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ABSTRACT 

SHEIKH, SARAH, OBAID., Masters : June : [2020], 

Masters of Science in Computing 

Title: Diabetic Reinopathy Classification using Deep Learning 

Supervisor of Thesis: Uvais, Qidwai. 

With diabetes growing at an alarming rate, changes in the retina of diabetic 

patients causes a condition called diabetic retinopathy which eventually leads to 

blindness. Early detection of diabetic retinopathy is the best way to provide good timely 

treatment and thus prevent blindness. Many developed countries have put forward well-

structured screening programs which screens every person diagnosed with diabetes at 

regular intervals. However, the cost of running these programs is increasing with ever 

increasing disease burden.  

These screening programs require well trained opticians or ophthalmologist 

which are expensive especially in developing countries. A global shortage of health 

care professionals is putting a pressing need to develop fast and efficient screening 

methods. Using artificial intelligent screening tools will help process and generate a 

plan for the patients thus skipping the health care provider needed to just classify the 

disease and will lower the burden on health care professional’s shortage significantly.  

A plethora of research exists to classify severity of diabetic retinopathy using 

traditional and end to end methods. In this thesis, we first trained and compared the 

performance of lightweight architecture MobileNetV2 with other classifiers like 

DenseNet121 and VGG16 using the Retinal fundus APTOS 2019 Kaggle dataset. We 

experimented with different image reprocessing techniques and employed various 
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hyperparameter tuning techniques, and found the lightweight architecture 

MobileNetV2 to give better results in terms of AUC score which defines the ability of 

the classifier to separate between the classes.  

We then trained MobileNetV2 using handpicked custom dataset which was an 

amalgamation of 3 different publicly available datasets viz. the EyePacs Kaggle dataset, 

the APTOS 2019 Blindness detection dataset and the Messidor2 dataset. We enhanced 

the retinal features using bio-inspired retinal filters and tuned the hyper-parameters to 

achieve an accuracy of 91.68% and AUC score of 0.9 when tested on unseen data. The 

macro precision, recall, and f1-scores are 77.6%, 83.1%, and 80.1% respectively. Our 

results demonstrate that our computational efficient light weight model achieves 

promising results and can be deployed as a mobile application for clinical testing. 
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CHAPTER 1: INTRODUCTION 

Diabetes is a disease in which glucose metabolism is impaired leading to several 

complications. Diabetic retinopathy (DR) is one such condition which is characterized 

by damaged blood vessels at the back of the retina. According to the statistics provided 

by the International Diabetes Federation (IDF) nearly 463 million people suffer from 

diabetes globally and nearly one third have signs of DR [1]. Physicians have 

categorized DR into five different stages based on the severity viz. No DR, Mild, 

Moderate, Severe and Proliferative DR, characterized by symptoms shown in the retinal 

fundus photography images or retinal fundus images. Micro-aneurysms, Exudates, and 

Hemorrhages are considered indications of the presence of DR and are detected using 

these retinal fundus scans. In addition to that, the formation of abnormal blood vessels, 

called neovascularization is the characteristic for later stages of DR [2]. DR can be 

effectively managed in the early stages, however DR detected at later stages may cause 

irreversible loss of vision. 

For an early diagnosis of DRs, ophthalmologists regularly advise diabetic 

patients to periodically undergo medical screening of their fundus. Nevertheless, 

retinopathies resulting from diabetes are usually undetected until considerable damage 

has occurred in a patient’s fundus (usually noticed by deteriorating / loss-of vision) [2]. 

The adequate identification / grading of DR stages can aid physicians in determining 

suitable intervention procedures. Diabetic patients worldwide need regular screening 

for the early detection which aids timely treatment to be administered quickly. 

Several developed countries have already put forward a well-structured 

screening system to effectively manage the disease and provide quality timely 

treatment. The adequate identification/grading of DR aids physicians in identifying 

suitable intervention procedures, allowing timely treatment to be administered quickly. 
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The cost of running these screening programs is high and the lack of sufficient trained 

healthcare providers has forced the medical community to look for alternative ways to 

save time and resources in the grading of DR. Also, less developed nations are looking 

to reduce the cost of grading DR. Using automated computerized approach involving 

artificial intelligence is the current state-of- the-art approach to solve this issue [3][4]. 

Artificial Intelligence (AI) is the simulation of human intelligence with the help of 

complex algorithms by a software/machine where the algorithms learn to detect patterns 

in the data and then predict/detect patterns in unseen data. 

With the rise in the users of smartphone-based technology, mobile based retinal 

imaging is the need of the hour providing cheap, faster and smarter point-of-care 

technology (POCT) for screening. Classifying the stages of DR using mobile 

technology screening would help generate a treatment plan for the patients, thus 

reducing the global disease burden and provide budget friendly, cost effective tool. 

Some recent studies have evaluated the performance of smartphone-based retinal 

imaging in the research community [5] [6] [7]. High-risk patients, will then be referred 

to the appropriate medical center for treatment. As the patients requiring treatment 

would be less than 5% of the screened patients, smartphone based automated screening 

tools will significantly be a stepping stone in effective management of DR. 

