the doors for

automatically analysing human behaviour, such as gesture analysis, activities, etc. [1].

Human emotion is an important behavioural factor in human-human interaction as it re-

lays the unvoiced state of a person, in addition to weighing heavily in many aspects of our

daily lives such as learning and reasoning [2], [3]. With the advancements of computer

technologies, emotion recognition gained momentum in numerous fields of study such

as human-centred design in Human-Computer Interaction (HCI), in fact, several studies

show the importance of machines interpreting human emotion for different applications

[4]. Affective computing (AC) is a widely researched field that studies new approaches

to enhance the communication between humans and machines [5]. The rapid growth in

AC takes advantage of the different types of data such as text, speech, gestures, etc. for

emotion recognition.

Emotion recognition is the process of identifying the emotional status of a subject,

this can be achieved via several modalities including facial expression, speech signals,

biometric signals, etc. [6]. Facial Emotion Recognition (FER) is not a new research

field, it gained popularity when Paul Ekman adopted the Facial Action Coding System

(FACS) to set a universal framework of the basic human emotions; anger, fear, disgust,

sadness, surprise, happiness, neutral [7]. From there, researchers started handcrafting

features and fed them to machine learning algorithms that performed well for FER [8].

These systems, however, have shortcomings for faces in the wild as they are trained

using data collected in a controlled setting, with controlled posture, illumination and

contrast, background, etc [9].
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Emotional Stability is another term associated with emotion recognition, it is defined

as the change in the displayed emotional state in reaction to a change in the perceived

surroundings. In FER, emotional stability can be quantified by measuring the change

of the facial emotion in a given time frame, T. In this research, we focus on FER for

negative, neutral and positive emotions.

The importance of FER lies in the variety of applications and fields that could benefit

from accurate and robust emotion recognition. Some of the recent applications target

driver drowsiness detection, in which the FER module is integrated into an alerting

system for cases of drowsiness [10]. Another field of application is more shifted towards

psychological and medical applications; for instance, FER is used for monitoring the

pain levels of bedridden patients. Additionally, there exist several works that study the

emotion comprehension levels of people with several medical conditions and disorders

such as Autism Spectrum Disorder (ASD) and Huntington’s Disease [11], [12].

1.1. Research Objectives

In this thesis, we aim to develop an accurate and robust facial emotion classifier.

For that, we investigate the effectiveness of using Artificial Intelligence (AI) for the task

of Facial Emotion Recognition (FER). We first study different approaches to recognize

facial emotion from static images such as machine learning algorithms, transfer learning

fromwell-known pre-trained CNNs, in addition to proposing modifications that improve

an existing CNN architecture. Moreover, we investigate the efficacy of CNNs for

dynamic FER from image-sequences for the application of FER on videos. Finally, we

explore the application and performance of hybrid CNN-RNN approach for video FER.
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1.2. Research Questions

1. Do deep CNNs outperform machine learning approaches for FER?

2. How effective are CNNs for FER from videos?

3. How can RNNs improve classification for FER from videos?

4. Can a hybrid approach be used for accurate and robust classification of facial

emotions?

1.3. Motivation

Despite the magnitude of research on FER, there exist several challenges that could

arise when tackling such a problem, these challenges are mostly related to the datasets,

deep learning models, and the nature of human emotion itself. The main challenges in

FER are:

Challenge 1 – Most of the available datasets are collected in a controlled studio

setting, referring to the posture of the subjects, background, illumination and contrast

when collecting the data. Moreover, these datasets display exaggerated/extreme emo-

tions rather than how emotions are actually exhibited in reality. This could limit the

generalizability of the deep learning model.

Challenge 2 – For optimal classification of emotions, the intra-class class variance

must be minimal, while inter-class variance must be maximal [13]. This could be a

challenge due to the nature of human emotion, where some emotions appear to be

similar such as fear and surprise.
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Challenge 3 – Sincemachine learning is a data-centered study field, the performance

and accuracy of the algorithms depend almost completely on the quality of the data.

One aspect of data quality is diversity. There have been instances in the literature where

machine learning algorithms resulted in biased classification. Hence, it is very important

to have a dataset that is diverse in terms of race, age, gender, etc. to create an algorithm

that generalizes well in real-life settings.

Challenge 4 – Most of the times, human emotion is not an instantaneous reaction to

a stimulus, it is rather a prolonged change that happens to the facial features of a human

over a period of time. Hence, it is very important to consider the temporal correlations

in emotion.

1.4. Thesis Structure

This thesis is structured as follows; chapter 2 covers the background on the datasets

and the techniques used in this thesis. Chapter 3 covers the literature and the current

trends in FER. Chapters 4 and 5 cover static and dynamic FER, which include method-

ology, experiments and results for each approach. A thorough discussion reflecting on

the results and findings is detailed in chapter 6. Finally, chapter 7 covers the conclusion

and future work.
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CHAPTER 2: BACKGROUND AND FOUNDATIONS

2.1. Emotion Models

In psychology, human emotion is defined as a psychological change that reflects

thoughts, leading to physical change. Although it is quite subjective to standardize

a scale for the quantification of human emotion, several studies and theories in the

field of human psychology have been conducted [14]. Generally, an emotion model

offers standards that facilitate the classification of human emotions. The most well-

known models of emotion in the literature are the categorical (discrete) model, and the

dimensional model.

2.1.1. Categorical Model

In this theory, the emotions are treated as discrete classes, typically six classes

labelling the six basic emotions: anger, fear, disgust, joy, sadness and surprise. However,

it is very common to have a domain-specific emotion classes. For example, in the context

of emotions in a classroom setting, the emotion classes could be confusion, boredom

and flow; because in such a situation, fear or disgust are less relevant to the context.

Although this emotion theory is themost used for FER research, several studies argue that

some factors such as cultural, linguistic, environmental differences impose difficulties

on categorizing emotions. Other variations of the categorical model modify the classes

to become more descriptive, such as bored-angry.
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2.1.2. Dimensional Model

In this emotion model, the emotion is modelled in a multi-dimensional space where

each dimension specifies a factor in categorizing emotions. Usually in such models,

the emotion is defined within 2D or 3D spaces such as valence and arousal, or valence,

arousal and power. The valence dimension reflects the polarity of the emotion, whether

it is a positive or a negative emotion, hence, reflecting the sense of pleasantness of the

emotion. The arousal dimension, on the other hand, reflects the intensity of the emotion,

it could range from boredom to excitement. Other variations to this model also exists,

where the dimensions are energy and stress. Fig. 2.1 shows an example of a 2D emotion

model [15].

Figure 2.1. Valence-Arousal dimensional emotion model.
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Although psychologists argue that the dimensional model is more inclusive and rep-

resentative of human emotions, the FER research field lacks such datasets, as all datasets

follow the categorical emotion model for both static and sequence-based datasets.

2.2. FER Datasets

There are several public datasets for FER, however, the size of these datasets remains

a challenge for deep learning models for FER. Generally, deep CNNs require huge

amounts of data to learn and recognize patterns from, specifically given that FER is

not a simple classification problem due to the differences in how emotion is naturally

expressed. In this section, the different types of datasets and the datasets used in this

thesis are introduced.

FER datasets can be classified on two levels: a) nature of the collection environment,

and b) the type of data or format. Another classification can be done based on the image

acquisition method, however, it is not relevant to the scope of this thesis as it only

handles camera-acquired images. Other types of image acquisition include infrared

images, light-field images, etc. [16].

In terms of the collection environment, FER datasets can generally be classified as

either lab-controlled datasets, or in-the-wild datasets.

• Lab-controlled datasets

As the name suggests, these datasets are typically collected in a walk-in experi-

ment manner in which the participants are asked to exhibit certain emotions [17].

The emotions exhibited in these types of datasets are posed and often exaggerated

and they could be an extreme representation of how the subject would normally

exhibit this emotion under real-life circumstances. The images in these datasets
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are considered “easy” for machine learning as the subjects are facing the cameras,

the lighting conditions and the contrast of the images are perfect and uniform

across the dataset. Some of the most used datasets of this class are: Cohn-Kanade

(CK+) dataset [18], JAFFEE [19], shown in Fig. 2.2. One thing to note here

is that as these datasets are not complex, they are usually classified with high

accuracy with machine learning, however, when employed in real life they do not

perform as well as reported, as the system is trained on simple images where the

subjects are facing the camera, such that any deviation from the training images

limits the performance.

(a) CK+ dataset.

(b) JAFFE dataset.

Figure 2.2. Example of lab-controlled datasets.
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• In-the-Wild datasets

This type of datasets is different from the other as it is not collected in a laboratory

setting. In fact, the images in these datasets are usually crawled from the web,

movies, advertisements, etc. As the emotions in these datasets are not collected

on demand, the emotions here are more spontaneous and less exaggerated, de-

picted in Fig. 2.3. Hence, they are more representative of real-life emotions

which makes these datasets “complex” and a difficult task for classification using

machine learning due to the differences in pose, light, backgrounds, etc. Unlike

lab-controlled, usually these datasets only have one image per emotion per sub-

ject. Some of the most used in-the-wild sets are the FER2013 dataset [20] and

the EmotiW dataset [21].

(a) FER2013 dataset.

(b) EmotiW 5.0 dataset.

Figure 2.3. Example of in-the-wild datasets.
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The second point of classification is based on the type of data, or the final format of the

dataset, that is static and dynamic datasets. Dynamic datasets include videos, frames,

or image sequences. Mostly, dynamic datasets are represented in the lab-controlled

datasets, as it is more convenient to record videos for each emotion. Static images

are usually one image per emotion and is mostly common in the in-the-wild datasets.

Dynamic datasets can also be used as static images if the frames containing the peak

emotion are used as single images. An example of a dynamic dataset is the CK+ dataset.

FER2013 and JAFFE datasets are examples of static datasets. Fig. 2.4 shows the dif-

ference between the two formats; in dynamic datasets, the temporal correlation with the

change of facial expressions can be observed (Fig. 2.4b).

(a) Samples from a static dataset (FER2013).

(b) Samples from a sequence-based dataset (CK+).

Figure 2.4. Example of dynamic and static datasets.
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2.2.1. Datasets Used

In this thesis, a cross-dataset approach is used for static FER in which the two types

of datasets are used for training. The reason behind using two types of datasets is that

models trained with lab-controlled datasets only perform well for posed emotions but

do not maintain the same performance for faces in the wild. On the other hand, training

with in-the-wild only is challenging; the models trained with it only do not achieve high

accuracy compared to other datasets. As for dynamic FER, only the sequence-based

datasets can be used.

• Facial Expression Recognition 2013 (FER2013) Dataset

The FER2013 is an in-the-wild static dataset collected using Google image search

to crawl images that follow 184 specific emotion keywords. The search also

included other keywords to make the dataset as diverse as possible, such as

gender, race, and age. The final dataset consists of 35,887 non-posed images

of expressions captured in the wild of size 48 × 48. It follows a categorical

emotion model that classifies the 7-basic human emotions: {anger, disgust, fear,

happiness, sadness, surprise, neutral}. Fig. 2.5 shows the distribution of the

classes; the dataset is highly imbalanced [20].

• Extended Cohn-Kanade Dataset (CK+)

The CK+ dataset is a lab-controlled dynamic dataset containing posed expressions

from123 subjects totalling 593 image sequences of different duration varying from

10 to 60 frames [18]. Although this dataset follows a categorical model, it is differ-

ent from the FER2013 dataset in terms of the neutral emotion. Here, the emotions

are: {anger, contempt, disgust, fear, happiness, sadness, and surprise}. As it does

11



not consider a neutral class per se, the neutral emotion can be extracted from the

first few frames of the contempt emotion. Fig. 2.6 shows the class distribution for

the CK+ dataset.

Figure 2.5. Class distribution for the FER2013 dataset.

Figure 2.6. Class distribution for the CK+ dataset.
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It is important to note that the class distribution in Fig. 2.6 refers to the number of

subjects per class. As CK+ is a lab-controlled dataset, there are multiple emotions per

subject.

2.3. Artificial Intelligence

2.3.1. Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm used for

classification and regression [22]. This algorithm aims to find the optimal hyperplane

between two classes such that the margin, denoted mo in Fig. 2.7, between them is

maximized. Primal SVM is applicable for linearly separable datasets, as seen in Fig.

2.7; for higher dimension datasets, the data is projected on a new dimension to create a

linearly separable format.

Figure 2.7. Support Vector Machine (SVM).
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2.3.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special class of neural networks that

have proven to be exceptionally efficient for computer vision applications. CNNs are

named so after themathematical operation employed in the networks, that is convolution.

Simply put, CNNs are “neural networks that deploy convolution operation instead of

conventional matrix multiplication” [23]. Typically, a CNN consists of three types

of layers; convolution, pooling and fully-connected (FC) layers. The combination of

convolution and pooling layers are responsible for feature extraction, hence, CNNs

eliminate the need for feature extraction or feature engineering [24].

• Convolution

The convolution layer is the fundamental component of a CNN. Equation 2.1

demonstrates the mathematical representation of the convolution operation.

s(t) = (x ∗ w)(t) (2.1)

Convolution is a mathematical process used in many image processing operations.

The output of the convolution s(t) reflects how function x(t) is changed by w(t).

Due to this, it is used for applying filters to images for many purposes such as

edge detection and feature extraction. In convolution, the filter or the convolving

function is typically flipped, if it is not, it is referred to as cross-correlation.

Although the operation used in CNNs is cross-correlation, it is conventionally

referred to as convolution, and we follow the same convention in this thesis [23].

Fig. 2.8 illustrates the convolution operation in the context of CNNs. The original

14



image is referred to as the input, the convolving argument is the kernel, and the

output of the operations is known as the feature map. In the convolution layer, a

number of filters (kernels) is convolved with the input from the previous layer to

extract some features, such as vertical or horizontal lines (e.g. edges). The values

of the kernels are learned through the training of the network, hence, they ‘learn’

the features relevant to the classification.

Figure 2.8. 2D convolution.

• Pooling

This layer is responsible for reducing the dimensionality of the input, the down-

sampling is usually done either by maximum or average pooling using a window

of size p × p. In max pooling, the window is moved over the input to produce a

down-sampled output in which each pixel is the maximum of the corresponding

window in the original input. Intuitively, in average pooling, the pixels in the

output correspond to the average of the corresponding sliding window.

15



• Fully-connected

The fully connected layer, sometimes referred to as a Dense layer, is a fully-

connected neural network that is used for classification and is typically at the

end of the network architecture, preceded by a flattening layer that changes the

dimension of the input to 1D.

2.3.3. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks most suitable for

sequential data processing [23]. Unlike CNNs, the input to RNNs is a sequence of data

{x(1), x(2), .., x(τ)} rather than a single data instance x. For example, the input to an RNN

could be an image sequence of an exhibited emotion (the change over time) whereas the

input to a CNN is just a single image showing the exhibited emotion. Put simply, an

RNN iterates through the input sequence and keeps a state of the extracted patterns, and

then resets the state between sequences [25]. It can be considered as several copies of a

module that has a very simple structure as shown in Fig. 2.9.

Figure 2.9. A simple RNN module.
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For the application of FER, RNNs can be used to extract temporal features of

emotion. Since an emotion is expressed by a change in facial expression over a period

of time, RNNs could theoretically learn the temporal correlations for better and more

robust FER [9].

Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a subclass of recurrent neural net-

works that are better suited for long-term dependencies due to their key component

which is the cell state Ct. Fig. 2.10 shows the three types of gates in an LSTM module.

The forget-gate, ft, outputs either a 0 or 1 to decide whether to keep or forget the current

input. The input-gate it updates the current state Ct by adding the new candidate value.

Finally, the output-gate ot propagates the final state.

Figure 2.10. An LSTM module.
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CHAPTER 3: RELATED WORK

This chapter studies the current state of art with regards to Facial Emotion Recog-

nition (FER). As introduced earlier, FER evolved from machine learning techniques to,

the current trend, deep learning. To study the existing works, this section is structured

as follows; first,we overview the legacy methods for FER to establish a benchmark for

FER, followed by sections 3.2 and 3.3 that cover the recent trends for static and dynamic

FER, respectively.

Generally, FER is conducted through multiple steps, illustrated in Fig. 3.1. The first

step is face extraction, which is sometimes referred to as facial landmarks extraction. In

this step, the main regions of the face are extracted and passed as an input to the feature

extraction. In feature extraction, facial regions of interest are extracted such as eyes,

eyebrow, etc. and there are two types of features [26]:

• Intransient: this type of features are always present in face; however, they could

be deformed due to the facial expression. Examples: eyes, eyebrows, mouth.