Smartphone-based AI to detect Diabetic retinopathy severity has been studied 

previously in a couple of studies [5] [6]. Since mobile devices have less memory 

capacity and less computation efficiency, and most of the state-of-the art research work 

focusses on using architectures which are dense, heavy and computationally expensive, 

there is a need to look for alternatives. In this research we try to accomplish the task of 

developing a mobile based classification system for grading the severity of retinal 

fundus images. The system uses a much more efficient and light weight architecture of 
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MobileNetV2 which is known to give better performance than its predecessor 

MobileNetV1 without compromising on the key desired characteristics of the 

developed model viz. low latency and increased efficiency [8] [9]. We trained and 

tested the model on a custom-made dataset which is an amalgamation of 3 publicly 

available retinal fundus images datasets viz. the EyePACS, Kaggle APTOS dataset, and 

the Messidor2 dataset. We used bio-inspired retinal filters and fine-tuned the 

hyperparameters to achieve promising results.  

The following sections are organized as follows. Section 1.1 gives an overview 

of Diabetic Retinopathy. The next few chapters are organized as follows: Chapter 2 

highlights the related background necessary to understand the concepts presented in the 

thesis work and Chapter 3 presents the related work in the domain of DR grading using 

convolution neural network especially transfer learning giving a brief insight into 

MobileNetV2 architectures used in related studies. Chapter 4 presents the methodology 

used i.e. the dataset, pre-processing methods employed to the digital fundus images of 

our custom dataset, and the hyperparameter tuning of our model. Chapter 5 presents the 

experimental settings, the results, and a comparison of the results to previous related 

studies and finally Chapter 6 finally concludes the work with a list of contributions and 

future directions for research.  

1.1 An Overview of Diabetic Retinopathy  

Understanding Diabetic Retinopathy (DR), what causes it and the characteristic 

changes in the retina are imperative to building good artificial intelligent systems for 

screening purposes. Diabetic Retinopathy is a long-term condition seen in Diabetic 

patients. Diabetes Mellitus (DM), commonly known as Diabetes, is a chronic disease 

characterized by high blood sugar levels over a long-term period [10]. Uncontrolled 

diabetes may lead to many long-term conditions such as diabetic foot disease, diabetic 
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kidney disease or diabetic retinopathy. DR is a complication which slowly damages the 

retina and is estimated to affect nearly 191 million people by 2030 [11]. High blood 

glucose levels damage or bock the blood vessels which nourish the retina and thus cause 

lasting harm. In response to this harm, the body then develops new blood vessels to 

maintain the nourishment which are weak and can easily lead to leakage and bleeding. 

[12]. This causes medical disorders like blurred vision and in some sever cases may 

lead to vision loss [13] 

1.1.2 Diabetic Retinopathy Stages Classifications 

The physicians have laid out the stages of DR by pointing out the symptoms. A 

sample retinal image with the manually annotated common DR lesions [14] is shown 

in Figure 1. 

 

 

 

 

Figure 1. Annotated diabetic retinopathy image showing lesions. 
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The typical lesions of DR are briefly discussed below: 

 Hard Exudates: Hard exudates are one of the retinal lesions that define DR. Hard 

exudates usually appear in the retinal images as tiny yellow-white spots with sharp 

edges and different sizes [15].  

 Soft Exudates: Soft exudates, also known as cotton wool spots, appear as white 

patches with blurred and hazy edges [16]. Exudates, including soft exudates and 

hard exudates, are one of the most common early lesions of DR [17].  

 Microaneurysms: Microaneurysms are the earliest clinically visible signs of non-

proliferative diabetic retinopathy (NPDR) and are caused by dilatations of thin 

blood vessels. Microaneurysms usually appear as small red dots with sharp edges 

(20 to 200 microns) in clusters [18]. 

 Haemmorhges: As microaneurysms rupture in the deeper layers of the retina, they 

form hemorrhages. 

In the United Kingdom (UK), the National Health System (NHS) is the publicly 

funded healthcare system and they have laid out the Diabetic Eye Screening Programme 

(DESP) According to them, for grading the retinal fundus images usually up to three 

human graders are required. These graders must meet the NHS DESP quality assurance 

standards and should be able to assess the images to determine a disease severity grade. 

They should then use these grades to produce a ‘final grade’ for each eye according to 

the highest level of severity observed.  The stages of DR can be classified based on the 

presence of clinical features. The four widely used DR levels are defined in the table 

below [19] in Table 1. 
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Table 1. Stages of DR [19]. 

 

 

 

Figure 2. Stages of DR - UK equivalence for Diabetic retinopathy stages [20]. 

 

Figure 2 shows the various stages of Diabetic Retinopathy and the UK 

equivalence scale. The normal fundus equates to R0. The stage characterized by 

microaneurysms only is the Mild non-proliferative DR stage and the next stage where 

there are distortions in the blood vessels surrounding the retina causing swelling and 

degradation in the ability of blood transportation. Both mild and moderate non-

proliferative DR equate to R1 in the UK equivalence scheme. Severe Non-proliferative 

DR are characterized to the blockage of more blood vessels and are depicted by more 

than 20 intra retinal hemorrhages in each quadrant along with venous beading. It 

equates to R2 in UK equivalence standards. Proliferative Diabetic retinopathy is 

Levels Description 

 

R0 No DR 

R1 Presence of Microaneurysms, retinal hemorrhages and any exudates 

R2 Presence of Intra-retinal microvascular abnormalities, venous loop, 

venous beading 

R3 Presence of new blood vessels (neovascularization), pre-retinal or vitreous 

hemorrhage 
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characterized by vitreous hemorrhage and/or Neovascularization (new blood vessels 

formation) which are prone to bleed and leak more often. They equate to R3 stage in 

the UK equivalence standards [21] [22]. 