• Transient: this type of features occur due to the facial expression, such as wrinkles

and bulges around the eyes and mouth.

The last step in a typical FER pipeline is classification; here, the model is trained

based on the extracted features and classifies the emotion. Different classification algo-

rithms can be applied here, as to be explained in the following sections.
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Figure 3.1. Generic FER pipeline.

3.1. Legacy Facial Emotion Recognition

One of the first works in FER is by Paul Ekman and Wallace Friesen in which they

adopted the Facial Action Coding System (FACS) and further improved it in 2002 [27].

FACS is a system for describing (coding) facial emotions, it provides a comprehensive

description of muscle movements that makeup the facial emotions, these descriptors are

known as Action Units (AUs), shown in Fig. 3.2 [8]. Afterwards, researchers started

developing machine learning based approaches using hand-crafted features for emotion

recognition. Some of the techniques for feature extraction are LBP, HOG, PCA, Gabor

filters, etc. As for classifications, the mostly used classifiers are Support Vector Machine

(SVM), K-Nearest Neighbours (K-NN) [28]–[31].
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Figure 3.2. FACS Sample [32]

A hybrid pre-processing approach is proposed to improve the classification of emo-

tion using SVM [33]. The authors use a combination of Gabor filters and Histogram of

Oriented Gradients (HOG) for feature extraction. When Gabor filters are applied to an

image, the edges and textures in the image are extracted by analysing the light changes

in the image, hence, extracting the prominent features. The output of the Gabor filters

is then processed using HOG. Before classification, the Gabor-HOG processed images

are processed using Principal Component Analysis (PCA) to transform the data to a new

coordinate system to reduce the number of features.

Finally, the paper compares the classification between SVM and Neural Networks

(NNs) which result in the same accuracy of 97.7%. The justification behind the NN not

outperforming the SVM is that the number of data samples is very little for a NN that is

only 213 images.
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3.2. Static FER - Convolutional Neural Networks

There are two types of FER datasets as explained in chapter 2; static images are the

most researched with regards to FER, and in some cases, dynamic (sequence-based) are

used for static FER by extracting the final video frames that represent the exaggerated

emotion. This section reviews some of the recent trends in static FER. Table 3.1 presents

a summary of these trends.

With the rapid advancements in deep learning and the outstanding performance ex-

hibited by CNNs for computer vision tasks, neural networks came into play for FER. As

the convolution layers in a CNN are the feature extractors, only simple pre-processing

is required before training, such as histogram equalization and normalization [9]. How-

ever, an important step is detecting the face to reduce the dimensionality of the image

and to simplify the task for the classifier by eliminating the regions of the image that

are irrelevant to the task. Viola-Johns [34] is the most used face detector in the recent

FER works. One recent work proposed a 3-level cascaded face-detector combining

Joint-cascade Detection and Alignment (JDA), Deep-CNN and Mixture of Trees (MoT)

detectors [35]. For their work, stochastic pooling showed better results in the pro-

posed model, in contrary to the typically used max and average pooling. This approach

achieved 55.96% classification accuracy on the SFEW2.0 dataset.

Another approach using CNNswhich utilizes transfer learning as it is proven efficient

for tasks with limited size of the samples in datasets [36]. The proposed CNN model in

[37] uses AlexNet and CNN-M2048 model for FER; they propose a cascaded-finetuning

process which shows better results compared to finetuning over a cross-dataset. In their

21



work, they finetune the model using FER2013, then it is followed by another fine-tuning

process using EmotiW yielding an overall classification accuracy of 55.6%.

In [38], a CNN architecture based on the Xception model is proposed for FER.

The authors train and test the proposed model on the FER2013 dataset achieving a

test accuracy of 66%. In the proposed architecture, the authors replace traditional 2D

convolutions with depth-wise separable convolutions to reduce the number of trainable

parameters, thus, yielding a smaller model. Another step to reduce the number of

parameters is eliminating the fully-connected layers usually present at the end of a CNN

architecture. Instead, the authors propose using a Global Average Pooling layer along

with a convolution layer in which the number of filters is the number of classes. With

these modifications introduced, the model achieves a 66% test accuracy on the FER2013

dataset with a relatively small model (~60K trainable parameters). This model is used

in this thesis as a base model. It is further explained in chapter 4.

The authors in [39] propose a CNN architecture for emotion recognition. They use

the CK+ and JAFFE datasets. Along the typical CNN layers, they use residual blocks

of 4 convolution layers. They do perform pre-processing such as cropping, intensity

normalization, and image normalization. Their proposed model yields high accuracies

(0.32% – 0.89% higher than state-of-art).

A very recent research proposes using Attentional CNNs for FER [40], the main idea

is to add a spatial transformer module in addition to the typical convolution/pool/FC

layers of a CNN. This module is used to transform the feature maps to focus on the most

relevant regions of the image, without requiring additional training nor modifications to

the optimization [24]. Their approach achieved high accuracy compared to the existing
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works with regards to the CK+ (98%) and FER2013 (70%) datasets.

Ming et al. [41] propose a CNN architecture based on the Inception-ResNet ar-

chitectures for multi-task classification. The model is trained for face authentication,

verification, and facial expression recognition to create an end-to-end network named

faceLiveNet+. The data used in this paper is CK+ dataset and the OuluCASIA. The

final multi-task model slightly outperforms the reported accuracies on the used datasets.

They achieve higher accuracy using multi-task model which proves the effectiveness

of dynamic weight sharing; compared to single-task FER. The reported accuracies are

99% and 89.6% on the CK+ and OuluCASIA datasets.

This paper improves the work on the faceLiveNet+ and the new models is named

‘Dense_faceLiveNet’ [42]. One of the modifications they introduce to the model is

replacing the residual block with a dense block. Additionally, they use Swish activation

which increases the accuracy by 0.9% compared to ReLU [43]. They use transfer

learning from easy datasets such as CK+ to complex ones such as FER2013 dataset.

Dense_faceLiveNet achieves and accuracy of 69.9% on the FER2013 dataset. Another

experiment conducted in this study is transfer learning from FER2013 to another dataset

they collected; their results show that transfer learning results in an accuracy of 91.9%

which greatly outperforms training on the dataset alone, which yielded an accuracy of

~79%.

Most of the existing FERworks perform 7-class classification on the basic emotions.

Authors of [44] use a CNN to recognize emotions on 7 classes and on the three classes

mentioned. They use the eNTERFACE database and a database they developed for the

training, they achieve an accuracy of 75% for the 3-class classification.
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3.3. Dynamic FER - Recurrent Neural Networks

As introduced earlier, dynamic FER refers to the classification of emotions from

videos. Usually, the type of data for training is either videos (frames) or image sequences.

This section overviews the recent trends in dynamic FER, summarised in table 3.2.

A light-field images technique is proposed for dynamic FER. This paper proposes

a novel approach for FER [45]. Instead of using conventional cameras, they use light-

field cameras which is another type of image acquisition, as used in the IST-EURECOM

Light Field Face Database (LFFD). In this approach, they fuse a CNNwith LSTM for the

classification of dynamic images; and they compare their solution to machine and deep

learning techniques. Their approach proved to outperform the existing and state-of-art

solution. The input to the LSTM is the features extracted by a pre-trained VGG-face

model with 4096 features. Overall, their solution achieves a recognition accuracy of

78.12%.

Chao et al. propose a multimodal system for emotion recognition using facial

expressions and audio signals [46]. The authors use a CNN for feature extraction and

then feed the extracted features to the LSTM network. For the CNN feature extractor,

the network is trained on the EmotiW dataset; and then for LSTM, different outputs from

the network are tested to see which CNN output results in better recognition accuracy.

Using the output of the 3 lowest layers in the network proved to increase the recognition

accuracy to 46.39%.

A hybrid CNN-RNN approach for dynamic emotion recognition is proposed in [47].

The datasets used are the MMI and JAFFE datasets. They first train a CNN for feature

extraction where the model is not very complex as the datasets are relatively simple
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(i.e. lab controlled). The CNN achieves an accuracy of 76.1%, however, this work

also proves that the temporal correlations play a significant role in the classification of

emotion, in addition to the spatial features. Hence, they introduce LSTM layers to the

model that takes an input the extracted features from the CNN after max pooling. The

overall accuracy of the hybrid model is 94.91% and loss of 3.98%.

An interesting work applies multiple deep learning approaches for dynamic emotion

recognition [48]. The system proposed in this work is multimodal since it uses facial

expressions and audio signals. For audio signals, an SVM with linear kernel is trained

and it shows that using audio signals along with FER can increase the classification

accuracy by almost 3%.

One approach is proposing a hybrid CNN-RNN approach on the AFEW 6.0 dataset.

They fine-tune the VGG-face net with the FER2013 dataset, then, an LSTM is trained

with the features extracted by layer FC6 of the VGG-face, and 16 features of 16 frames

are stacked for training the LSTM. With this approach, they achieve an accuracy of

45.43% using 128 nodes in the LSTM layer. The other approach adopted in this work is

a 3D CNN. The C3D net has 8 convolutions, 5 max-pooling layers and 2 fully connected

layers with a softmax output layer. An accuracy of 39% is achieved using the 3D CNN

alone, however, with a fused model the accuracy can increase up to 46.5%.
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Table 3.1. Static FER Summary

Ref Pre-processing Algorithm Dataset Accuracy

[33] Gabor filters
HOG with PCA

SVM and NNs JAFFE 97.7%

[35] 3-level cascaded face-
detector using JDA,
Deep-CNN and MoT
detectors

CNN with
stochastic pool

SFEW2.0 55.96%

Ref Approach Model Dataset Accuracy

[37] 2-level cascaded
finetuning

AlexNet
CNN-M2048

FER2013 ->
EmotiW

55.6%

[38] DW separable
convolutions
Residual learning
Global Avg Pool

miniXception FER2013 66%

[39] Intensity/image
normalization

Residual learning
CNN

CK+
JAFFE

0.32%+
0.89%+

[40] Spatial transformer Attentional CNNs CK+
FER2013

98%
70%

[41] Multitask CNN Inception-ResNet
based

CK+
OuluCASIA

99%
89.6%

[42] Dense blocks
Swish activation

Dense_faceLiveNet Private dataset
FER2013

91.9%
69.9%

[44] - CNN eNTERFACE 75%
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Table 3.2. Dynamic FER Summary

Ref Approach Model Dataset Accuracy

[45] CNN with LSTM VGG-face model LFFD 78.12%
[46] CNN with LSTM — EmotiW 46.39%
[47] CNN with LSTM CNN features +

LSTM
MMI
JAFFE

76.1%
94.91%

[48] Multimodal
(with audio)

CNN + SVM 3%+

CNN-RNN VGG-face net FER2013 and
AFEW 6.0

45.43%

3D CNN — AFEW6.0 39%
Fused model
(weighted)

CNN-RNN
with 3D CNN

46.5%
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CHAPTER 4: STATIC FER USING ARTIFICIAL INTELLIGENCE

This chapter presents FER from still images using artificial intelligence. We cover

the concepts used in our experiments, in addition to the results of these experiments.

4.1. introduction

Several approaches and modifications have been proposed in the recent years for

different challenges in deep learning such as transfer learning, dense and residual blocks.

In this section, these concepts are explained in detail.

4.1.1. Transfer Learning

A natural behaviour of CNNs that has been observed in the literature is that the

lower layers in a CNN typically learn low-level features that are similar regardless of the

classification task [23]. More precisely, similar features to Gabor filters are learned in

the first layers of the architecture. Intuitively, the last layers in any CNN are specific to

the classification task; thus, it can be observed that the features become more specific to

the task deeper in the network. This nature of CNNs allow transfer-ability of features.

Transfer learning is essentially promising to solve the challenge of insufficient data. As

deep CNNs require huge amounts of data, it is quite challenging to train such networks

with a limited number of examples [37].

In other terms, transfer learning is transferring the knowledge from one task to

another. Although theoretically it seems straightforward, in practice, several factors

play in the selection of the network to transfer from. For a new classification task Tn

with dataset Sn, an already trained model for a task To on dataset So, transfer learning

helps by transferring the knowledge from To to Tn where Sn 6= So and/or Tn 6= To. In
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practice, this is usually done by only training the FC layers in the pre-trained model

since we assume the convolution layers have already learned the features; hence, we

freeze them. This makes the feasibility of transfer learning depend greatly on similarity

between To and Tn, the amount of data in Sn, and lastly, the computation resources

available [49].

4.1.2. Depth-wise Separable Convolutions

In chapter 2, we introduced convolution and how it is computed for 2D matrices.

Although convolution itself is not a costly operation for small networks, when architec-

tures become bigger and deeper, the cost to do the simple multiplication and addition

to calculate the convolutions become very expensive and very slow to compute. It

also increases the number of trainable parameters as they are the learned kernel values

throughout the network. One approach to avoid this challenge is by using a different

method of calculating convolutions over volumes known as Depth-wise Separable Con-

volution [50]. This technique is also used in other applications to change the depth of a

volume (i.e. number of channels) without changing the spatial features.

In traditional CNNs, the convolution operation is applied across the channels in the

input image, shown in Fig. 4.1. This process is computationally costly and results in

large number of trainable parameters in cases of deep networks. For an image of size

Di×Di×Nc, the number of multiplication required to convolve it by Nf filters of size

n× n is calculated by equation 4.1.

totalstd = Nf × (Do ×Do)× (n× n)×Nc (4.1)

where Do is the dimension of the output volume and Nc is the number of channels.
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Figure 4.1. Convolution over a volume.

Depth-wise Separable convolutions are used to reduce the cost of convolution and

consequently, reduce the number of parameters in CNNs. It is computed in two phases,

depth-wise convolution (DC) and point-wise convolution (PC) [38].

• Depth-wise Convolution - Filtering stage: Unlike standard convolutions, here,

the convolution operation is done per channel. Instead of convolving a kernel of

n × n × Nf over a volume Di × Di × Nc, a kernel of n × n × 1 is convolved

with a single channel of the input Di × Di × 1. The output of this convolution

is a 2D matrix of size Do ×Do. Repeating this for all Nc channels and stacking

them results in a volume ofDo×Do×Nc. Fig. 4.2 illustrates DC filtering stage.

• Point-wise Convolution - Combination stage: This stage is computed to create

a linear combination of the channels resulted by DC. Here, a 1× 1×Nc filter is

convolved with the volume to produce a volume ofDo×Do×Nc, while preserv-

ing the spatial features; this operation results in an output of shape Do ×Do × 1.

By performing this convolution Nf times, the output volume becomes of shape

Do ×Do ×Nf . To change the depth of the volume, Nf should be changed.
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Figure 4.2. DC filtering stage.

Figure 4.3. PW combination stage.

To compare the performance of standard convolutions against depth-wise separable

convolution, the total number of multiplications is calculated by summing the number

of multiplications to result in a volume of shape Do ×Do ×Nf .

The number of multiplications of depth-wise separable convolutions is the sum of

the multiplications in the two phases, for the same image Di ×Di ×Nc:

DC = (Do ×Do)×Nc × (n× n) (4.2)

PC = (Do ×Do)×Nf ×Nc (4.3)
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Using equation 4.4, the total number of multiplications and trainable parameters is

thus reduced by 1
Nf

+ 1
n2 , where Nf is the number of filters (kernels) and n2 is the size

of the filters.

DC + PC

totalstd
=

1

Nf

+
1

n2
(4.4)

4.1.3. Residual Learning

In residual deep learning, the output of one layer is passed as an input to another layer

further in the architecture [51]. This is known as “skip connections” or “shortcut path”.

Fig. 4.4 shows an example of skip connections. By doing that, the learned features are

the difference between the original and desired feature maps. Residual blocks do not

add complexity to the model and do not increase the number of trainable parameters.

Figure 4.4. Residual block.

For a network of l layers, a non-linear transformation is applied at each layer to

calculate the output xl as shown in equation 4.5. In residual blocks, however, since

the output of a layer is passed to another layer deeper in the architecture, the identity

function is added, as shown in equation 4.6.
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xl = Hl(xl−1) (4.5)

xl = Hl(xl−1) + xl−1 (4.6)

4.1.4. Dense Block

Another modification to traditional CNNs to overcome the vanishing gradient prob-

lem is introduced in DenseNets [52]. The dense block architecture allows for maximum

gradient flow, since every layer is connected to the following ones directly, as shown in

Fig. 4.5.