1.1.3 Fundus Photography  

Color Fundus Retinal Photography which is widely used for screening the retina 

of patients uses a fundus camera to record the conditions of the eye focusing a 3D eye 

retina structure into a 2D plane. They record color images of the retina. The camera is 

basically a microscope with low power and has a camera attached to photograph the 

interior of the eye. The camera can clearly picturize the internal retinal features 

including the retinal vasculature, optic disc, macula, etc. The image is formed by the 

amount of light reflected by the interior of the eye. The imaging light is sent to the 

retina via the pupil to form the image by the reflected rays from the retina (Figure 3). 

 

 

Figure 3. The scope of fundus imaging [32]. 

 

Lack of appropriate intervention causes DR to progress from mild to severe 

stages and thus it is important to recognize the stages when referral for treatment may 

be most beneficial. DR is broadly classified into two categories: non-proliferative 
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diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). 

Management of NPDR involves close monitoring by an ophthalmologist or optometrist 

and optimization of the patient’s glycemic control by an internist. Treatment at the 

proliferative stages involves laser photocoagulation, intravitreal injections of anti-

vascular endothelial growth factor (VEGF) agents, or surgery to repair a retinal 

detachment.  

1.2 Motivation 

DR is a major cause of blindness and manual diagnosis of DR from retinal 

images is a time-consuming process and cumbersome process. Further it requires 

expertise of trained healthcare professionals which are often scarce, thus making it a 

challenging process. As a result, several studies have used deep CNN models to 

diagnose DR automatically. However, these methods employed very deep CNN models 

(e.g., ResNet-based method [23], Inception Net-based method [24], InceptionNet-

ResNet-based model [25]) which require vast computational resources. Research on 

DR screening using computationally efficient CNN models has a great practical 

significance. This thesis is therefore focused on applying accurate and computationally 

efficient CNN model of MobileNetV2 for automatic DR classification that h can be 

deployed in mobile environments with scare resources like memory and computation 

power. 

1.3 Research Questions 

In this research we aim to research the following questions: 

 Can lightweight architectures like MobileNetV2 effectively classify the severity 

of DR using retinal images and give comparable results to the commonly used 

heavy and dense architectures like DenseNet, VGG etc. using transfer learning? 
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 Can transfer learning model built using MobileNetV2 architecture give a good 

performance using a custom dataset of handpicked retinal fundus images 

employing various image processing and finetuning techniques?  

 Does the developed model give satisfactory results when compared to other 

related work in the literature and does it hold a good scope of deploying in real-

time mobile applications for clinal testing? 

1.4 Research Aims and Objectives 

The aim of this research is to classify the severity of Diabetic Retinopathy (DR) using 

retinal fundus images using light weight mobile networks. 

The Objectives are as below: 

1. To compare the performance of models built using light weight mobile networks 

like MobileNetV2 with the commonly used heavy and dense transfer learning 

algorithms on retinal fundus images. 

2. To train and test a lightweight mobile-friendly classifier using MobileNetV2, using 

a custom-made dataset which can be deployed in mobile-based screening systems 

to classify the severity of DR. 

3. To compare the developed model with existing work in the literature and assess the 

scope of real time deployment of the model in a mobile environment for testing in 

a clinical setting. 

Summary  

In this chapter we have laid forth the foundations of the study, the problem, the 

motivations behind the study, giving an overview of Diabetic Retinopathy and the 

various stages and classifications used in the medical community. We further put down 

the objectives of the study which has been described further in the following chapters. 
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CHAPTER 2: BACKGROUND 

 This chapter is a brief overview of various necessary background concepts that 

are needed to understand the contents of the thesis. The chapter highlights the concept 

of Artificial Intelligence (AI), the basic intuition of Machine Learning (ML), 

foundations of Deep Learning and its relationship to ML. Further, we explain the 

Convolution Neural Networks (CNNs) which are popularly used in the field of 

Computer Vision. We further understand the architectures of the CNNs which were 

used in this thesis. We also understand the intuition behind transfer learning and how 

we have leveraged it for our experiments. We also present the structure of the light 

weight, computationally efficient MobileNetV2 architecture. 

2.1 Artificial Intelligence  

Artificial Intelligence (AI) is a field of computer science where the machines 

demonstrate intelligence just like the natural intelligence displayed by humans and 

animals. AI research has seen a resurgence, following the phase of AI winter, after 

being founded in 1955, as an academic discipline. This was mostly due to the 

availability of large amounts of computational power, the enormous amounts of data 

and the theoretical understanding that was necessary to simulate the human intelligence. 

The field of AI includes many subfields like knowledge representation, 

reasoning, learning, planning, natural language processing, perception and the ability 

to move and manipulate objects. Automated reasoning is an area which involves 

knowledge representation and reasoning to help computers acquire the ability of 

reasoning. Natural language Processing deals with the development of computers 

ability to process large amounts of natural language data and analyze it. Machine 

perception deals with developing the ability of the computer to absorb the sensory 

inputs and be able to see, feel and perceive the way humans do by gathering information 
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from the world using machine vision, hearing and touch. Fields of computer vision, 

machine hearing and machine touch fall under this category. Hence, learning which is 

formally termed as Machine Learning (ML) is a subset of AI where the machine learns 

from data by identifying patterns in the data and forming inferences using several 

algorithms and statistical techniques.  