Figure 4.5. Dense block.
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Dense blocks concatenate the feature maps rather than adding them, unlike residual

blocks. The output xl of a layer l is calculated by equation 4.7.

xl = Hl([x0, x1, ..., xl−1]) (4.7)

Since every layer in a dense block has connection with its preceding layers, it has

access to the previous featuremaps. In their paper, Huang et al. refer to the featuresmaps

as a state of the network, and every layer adds its k maps to this state; this represents the

"collective knowledge" of the network [52]. The hyperparameter k is referred to as the

growth rate, and it indicates how much new knowledge each layer adds to the existing

collective knowledge. The output of each layer in the dense block is k0 + k × (l − 1)

feature maps, where k0 is the input layer channels.

4.2. Methodology

4.2.1. Pre-processing and Dataset Preparation

As demonstrated in Fig. 4.6, preparing the dataset for training is done in two stages,

offline and online. Offline is done before training, and online is done as the data is

passed to the training model.

Offline data preparation mostly handles the relabeling of the data. Since the emotion

model followed in this thesis is a modified categorical model, the emotion classes here

are: {negative, neutral, and positive}. For that reason, the data classes are relabeled as

shown in table 4.1. It must be noted that the surprise emotion is not included in the

redefined classes since it does not fall under any of the three classes in this emotion

model. It is worth mentioning that due to the original sizes of the two datasets, the
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cross-dataset consists of 90% FER2013 images and 10% CK+ images.

Figure 4.6. Data preparation pipeline.

Table 4.1. Relabelled Classes

New Label Old Label(s)

Negative anger, fear, disgust, sadness
Neutral neutral
Positive happiness (smiling)

Given that the original classes are relabeled by grouping the negative emotions, this

means that there are more examples from the negative class. This consequently results

in a new class distribution as shown in Fig. 4.7.
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Figure 4.7. Class distribution for relabeled data.

Another step in offline data preparation is pre-processing. It is already established

that CNNs do not require intensive pre-processing, however, some image processing

operation are reported to improve the performance of the models. Normalization is

performed to improve the performance of the CNN, however, it is done online. Since

it is applied on each image separately, it can be processed as the data is passed to the

training model.

Data Imabalnce

As shown in Fig. 4.7, the final dataset is highly imbalanced which can cause the

model learn the patterns from the dominant class and hence overfit to this class because

it has the highest number of samples. There are several ways to handle data imbalance

such as oversampling/undersampling the dataset, collecting more data samples for the
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minority class, etc. One way to handle imbalanced data is by assigning weights to each

class, corresponding to its number of samples, and incorporating the weights in the loss

function. Intuitively, the minority classes will be assigned higher weights to have more

impact on the loss function.

Data Augmentation

As deep CNNs require huge amounts of data, data augmentation is used to amplify

the size of the dataset without the need to collect new data. Data Augmentation is simply

applying some image processing operations to the images such that the resulting images

are still the same to a human, however, are considered new samples to the classifier.

The operations applied are rotation, width and height shift, zoom, and horizontal flip,

illustrated in table 4.2. Fig. 4.8 shows a sample of the augmented images.

It is worth noting that gray-scale images are used for training. Since RGB images

require more channels in the input layer of the architecture, they add an unneeded over-

head as color is not relevant for emotion classification.

Table 4.2. Data Augmentation Operations

Operation Value

Rotation range 10
Width shift range 0.1
Height shift range 0.1
Zoom range 0.1
Horizontal flip True
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Figure 4.8. Data augmentation.

4.2.2. Machine Learning

Since most of existing works follow a 7-class emotion model, we use machine

learning algorithms to create a benchmark for the 3-class emotion model. For that,

MATLAB’s Classification Learner Toolbox is used to train several machine learning

classifiers such as SVM, K-Nearest Neighbor (KNN), etc. The input data to these

classifiers are the label of the image along with the features which are the pixel values.

The second method using machine learning is to use SVM for the classification

together with a CNN. Essentially, the features are extracted from the convolution layers

in the network. Instead of classifying using fully connected layers, an SVM classifier

is trained. The features for this method can be extracted from different layers in the

architecture, hence, can be of different lengths.
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4.2.3. Transfer Learning

Transfer learning and its advantages are introduced in chapter 2; to leverage the pre-

trained models, a set of dense layers are added to the model for the new classification

task. As we expect the convolution layers to have previously learned features, we freeze

them. To further customize the model to FER task, it is possible to unfreeze some of the

convolution layers to relearn task-specific features from the training datasets, however,

this might be very resource-intensive, as the pre-trained networks are very deep.

In this work, we freeze the convolution layers of two pre-trained networks, then we

add and fine-tune a set of fully-connected layers. Table 4.3 shows a summary of the

used network architectures.

• VGG-16 [53]: a CNN architecture that is trained on the ImageNet dataset and

achieves an accuracy of 92.7%. VGG-16 improves AlexNet by using smaller filter

sizes such as 3× 3 compared to 5× 5 and 11× 11 in the latter.

• ResNet-50 [51]: Another architecture trained on the ImageNet challenge with an

accuracy of 95.51%. It efficiently used skip connections to improve the perfor-

mance of CNNs by facilitating the training of deep networks.

Table 4.3. Pre-trained CNN Architectures

Model # Parameters Accuracy

VGG-16 ~138 million 92.7%
ResNet-50 ~25.5 million 95.51%
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4.2.4. CNN Architectures

In chapter 4 we introduced some CNN architecture features that facilitate training

deeper models by avoiding the vanishing gradient problem. In this section, We train and

fine-tune an existing model as a base model and propose modifications that improve the

performance of the this model.

Base Model

The base model proposed in this thesis is inspired by the mini Xception model

proposed in [38] based on the Xception model [50]. The model uses combinations of

residual blocks and depth-wise separable convolutions to reduce the number of trainable

parameters as shown in Fig. 4.9. The total number of trainable parameters is approxi-

mately 52K parameter.
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Figure 4.9. Base CNN model.
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Proposed CNN

As mentioned previously, several experiments were conducted to improve the per-

formance of the base model. Dense blocks with configuration presented in Fig. 4.10

are introduced to the model, to produce a final CNN model as shown in Fig. 4.11. In

addition to that, the number of layers and kernels per layer are modified empirically.

Figure 4.10. Dense block configuration.

The proposed dense block replaces the activation function ReLU by LeakyReLU as,

with experimentation, it was evident that it leads to faster convergence. Additionally,

the number of feature maps per layer in the dense block is changed to six 3× 3 feature

maps. The dense connection is repeated 4 times per dense block.

Fig. 4.11 illustrates a high-level view of the proposed CNN. It is important to note

that using depth-wise separable convolutions (equation 4.4), the overall number of train-
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able parameters is reduced from approximately 420K to 94K trainable parameter. The

residual block in this model is similar to the one in the base model. Other modifications

are done to the number of layers and filters in some layers.

Figure 4.11. Proposed CNN model.
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Table 4.4 summarises the configuration of the model, it presents the number of filters

per layer, and the output shape of each layer.

Table 4.4. Configurations of Proposed CNN Architecture

Layer N. filters Output shape

Input 0 48× 8× 1
Convolution 8 48× 48× 8
Convolution 16 48× 48× 16
Dense Block 6 (x4) 44× 44× 40
Residual Block 32 22× 22× 32
Dense Block 6 (x4) 22× 22× 56
Residual Block 64 11× 11× 64
Dense Block 6 (x4) 11× 11× 88
Dense Block 6 (x4) 11× 11× 112
Residual Block 64 6× 6× 64
Convolution 3 6× 6× 3
Global Avg Pool 0 3
Softmax 0 3

In the following section, we present the experiments conducted to train and evaluate the

performance of the different models adopting residual and dense blocks in addition to

transfer learning for static FER. Although we focus on 3-class emotion classification,

we also experiment with 7-class emotion as a comparison with the existing works.
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4.3. Experiments and Results

As mentioned previously, a toolbox in MATLAB is used to train several machine

learning classifiers. All experiments discussed in this chapter are conducted and tested

on a computer with specifications presented in table 4.5.

Table 4.5. Environment Specifications

Specification Version

Operating System Windows 10 – version (1803)
Processor Intel i7-8850 – 16 GB RAM
Python version 3.6
Tensorflow-gpu 1.12
GPU NVIDIA GeForce 940MX

Python packageswere used for the development, mainly, Keraswith Tensorflowbackend.

Moreover, all CNNmodels are trainedwith categorical cross-entropy for loss andADAM

Optimizer, and L2 Regularization is used to prevent overfitting. In machine learning, a

loss function is ameasure of how different the prediction from the true label is. It dictates

howmuch and in which direction the weights should change during the back-propagation

[25].

Categorical Cross-Entropy Loss is a loss function that computes the average differ-

ence between the true and the predicted probability distributions for a task of n-class

classification. Equation 4.8 demonstrates the mathematical formula of the categorical

cross-entropy loss where N is the number of classes, yc is the true label for the class,
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and ŷc is the CNN output score for class c.

CE =
N∑
c=1

yc × log(ŷc) (4.8)

In section 4.2, we introduced the concept of incorporating class weights in the loss

function to handle imbalanced datasets. Thus, the loss function is simply modified by

introducing the term wc which denotes the weight for class c, given in equation 4.9, with

weights shown in table 4.6.

CE =
N∑
c=1

wc × yc × log(ŷc) (4.9)

Table 4.6. Class Weights

Class Negative Neutral Positive

N. Examples 23,469 6,358 9,855
Weight 0.5671 2.0485 1.3363
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4.3.1. Machine Learning

Benchmark

MATLAB Classification Learner trains different machine learning classifiers. The

data input to the classifiers are of 2,304 features, with a corresponding class label. Table

4.7 summarizes the trained classifiers and their test accuracy. The highest accuracy

is 62% achieved by Medium Gaussian SVM, nevertheless, Quadratic and Cubic SVM

classifiers also achieve comparable accuracy.

Table 4.7. Results of Machine Learning Classifiers

Classifier Accuracy (%)

Linear SVM 57.8
Quadratic SVM 62.2
Cubic SVM 62.3
Medium Gaussian SVM 62.5
Bagged Trees Ensemble 59.9
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SVM Classifier-CNN Features

The other hybrid approach is to train an SVM classifiers with the features extracted

from the CNN. It is expected that this approach performs better compared to learning

from just the pixels as features; this is because the CNN features are expected to represent

the most relevant information to the classification. The Classification Learner toolbox

allows for the use of PCA to reduce the number of features such that the final feature

vector is only 22 features out of 128.

Table 4.8 summarizes the results of this approach. The highest test accuracy was

achieved by Linear SVM and Quadratic SVM classifiers. With PCA, Quadratic SVM

achieved and accuracy of 74.4%. Furthermore, Linear SVM achieved the highest accu-

racy for this approach with an accuracy of 76.9% without using PCA.

Table 4.8. Results of Machine Learning Classifiers with CNN Features

Classifier Accuracy (PCA) (%) Accuracy (%)

Linear SVM 73.1 76.9
Quadratic SVM 74.4 73.1
Cubic SVM 65.4 69.4
Fine Gaussian SVM 73.5 73.5
Medium Gaussian SVM 73.5 73.5
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4.3.2. Transfer Learning

The pre-trained models mentioned in chapter 4 have implementations in Keras. For

the experiments, we freeze the layers of the models to preserve the learned weights,

then, we add 3 fully connected layers with dropouts to prevent overfitting. We train the

modified VGG-16 and ResNet-50 for a total of 5 experiments each; for each dataset,

both models are trained, and then we train them on the cross-dataset to measure the

performance.

The VGG-16 network is implemented in Keras, three fully-connected layers are

added on top of the model. All the convolution layers in the model are frozen. The FC

configurations are attached to appendix A.

Table 4.9 summarizes the new layers and the number of trainable parameters in each

layer for the VGG-16 model on the used dataset (cross-dataset).

Table 4.9. VGG-16 Architecture for Transfer Learning

Layer (type) # Parameters

vgg_base (Model) 14714688
dense_4 (Dense) 262656
dropout_3 (Dropout) 0
dense_5 (Dense) 262656
dropout_4 (Dropout) 0
dense_6 (Dense) 1539
Total parameters 15,241,539
Trainable parameters 526,851
Non-trainable parameters 14,714,688
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ResNet-50 model was also fine-tuned with the same parameters mentioned, however,

the final model is significantly bigger than the VGG-16. A summary of the modified

ResNet-50 model is given in table 4.10.

Table 4.10. ResNet Architecture for Transfer Learning

Layer (type) # Parameters

resnet_base (Model) 23587712
dense_4 (Dense) 4194816
dropout_3 (Dropout) 0
dense_5 (Dense) 262656
dropout_4 (Dropout) 0
dense_6 (Dense) 1539
Total parameters 28,046,723
Trainable parameters 4,459,011
Non-trainable parameters 23,587,712

Transfer Learning Results

Fig. 4.12 shows the resulting accuracies of transfer learning from the two models

on the two datasets and the cross-dataset. Extended results are available in appendix B.
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Figure 4.12. Transfer learning results.

Generally, VGG-16 performed better for FER from FER2013 and CK+ datasets, as well

as for the cross-dataset. From the comparison, it can be observed that the classification

on CK+ dataset is higher with both networks, as anticipated. For the cross-dataset,

VGG-16 achieves an accuracy of 73.2% compared to 59% with ResNet-50.

Additionally, the classification of emotion for 3-classes is done with higher accuracy

compared to 7-classes for both models. This can be explained by looking into the

data examples, typically, the inter-class variance between some of the negative classes

is not significant in 7-class classification. Hence, several instances of fear class, for

instance, are classified as anger. Additionally, restructuring the dataset to three classes

consequently increases the number of images per class, in comparison to seven classes.

Another observation is that using a cross-dataset approach predictably improved

the performance of the classification compared to only using FER2013. Evidently, it

increased the classification accuracy from 68% to 73.2%.
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4.3.3. Proposed CNN

This section reports the results of the base model and the modifications in the

proposed model for 3-class FER. Both models were trained for 100 epochs with Re-

duceLROnPlateau callback. This callback monitors the validation loss and reduces the

learning rate by a factor or 0.1 if it does not improve for 12 epochs. The dataset is split

80%-10%-10% as train-test-validation, with a batch size of 128.

In addition to the classification accuracy, other evaluation metrics are computed.

For a class x, precision measures the ratio of the correctly classified x samples, to the

number of samples classified as x, it is calculated by equation 4.10. Recall calculates

the ratio of the correctly classified x samples to the total number of x samples. Recall

is calculated by equation 4.11. Finally, F1-score reflects the overall performance of the

model by combining both the precision and recall. It is calculated by 4.12.

Precision =
True Positives

True Positives+ False Positives
(4.10)

Recall =
True Positives

True Positives+ False Negatives
(4.11)

F1 = 2× Precision×Recall

Precision+Recall
(4.12)
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Base Model

The model is trained on the cross-dataset after re-structuring and re-labeling the

datasets to map the three emotions. The model was trained for 100 epochs with a batch

size of 128. Fig. 4.13 shows the confusion matrix for the 3-class classification on the

cross-dataset.

Figure 4.13. Confusion matrix for 3-class classification using base CNN model.

Overall, this model achieves an test accuracy of 84%. From the confusion matrix, it can

be observed that the recognition rates for positive and negative are considerably higher

than neutral emotion. It can be observed that 32% of the neutral images were classified

as negative; this is because in some cases, the neutral emotion can be interpreted as a
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negative emotion; this was present on the training data and hence the low recognition

rate.

Table 4.11 summarizes the classification report of the base model. As shown, the

neutral class had the lowest precision, recall and f1-score. The f1-score of the neutral

class is 0.62. As for the negative and positive classes, they both achieved similar metrics.

Table 4.11. Base Model Classification Report

Class Precision Recall f1-score

Neutral 0.64 0.61 0.62
Negative 0.89 0.89 0.89
Positive 0.87 0.88 0.87
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Proposed CNN

The modifications introduced to the base model, such as adding dense blocks, have

proved to improve the performance of the model. The overall accuracy of the model

increased to 86.5%. In Fig. 4.14, the confusion matrix of this model is illustrated. We

can observe that, although the accuracy of classification increased per class, the neutral

emotion classification is mis-classified as negative for 28% of the images.