2.2 Machine Learning  

It is a subset of AI which allows the machine to learn from data implicitly 

without being actually programmed. The machine learns from the data by identifying 

patterns and making predictions. The popular machine learning algorithms include, the 

decision tree, k-nearest neighbors, naïve bayes, neural networks and kernel methods 

like support vector machines (SVMs). The task of these learning algorithms is to learn 

from data. In machine learning the algorithms essentially learns from an experience E 

with respect to some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E [70]. Examples of these tasks 

are classification, regression, anomaly detection etc. Examples of the performance 

measure P is accuracy, error rate etc. Examples of the learning experience are 

supervised, unsupervised and reinforcement. The learning experience basically denotes 

the type of learning that the algorithms are allowed to have during the learning process. 

In supervised learning experience the algorithm has a dataset which has labels while 

unsupervised learning experiences are based on data which don’t have labels. 

Reinforcement learning experience deals with the model learning from the environment 

through feedback loops. A dataset is a collection of examples which is in turn a 

collection of features. The entire collection of steps that make up the ML pipeline 

include data collection, data cleaning, splitting the dataset into training, validation and 

testing data, feature selection and engineering, model building, hyperparameter tuning, 
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and model optimization.  

2.3 Deep Learning 

Deep Learning is a subset of Machine Learning which comprises of 

architectures that use Deep Neural Networks (DNN). Figure 4. depicts the relationship 

of Artificial Intelligence, Machine Learning and Deep Learning.  

 

 

 

Figure 4. Relationship between AI, ML and DL. 

 

Deep Neural Networks trace their origins back to the 1940s and 1950s and are 

inspired by the biological neural networks of the brain [26]. A typical neural network 

consists of 3 layers called input layer, the hidden layers and the output layers. The input 

layer takes the input from the data and passes it to the hidden layers which perform a 

non-linear combination of the information from the previous (input or hidden) layers. 

All these layers are composed of a neuron which is similar to structure of the biological 

neuron of the human brain. The building block of a neural network is a neuron which 

Artificial 
Intelligence

Machine Learning

Deep Learning 
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is depicted in the figure 5. 

 

 

 

Figure 5. The basic structure of a neural network. 

 

.  

 

 

 

Figure 6. A neuron. 
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A neuron (Figure 6) is basically a placeholder for a mathematical function called 

as the activation function which activates this neuron by specific degrees based on the 

inputs and fires and output. Each layer of a neural network is a collection of neurons 

which take inputs and provide an output. The neural network in figure 4 has an input 

layer which takes the input and feeds it forward to the hidden layers which are activated 

based on the specific activation functions and which then produce an output based on 

their activations. The parameters are the weights, denoted by w (also a [nx1] vector), 

and a bias scalar, denoted by b. An activation, denoted by a, is a scalar defined by:  

 

A point-wise non-linear function, denoted by σ (·), is then applied to generate 

the output, y = f(a) = σ( ∑ 𝑥𝑖𝑛
𝑖=1 𝑤𝑖 + b). Some choices for the non-linearity function σ 

includes, sigmoid function, Tanh function, ReLU or the Leaky ReLU. 

Other terminology used in the literature for this type of structure includes 

Artificial Neural Networks (ANN), Multi-layer Perceptron (MLP), and a fully-

connected network. By convention, the number of layers is equal to the number of 

hidden layers plus the output layer (i.e., excludes the input layer).  

Once a model architecture has been selected, the next step is to train the model 

as denoted by the steps below: 

 Given the dataset of input x and output y, pick an appropriate cost function, C.  

 Forward pass the input examples through the model to arrive at the predictions. 

Here the neurons are fired based on the activation’s functions.  

 Calculate the error using the cost function C to compare the predictions.  

 Apply back-propagation to pass the error back through the model, adjusting the 

parameters to minimize the loss L.  



  

15 

 

 Once the gradients are established, use Stochastic Gradient Descent (SGD) to 

update the network weights. 

In SGD, we start with some initial set of parameters, denoted by θ0, and the updates 

are defined by θ k+1 ← θ k + η ∆θ, where k is an iteration index, η is the learning rate, 

and the gradients ∆θ = ∂ L /∂ θ. 

The backpropagation algorithm involves:  

1. A forward pass where for each training example we compute the output for all the 

layers, xi = Fi (xi−1, wi);  

2. A backwards pass where we compute cost derivatives iteratively from top to bottom 

∂C/∂xi−1 = ∂C/ ∂xi · ∂Fi (xi−1, wi) / ∂xi−1  

3. Compute gradients and update the weights. 

A constant learning rate η is typically not optimal. Techniques to optimize the learning 

rate are AdaGrad, RMSProp and ADAM. A momemtum term can be added to the 

weight update to encourage updates to follow the previous direction. This usually helps 

speed up convergence. The update then become θ k+1 ← θ k + α(∆θ) k−1 – η ∆θ, where 

α is typically around 0.9. 

2.3.1 Convolutional Neural Networks  

A popular class of Neural Networks are the Convolution Neural Networks 

(CNNs) which have shown exceptional performance in the field of image classification 

and recognition. The CNN network architecture has a number of hidden layers which 

help in the extraction of useful features and a fully connected layer at the end used for 

the classification. The CNN model is feed-forward, where input images are fed to 

convolution layer(s), non-linearities, pooling layers, and finally to feature maps.  The 

CNN architecture, as shown in Figure 7, comprises of alternating convolution and 

pooling operation to reduce computation time and to understand the spatial details more 
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effectively [27] [28] [29].  

 

Figure 7. A convolution neural network. 

 

The optimization process of the network is done by the backpropagation 

algorithm and the stochastic gradient descent algorithm. The convolutional layers apply 

a convolution operation with a fixed sized filter, e.g. 3x3 or 5x5, across the image. The 

filter is learned during training, and options such as the stride, padding, and dilation can 

be set. The pooling layer helps to reduce the spatial size of the representation, thus 

reducing the number of parameters and computation, and to prevent overfitting. 

ImageNet [69] is a large-scale image database with over 14 million labeled 

images and over 20K classes. The ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) is an annual competition, where teams compete to build high performing 

networks. In 2012 major breakthrough was achieved via the AlexNet CNN of 

Krizhevsky et al. [30], achieving a top-1 and top-5 error rates of 39.7% and 18.9% 

which was considerably better than the previous state-of-the-art results.  

2.3.1.1 DenseNet161 architecture  

DenseNet (Densely Connected Convolutional Networks) is one of the latest 

neural networks for visual object recognition [35]. It’s considerably similar to ResNet 
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[34] but has some fundamental differences. It addresses the issue of “vanishing 

gradients”. Specifically, the DenseNet authors point out that with increasingly deep 

CNNs as information about the input or gradient passes through many layers, it can 

vanish and “wash out” by the time it reaches the end (or beginning) of the network. 

ResNet architecture proposed Residual connection, from previous layers to the current 

one. This is exactly how the DenseNet layers deal with this issue. DenseNet created an 

architecture to ensure maximum information flow between layers in the network, by 

connecting all layers (with matching feature-map sizes) directly with each other. In 

contrast to ResNet, DenseNet never combines features through summation before they 

are passed into a layer, rather it combines features by concatenating them. The 

“denseness” occurs because this network introduces L(L+1) 2 connections in an L-layer 

network, instead of just L in traditional architectures [35]. Figure 8 depicts a 5-layer 

dense block with a growth rate of k = 4. Each layer takes all preceding feature maps as 

input. 
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Figure 8. Schematic diagram of DenseNet architecture, reproduced from [35]. 

 

The biggest advantage of DenseNets is the improved flow of information and 

gradients throughout the network as each layer has direct access to the gradients from 

the loss function and the original input signal, leading to an implicit deep supervision.  

2.3.1.2 VGG16 architecture  

VGG16 is a deep CNN used for object recognition which was developed and 

trained by Oxford's renowned Visual Geometry Group (VGG) and gave 92.7% top-5 

test accuracy in ImageNet in the Large-Scale Visual Recognition Challenge 2014 

(ILSVRC2014) [33]. ImageNet is a huge database of images for academic researchers 

with 14 million hand-annotated images of what is in the picture. The main contribution 

of VGG is to show that classification/localization accuracy can be improved by 

increasing the depth of CNN in spite of using small receptive fields in the layers. 

(especially earlier layers). Neural networks prior to VGG used bigger receptive fields 

(7*7 and 11*11) as compared to 3*3 in VGG, but they were not as deep as VGG. There 

are few variants of VGG, the deepest one is with 19 weight layers. In this research, the 
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model with 16 layers has been used which is popularly known as VGG-16. 

VGG-16 is named so as it has 16 layers as shown in figure 9. It consists of 

Convolutional layers, Max Pooling layers, Activation layers, Fully connected layers 

arranged together as shown in figure 9 below which gives an overview of the layers in 

a VGG-16 network. 

 

 

 

Figure 9. VGG-16 Layer Architecture. 

 

There are 13 convolutional layers in the VGG-16 network, 5 Max Pooling layers 

to down sample the size of the network and 3 Dense layers which sums up to 21 layers 

but since only 16 weight layers, are there the network is named as VGG-16.  

2.3.1.3 MobileNetV2 architecture  

Transfer learning using Image net weights on MobileNetV2 has been taken into 

consideration for this thesis as this network is the state-of-the-art approach in the most 

mobile compatible networks. The biggest drawback of the commonly used CNNs such 

as DenseNets and VGG etc. is that they are computationally expensive. MobileNets are 

neural networks which are very efficient for mobile devices. MobileNetV2 is an 

enhancement of MobileNetV1 and is much more efficient and powerful than its 

predecessor. The original MobileNetV1 is a CNN which uses depthwise separable 

convolutions and basically splits the convolution layer into two sub tasks i.e. The input 
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is filtered by a depthwise convolution layer and then a pointwise convolution of size 

1x1 combines these filtered values to create new features. These two layers are together 

termed as ‘depthwise separable convolution block’ which performs the tasks of a 

normal CNN but much faster, almost about 9 times as fast as other neural networks 

giving about the same accuracy [11]. The structure of the MobileNetV1 has these layers 

followed batch normalization and the ReLU6 activation function is used which is 

known to give better performance than the regular ReLU. At the end, there is a global 

average pooling layer, followed by a fully connected layer or a 1x1 convolution, and a 

softmax. The depth multiplier which is also known as the width multiplier is a 

hyperparameter which can be tuned and controls the number of channels in each layer 

[8].  