Figure 4.14. Confusion matrix for 3-class classification using proposed CNN model.
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Table 4.12 summarizes the evaluation metrics of the proposed model. From the

results, we can notice that the proposed model increased the recall to 0.69; this implies

a better ability at recognizing neutral emotion compared to the base model. Similarly,

the performance measures increased in comparison to the base model. We can notice

that the precision increased by 0.04 for the positive class. However, the base model had

a 0.1 higher recall for the positive class.

Table 4.12. Proposed Model Classification Report

Class Precision Recall f1-score

Neutral 0.65 0.69 0.67
Negative 0.90 0.90 0.90
Positive 0.91 0.87 0.89
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CHAPTER 5: DYNAMIC FACIAL EMOTION RECOGNITION USING

ARTIFICIAL INTELLIGENCE

It is established that leveraging the spatio-temporal features might possibly improve

the performance of dynamic FER. In this chapter, we introduce the different approaches

to dynamic FER using Artificial Intelligence.

5.1. Introduction

5.1.1. Proposed CNN model for Dynamic FER

As the proposed CNN model is relatively small in size since it uses depth-wise

separable convolution, in real-time, classification using thismodel can be a quick process

(i.e. near instantaneous). Hence, it is used for video FER by processing real-time camera

input. To speedup the deployment, every frame is skipped to minimize the processing

time. The face is detected using a CNN proposed in [54] which achieves and accuracy of

99% for face detection. This model outperforms CV2’s Cascade detector as the former

detects faces in the wild, and from different angles rather than just the front.

5.1.2. A hybrid CNN-RNN Approach

Another potential approach for dynamic FER is leveraging the trained CNN model,

in addition to using a recurrent network to integrate temporal correlation in the recogni-

tion. Fundamentally, this is done by using the CNN to extract features from each sample

in the image sequences; then, the extracted feature-sequences are passed to an RNN, as

illustrated in Fig. 5.1.
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Figure 5.1. System diagram of hybrid CNN-RNN approach.

5.2. Methodology

5.2.1. Dataset Preparation

The dataset used for dynamic FER is the CK+ dataset, introduced in chapter 2, since

it is a sequence based dataset. One challenge is length of the sequence; the CK+ dataset

is variable in terms of the number of images per emotion. The number of samples per

sequence vary from 4 to 77. This makes it quite challenging from two aspects: 1) if the

RNN takes fixed-length sequences, and 2) the significantly different amount of temporal

information that can be interpreted from a 4-frame sequence compared to a 77-frame

sequence.

To overcome this, the number of samples in a sequence must be reconstructed to a

sequence of a given fixed-length l. This is done by down-sampling sequences longer

than l, and by up-sampling sequences less than l, as shown in algorithm 1.
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Algorithm 1: Reconstruct Image Sequences
Result: A sequence of length l
Input: sequences, l
for sequence in sequences do

n = length(sequence) ;
if n > l then

s = int( ceil( n / l ) ) ;
counter = 0;
while counter < l do

skip every s sample ;
end

else
if n < l then

r = int( ceil( l / n ) ) ;
counter = 0 ;
while counter < r do

repeat every sample r times ;
end

else
do not reconstruct ;

end
end

end

5.2.2. Feature Extraction

After reconstructing the full dataset to a new dataset of n sequences of l frames,

the features can now be extracted using the CNN. In our approach, we use the features

extracted by the last convolution layer of shape 6 × 6 × 3, which is 108 features per

frame. This way, the dataset is of size 327 × 108 × 40; for each sequence of the 327,

there are 108 features per frame (40 frames). Output from other layers can also be used.
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5.3. Experiments and Results

5.3.1. Proposed CNN for Dynamic FER

To test the proposed CNN model for dynamic FER, we test the classification on a

sample of CK+ videos. Another experiment we conducted for dynamic FER is a real-life

experiment detailed later in this chapter (see section 5.4).

Overall, the classifier classified 84%of the frames correctly. For the negative emotion

videos, the model correctly classified all the frames. By looking into the predictions,

we notice that the model correctly classified 100% of the frames in which the emotion

is peaking, however, some of the initial frames are mis-classified.

A sample of the mis-classified frames is shown in Fig. 5.2. As demonstrated in

the evaluation of the model in chapter 4, the model originally classified 28% of neutral

samples as negative. In this experiment, almost all of themis-classification are of neutral

emotion interpreted as negative.

Figure 5.2. A sample of mis-classified frames.
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For the middle and right samples, it can be noticed that the intensity is lower in

the eyebrows region, which could possibly be interpreted as a frown by the model.

Moreover, the left sample’s neutral face shows a downward pull in the mouth region

which might have lead to the sample getting classified as negative.

It is worth mentioning that the CNN used for face detection is able to detect mul-

tiple faces in a frame, hence, the real-time classification also be used for group FER.

Algorithm 2 explains the steps to detect facial emotion in videos. In the algorithm,

video source can either be a video file, or the camera input. The second case is used for

real-time application.

Algorithm 2: Video FER Using Static CNN Model
Result: Real-time emotion classification
Input: video source: vid, CNN: model
while true do

vid← frame

temp = resize(frame) ;
temp = toGrayScale(temp) ;
faces← get_faces(temp)

for face in faces do
classification = model(face) ;

end
end

61



5.3.2. Hybrid CNN-RNN

As we explained previously, leveraging spatio-temporal correlations could possibly

improve FER. With that goal, we train an RNN by using LSTM layers along with fully-

connected layers on the reconstructed dataset. Table 5.1 summarizes the architecture of

the LSTM model. The data was split 80-20% for training and testing, respectively.

Table 5.1. LSTM Model Parameters

Model Layers Parameters

LSTM layer 108 units
Dropout layer 25%
Dense layer 256 units
Dropout layer 25%
Dense layer 3 units

Themodel is trained for 300 epochswithADAMoptimizer and categorical cross-entropy.

Moreover, EarlyStopping is used with a patience of 50. It monitors the validation loss

and stops if it does not change for 50 epochs. Fig. 5.3 show the accuracy and loss plots

of the hybrid model. The overall accuracy obtained by the model is 74.6%. This low

accuracy can be justified by several points:

1. The model is trained on the CK+ dataset which only consists of 327 sequences.

This is a very small dataset and is considered insufficient for deep learning.

2. Although the dataset is made up of image sequences, the sequences are of different

lengths and are not actually a full consecutive sequence, rather frames sampled
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from a sequence. This could affect the FER as the sequence does not exactly

reflect the natural transition in facial emotion. A variable-length LSTM could

possibly perform better.

3. The pre-processing done to unify the number of frames by either up-sampling or

down-sampling could have altered the transition in the facial emotion as some

frames where dropped or repeated.

It can be observed in Fig. 5.3 that themodel’s validation loss and accuracy are always

higher than the training’s. This is possibly due to the use of regularization techniques

such as dropout. In drop-out, a number of neurons are disabled through the training

process to prevent overfitting. However, all neurons are active during validation, hence,

the model is better at extracting those features.
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(a) Accuracy plot.

(b) Loss plot.

Figure 5.3. LSTM training VS validation plots.
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5.4. Real-life Experiment: Training Session Evaluation

One application of FER is in the education process, there are various examples of FER

deployed in classrooms to evaluate the understanding and attention of students [55]–[57].

For this thesis, we conducted an experiment to evaluate a training session conducted by

a local company. The experiment aimed to evaluate the attendees emotional reaction to

a set of questions regarding the training and the trainer, to measure and assess the overall

effectiveness of the training. This is achieved by analysing video-recordings provided

by the training company.

The training session was an introduction to as software called PowerBI that the

trainees are expected to use for their jobs, hence, the interviews included some technical

questions to evaluate the participants’ understanding.

5.4.1. Participants

The experiment is considered racially diverse as it consisted of six participants

with different racial facial features (East Asians, Arabs, Caucasians, Africans). Each

participant was asked a set of questions pre-training and post training. Moreover, there

were equal number of female and male participants. It is important to have this diversity

in race and gender to test the model’s ability to generalize.

5.4.2. Questionnaire

The questions were set by the trainer and asked by a interviewer that is not acquainted

with the participants, as to eliminate any bias in the answers and reactions. The pre-

training questionnaire wasmade up of five questions that target the participants’ previous

knowledge on the training topic. As for the post-training questionnaire, it targeted 1) the
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participants’ understanding of the explained topic, and 2) their opinion on the session

and the trainer. The questionnaires are provided in appendix C. We recorded each

participant’s answers to analyze their facial emotion as they answered the pre and post

training questionnaire.