 

Table 2. Depthwise Separable vs Full Convolution MobileNet reproduced from [8] on 

ImageNet dataset. 

Network ImageNet Accuracy 

 

Million Mult-Adds Million Parameters 

Conv MobileNet 71.7% 4866 29.3 

MobileNet 70.6% 569 4.2 

 

 

Table 2 clearly demonstrates the effect of depth wise separable convolutional 

layer. Conv MobileNet, which uses the standard convolutional layer gives an accuracy 

of 71.7% while MobileNet which is based on the depth wise separable convolutional 

layers gives an accuracy of 70.6%, when trained on the ImageNet dataset. Additionally, 

the Mult-Adds operations and the learnable parameters are reduced significantly due to 

the depth wise separable layer. Hence significant improvement in the efficiency is 



  

21 

 

observed by reducing the parameters and Mult-Adds significantly while trading off the 

accuracy only by approximately 1%. This explains the contribution of depthwise 

separable layer which make up the MobileNet architecture, thus making them highly 

efficient for mobile devices. 

According to Sandler et.al. [9] MobileNetV2 s similar to MobileNetV1, with 

differences in the architecture which contribute to its effectiveness. It also uses 

depthwise separable convolutions but the structure of the building block has residual 

skip connections and the expansion and projection layers, in addition. The building 

block consists of three convolution layers i.e. an expansion layer in which a 1x1 

convolution layer expands the number of channels, a second layer which called the 

depthwise convolution layer and filters the inputs, followed by a third layer which is 

called the projection layer (and is a 1x1 pointwise convolution) which makes the 

number of channels smaller [9]. The expansion factor gives the factor by which the data 

gets expanded in the expansion layer and is a hyperparameter with a default value of 6. 

The network also has residual connections which helps with the flow of gradients 

through the network. Similar to MobileNetV1, every layer has batch normalization and 

the activation function is ReLU6 but the output of the projection layer in MobileNetV2 

does not have an activation function applied to it. The complete MobileNetV2 

architecture consists of 17 such building blocks followed by a regular 1×1 convolution, 

and a global average pooling layer, and a classification layer which is a 1x1x N layer 

where N is the number of classes in our problem [9].  

Sandler et.al. mention that MobileNetV2 performs 300 million MACs which 

are the multiply-accumulate operations for an RGB image of 224x224, while 

MobileNetV1 performs 569 million MACs [12]. Additionally, V2 has nearly 20% less 
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parameter counts than V1 has and this explains why V2’s is more computationally 

efficient that V1 for mobile devices which have low memory access and less 

computation power [9].  

Sandler et al. [9] termed the 2 building blocks as the inverted residual building 

block with linear bottlenecks which is fact the expansion layer and the reduction 

building block with linear bottlenecks which is the projection layer. Table 3 shows the 

architecture of the MobileNetV2 network and figure 10 shows the building blocks of 

the network. Similar to MobileNetV1 architecture, a hyperparameter α is introduced to 

trade off performance and computational cost. It is found that MobileNetV2 achieves 

an Accuracy of 0.720 compared to an Accuracy of 0.706 achieved by MobileNetV1 

while using 19% fewer parameters and 48% fewer MAdds on ImageNet dataset [9]. 

 

Figure 10. Inverted Residual (left) and Linear Bottleneck (right), Convolution blocks 

of MobileNetV2 reproduced from [9]. 
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Table 3. MobileNetV2 vs MobileNetV1 reproduced from [9] on ImageNet dataset. 

Network ImageNet Accuracy Million Mult-Adds Million Parameters 

 

MobileNetV1 70.6% 575 4.2 

MobileNetV2 72.0% 300 3.4 

 

2.4 Transfer Learning using Convolution Neural Networks 

Transfer learning is a technique developed to address the issue of applying deep 

learning for domains with limited data [31]. The basic idea is to leverage the 

fundamental learning blocks built with a particular Deep Neural Network (DNN), such 

as ResNet, and to “re-train” the DNN for a particular domain of interest. Thus, one can 

utilize the strong “fixed feature extractor” capabilities of a DNN built on the millions 

of training examples from ImageNet to detect features common to all domains, such as 

object edges, and then re-train just the “top layer” for classification with the limited 

training data from a particular target domain. 

Transfer Learning reduces the training time significantly. It also reduces the size 

of the dataset used for learning and this makes it very useful in domains which have 

little data. Training the final layers means that we transfer the knowledge that the 

classifiers learned from the its original training and can now apply it the smaller dataset 

from a different domain without the need for extensive training, thus saving training 

time and computational resources, and building models which give accurate results. 

In this study, we have tried experimenting with the famous DenseNet121, 

VGG16, and MobileNetV2. We have tried to classify retinal images into respective 

categories using the original pretrained network which was trained on image net 

weights and we modified those networks by removing the top classification layers and 

by replacing them with pooling layers, dense layers and the final classification layer of 
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5 x1 nodes for the 5 output classes. This section of the overview of deep learning will 

briefly review 3 DNNs that were evaluated in this report. These networks are 

DenseNet121, VGG16, and the lightweight MobileNetV2.  