5.4.3. Observations

For the FER classifier, we used the proposed CNN architecture. It is important

to note that due to the models relatively small size (1.4MB), the classification was

instantaneous with minimum latency. As for the observations from this experiments,

the following can be deduced:

1. The face recognition module used allowed for face recognition even when the

participants were not directly facing the camera (i.e. different postures)

2. Humans exhibit emotion differently, this lead to mis-classification for some par-

ticipants. For instance, some individuals frown when thinking, which is labeled

as negative according to the data fed to the classifier during training. This reflects

the complexity of FER from facial expression as the way we express emotions

differ greatly from one person to another, even from one situation to another.
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CHAPTER 6: DISCUSSION

In this chapter, we review and discuss the results and limitations in this thesis. Table

6.1 highlights the highest results achieved in each experiment, for 3-class FER.

Table 6.1. FER Results Summary

Model Input data Dataset Accuracy

Medium Gaussian
SVM

48× 48 images FER2013 62.5%

Linear SVM CNN features Cross dataset 76.9%
Quadratic SVM CNN features

(PCA)
Cross dataset 74.4%

VGG-16 48× 48 images Cross dataset 73.2%
ResNet-50 48× 48 images Cross dataset 59%
Base model 48× 48 images Cross dataset 84%
Proposed Model 48× 48 images Cross dataset 86.5%
LSTM Model CNN features (se-

quences)
CK+ (dynamic) 74.6%

In this thesis, we conducted several experiments to compare the performance of AI

algorithms for the task of FER. As existing works are trained on lab-controlled datasets

which limits the generalizability of the algorithms in real-life, we follow a cross-dataset

approach to overcome that, additionally, to increase the size of the dataset. To create

a baseline, we evaluated the performance of machine learning classifiers which were

outperformed by SVM with an accuracy of 62% with a Medium Gaussian kernel.

Another approach using SVM is done by training the classifier on the features extracted

by CNN model. This increased the classification accuracy to ~77%.

Another experiment was to test the feasibility of transfer learning from pre-trained
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models for FER. We fine-tuned and tested VGG-16 network and ResNet-50. For both

models, we freeze the convolution layers and add fully-connected layers, detailed in

appendix A. Overall, VGG-16 performed better for all cases in comparison to ResNet-

50. For 3-class FER on the cross-dataset, VGG-16 achieves an accuracy of 73.2% with

a model size significantly smaller than ResNet-50 (approx. 63 MB vs 144 MB).

The main contribution is the modifications applied to the CNN proposed in [38].

We choose this model as it uses depth-wise separable convolution, and we follow the

same approach, considering it significantly reduces the number of trainable parameters,

hence, the size of the model. The size of the proposed model is only (1.45 MB), this

is an important feature as it would be more suitable for real-life application because:

1) smaller network classifies input faster, and 2) the small size facilitates deploying

the model in hardware-constrained platforms. The proposed architecture increases the

accuracy up to 86.5% compared to 84% by the original model.

As for dynamic FER, the proposed CNNmodel was also used for video FER and was

tested in a real-life experiment as explained previously. Another approach is to leverage

the spatio-temporal correlation in videos to improve FER, however, this method achieved

an accuracy of 74%. This can be explained by the difference in the amounts of training

data. For static FER, the dataset consists of 39K images, whereas the data for dynamic

FER was only 327 examples.

All in all, the highest accuracy of 86.5% was achieved by the proposed model.

One important observation is that for all experiments, the neutral emotion classification

always had the lowest accuracy, specifically, it was mostly mis-classified as negative

emotion. This can be justified by two possible reasons: 1) the neutral class had the

lowest number of examples and perhaps the weighted loss does not perform as well
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as balancing the dataset would, or 2) neutral emotion is generally an obscure concept.

To clarify, the dataset is labelled by humans who perceive emotions differently. More

importantly, several psychologists argue that there is no neutral emotion, simply, if

an emotion is not positive, it is negative [58]. In more words, some believe that the

neutral emotion cannot exists as our emotions are negatively or positively influenced.

This ambiguity of neutrality in emotion leads us to doubt the feasibility of quantifying

neutral emotion.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

In this thesis, we tested several artificial intelligence approaches for emotion recog-

nition from facial expression. All of the experiments followed a categorical emotion

model. For the first part of the thesis, we experiment with static FER using SVM, trans-

fer learning and a proposed CNN model. From the experiments, the highest accuracy

achieved was by using dense blocks and residual connections in CNN. The latter helps

reduce the size of the model significantly which is beneficial for deploying the model in

hardware/computation-constrained devices.

The second part of the thesis aimed at FER from videos. With that goal, we tested the

proposed CNN for video classification by testing it on the CK+ videos, and by running

a real-life experiment. The second approach was using an LSTM with the features

extracted from the proposed CNN. The first approach performed better than the LSTM.

Some possible improvements are increasing the size of the data; also, increasing the size

of the model.

To sum up, we found that CNNs indeed performed better for FER classification with

an accuracy of 86.5%. Furthermore, the CNN trained on static data is also effective

for video FER, especially because of its small size. Although we anticipated the hybrid

CNN-LSTM approach to further improve the performance, the limitations mentioned

previously limited the accuracy to 74.6% only.

For future work, we plan to further improve the model architecture to improve

the classification performance. In the previous chapter we discussed the difficulty of

classifying neutral emotion. It is possible that using dimensional model, instead of a

categorical one, will be improve FER. Also, other approaches for dynamic FER can be

tested such as 3D CNNs. Studying FER from different types of images is an interesting
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task that might make a more robust FER system. Finally, this work can be extended to

detect emotion by combining different modalities such as audio and facial expression.
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APPENDIX A: CNN ARCHITECTURES

Table A.1. VGG-16 and ResNet-50 for 3-Class on FER2013

Layer VGG-16 (Unit) ResNet-50 (Unit)

FC 1 512 512
FC 2 512 256
FC 3 3 3
Trainable Parameters 526,851 4,326,915

Table A.2. VGG-16 and ResNet-50 for 7-Class on FER2013

Layer VGG-16 (Unit) ResNet-50 (Unit)

FC 1 512 512
FC 2 512 256
FC 3 7 7
Trainable Parameters 528,903 4,327,943

Table A.3. VGG-16 and ResNet-50 for 3-Class on CK+

Layer VGG-16 (Unit) ResNet-50 (Unit)

FC 1 128 512
FC 2 64 512
FC 3 3 512
Trainable Parameters 74,115 4,459,011

Table A.4. VGG-16 and ResNet-50 for 7-Class on CK+

Layer VGG-16 (Unit) ResNet-50 (Unit)

FC 1 512 512
FC 2 512 512
FC 3 7 7
Trainable Parameters 528,903 4,461,063
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Table A.5. VGG-16 and ResNet-50 for Cross-dataset

Layer VGG-16 (Unit) ResNet-50 (Unit)

FC 1 512 512
FC 2 512 512
FC 3 3 3
Trainable Parameters 526,851 4,459,011
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APPENDIX B: EXTENDED RESULTS

(a) VGG-16 (b) ResNet-50

Figure B.1. Confusion matrix for 3-class FER2013.

(a) VGG-16 (b) ResNet-50

Figure B.2. Confusion matrix for 7-class FER2013.
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(a) VGG-16 (b) ResNet-50

Figure B.3. Confusion matrix for 3-class CK+.

(a) VGG-16 (b) ResNet-50

Figure B.4. Confusion matrix for 7-class CK+.

(a) VGG-16 (b) ResNet-50

Figure B.5. Confusion matrix for cross-dataset.
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APPENDIX C: TRAINING SESSION EVALUATION EXPERIMENT

C.1. Pre-training Questionnaire

1. Have you used/do you know PowerBI?

2. Have you used/do you know pivot tables?

3. Do you use/know MS excel?

4. If yes, how many years of experience do you have in using MS Excel?

5. Why do you want to use PowerBI?

C.2. Post-training Questionnaire

1. Have you learned PowerBI?

2. Did you learn something new?

3. From 0-10, how much have you learned from this session?

4. Did you like the trainer? (what do you think about the trainer?)

5. What are the two main steps in PowerBI?

6. what is DAX?

7. Do you think the software is useful for you?

8. Do you know pivot tables?

9. Will this tool make your life easier?

10. Can you experience your data?
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