Summary 

In this chapter we have discussed in detail the basics behind the deep neural 

networks, the feed-forward process and the backpropagation algorithm which is used 

to update the weights learned from the input. We have also looked at Convolution 

Neural Networks and have discussed the various CNN architectures used in this thesis. 

The following chapter presents the related work done in the field of DR severity grading 

using artificial intelligence. 
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CHAPTER 3: RELATED WORK 

In this chapter we present the related work highlighting key studies which have 

worked on the problem of diabetic retinopathy grading using computerized approach. 

We will study the various techniques and approaches used by the previous studies and 

how our study stands out from them. 

3.1 Related work on DR screening  

DR screening is based on retinal examinations by trained ophthalmologist or 

optometrist, or by digital retinal images which can detect early stages of DR. [36]-[44]. 

Manual screening for DR using digital imaging is known to give satisfactory results, 

however with the rise in DR prevalence coupled with the limited number of trained eye 

care professionals or certified readers, current DR screening programs that rely on 

expensive labor-intensive manual assessment may fail to address the rising screening 

demand, especially in the rural or non-developed nations which lack access to qualified 

screeners. To address such issues two alternative methods, exist in the literature i.e. 

crowdsourcing and automated computer aided retinal image analysis. The following 

sections gives some insights into the methods. 

3.1.1 Crowdsourcing 

Amazon’s Mechanical Turk (AMT) is a crowdsourcing platform which lets us 

hire remote workers to do specific jobs which computers may be unable to do. One 

study [45] used Amazon Mechanical Turk to find an accuracy of 81.3% for 

distinguishing between normal and abnormal images while another study [46] found an 

accuracy of greater than 90% in distinguishing normal and severely abnormal images. 

Both the studies indicated a sensitivity of greater than 93% indicating that this screening 

modality has a good potential to address the increasing volume of images that will need 

to be screened with increasing diabetes prevalence rates.  However, this technique has 
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its obvious limitations i.e. there is no control over who is the “the crowd” in such 

platforms as it is counter to the spirit of crowdsourcing, but in reality, it is indeed 

necessary to know and have control over who is performing the analysis to validate the 

quality of image analysis [47].  

3.1.2 Computer-aided retinal image Analysis  

There is a plethora of studies which are focused on DR grading via automated 

mechanisms based on machine learning algorithms. The studies can be grouped into 

two very broad categories i.e. one which uses traditional approaches and the other 

which follow end to end methods.  

3.1.2.1 DR Screening Using Traditional Methods 

The traditional methods comprise of different phases which are distinct and 

separate. The phases usually are (1) feature extraction, (2) training and (3) 

classification/grading. The feature extraction phase depends on one or more of the DR 

symptoms. Usually the target is to extract the features of DR such as changes in the 

blood vessels which usually requires blood vessel segmentation and/or detection of 

lesion and classification which includes exudates, microaneurysms, hemorrhages, etc. 

For example, Nijalingappa and Sandeep [2] used traditional techniques to detect 

Microaneurysm in digital fundus images on a local dataset and achieved an accuracy of 

87%. Microaneurysms are localized capillary dilations in circular shape and appear like 

small red dots often in clusters. Similarly, Seoud et al. [48] conducted experiments for 

detecting red lesions (i.e., Microaneurysm and Hemorrhages) in 2016 and achieved a 

sensitivity of 96%. They built a traditional model based on both Random Forests and 

Decision Trees algorithms.  

In [49], Support Vector Machines (SVMs) have been used to detect and classify 

the exudates and predict the severity of DR. In the research conducted by Acharya et 
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al, an automated system was developed for identifying the five classes using the 

features extracted. Some studies [50], [51] extracted exudates as features to classify the 

retinal images while some others used number of microaneurysms [52] while some 

other studies focused on retinal blood vessels [53] to identify diabetic retinopathy. 

Hence within the literature there are various trends and techniques to classify the 

severity of diabetic retinopathy and these techniques are heavily varied.  

There is variation in the type of image processing techniques used as well. 

Rakshitha et al. [54] used several image transformation methods to enhance the images. 

She used contourlet transform, curvelet transform and wavelet transform and compared 

the performances of the classifiers. Another study [55] experimented with discriminant 

texture features to detect diabetic retinopathy. Most of these image processing 

techniques aim at identifying the lesions (exudates, hemorrhages, microaneurysms etc.) 

and the blood vessels to detect diabetic retinopathy. 

Medical doctors and/or domain experts are required to put in their expert 

knowledge in the case of feature-based classification methods. This process of feature 

selection and extraction manually is often time consuming and varies vastly. Current 

trends in the literature point towards the DL based systems which use CNN’S. these 

models have been able to outperform the traditional approaches which use extraction 

of features. Hence end to end methods which primarily use the state-of-the-art deep 

learning models depend on pixel locations, correlations between the pixels, the color 

intensities and/or the combination of these features to create more sophisticated 

features. Over the last few years this step led to the automation of the feature extraction 

phase without any manual investigation or selection of the features. CNNs have 

demonstrated encouraging results in both the identification and grading of DR 

symptoms. Deep Learning algorithms are mainly used for classification based either 
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from scratch or for transfer learning. 

3.1.2.2 DR Screening Using Deep Learning & Transfer Learning technique 

Transfer learning uses the technique of transferring the weights from a pre-

trained model to adjust to our learning dataset. Maninis et al. [56] used VGG-16 for 

transfer learning for optic disk and blood vessel segmentation and achieved good 

results. Mohammadian et al. [57] used the Inception-V3 algorithm and fine-tuned the 

parameters and also used the Xception pre-trained models and achieved promising 

results. In addition to balancing the dataset they used data augmentation techniques and 

achieved an accuracy of 87.12% using Inception-v3 algorithm.  

The study published in [58] demonstrated how transfer learning could solve the 

issue of insufficient training data. The authors in this paper use transfer learning for 

retinal vessel segmentation. Along similar lines studies like [59] and [60] used transfer 

learning and in [60] the best model was developed using VggNet-16 which achieved a 

78.3% accuracy. Hence, we see a number of recent studies are targeting transfer 

learning to solve the inadequacy of data in the domain and also reducing the training 

time. 

With the increase in smartphone usage, smartphone-based Point-Of-Care-

Technology (POCT) is becoming popular. Rajalakshmi et. al. [5] and Xu et. al. [61] in 

two separate studies have used smartphone-based applications coupled with a fundus 

camera hardware for diabetic retinopathy grading. We lay forth the foundations of our 

study based on the related literature existing in the domain. 

3.1.2.3 DR screening using MobileNetV2  

MobileNetV2 is similar to MobileNetV1, with differences in the architecture 

which contribute to its effectiveness. It also uses depth wise separable convolutions, 

like its predecessor but the structure of the building block has residual connections and 
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the expansion and projection layers, in addition. MobileNetV1 are a neural network 

architecture which are very efficient for mobile devices. MobileNetV2 is an 

enhancement of MobileNetV1 and is extremely powerful for mobile devices which are 

targeting models which give low latency and high computational efficiency.  

In [62] the authors experimented with MobileNet and MobileNetV2 among 

other transfer learning approaches on the problem of diabetic retinopathy grading. They 

used MobileNetV2 which is an improvement of the MobileNetV1 architecture in terms 

of speed and computational efficiency and also gave good performance. They achieved 

an accuracy of 78.1% using MobileNetV2 and an accuracy of 58.3% using 

MobileNetV1.  

Further, we see that Gao et.al. in [63] divided the problem into a 2-class problem 

of DR and RDR which is referable DR. According to them, grade 0 and 1 of the 

Messidor dataset form the DR category while grade 2 and 3 are considered the referable 

DR category which needs urgent attention. Their MobileNetV2 model has achieved an 

accuracy of 90.8% for class DR and 92.3% for class RDR [63]. Due to a difference in 

the annotation scales used in the datasets Gao et.al. [63] transformed the problem into 

a binary classification task of referable vs non- referable.  

To the best of our knowledge no other study has first validated the performance 

of pre-trained DNNs on retinal fundus image and then built a custom dataset of 

handpicked images to build a light weight mobile friendly model using MobileNetV2 

to classify retinal images for DR retinal screening. In this study, we used a custom-

made dataset of handpicked retinal fundus images from 3 different publicly available 

datasets and then trained and tested our classifier using MobileNetV2 on these images 

after using several preprocessing techniques. In this study we present the methodology 
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and the results of applying transfer learning algorithms to retinal fundus datasets and 

then using MobileNetV2 on a custom dataset to fine tune the model and build models 

specifically for the needs of mobile devices which has the potential to be used for 

screening DR using mobile devices.  

Summary 

In this chapter we have analyzed the various studies in the literature which have 

done similar work and laid forth the methodology used in our study in the next chapter. 

We have tried to cover the broad areas where automated diabetic retinopathy severity 

classification was being carried out. The nest chapter will explain the methodology 

followed in this research. 
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CHAPTER 4: METHODOLOGY 

In this chapter we lay forth the foundations of the research by explaining the 

dataset used in the study, the architecture of our model, the preprocessing techniques 

and the hyperparameter tuning that was done to achieve the optimal performance. 

Figure 11 and Figure 12 explain the methodology diagrammatically. 

 

 

Figure 11. Diagrammatic overview of the methodology – Part 1. 

 

4.1 Datasets  

For the first part of our study we trained our models using pretrained networks 

on a publicly available Diabetic retinopathy dataset from Kaggle i.e. the APTOS 2019 

Blindness Detection dataset from Kaggle [64]. The dataset comprised of retinal fundus 

images which were split first into train and validation where 10% of the data was 

randomly chosen for validation. The train data was split into training and testing data 

using train_test_split from sklearn with the test_size being 15% of the remaining data. 

The dataset has retinal fundus images which are rated by a clinician for the presence of 

diabetic retinopathy in each image on a scale of 0 to 4. The five classes are as follows: 
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0 - Negative or No DR: Patient has no disease. 

1 - Mild DR (Stage 1): Patient has mild level of disease. 

2 - Moderate DR (Stage 2): Patient has moderate level of disease. 

3 - Severe DR (Stage 3): Patient has severe level of disease, the most part of the retina 

is damaged, can lead to complete blindness. 

4 - Proliferative DR (Stage 4): Patient has proliferative level of disease. The patient’s 

eye is damaged to an extent where treatment is elusive, about 80 percent of blindness 

exists. 

Further in order to build an accurate, computationally efficient and robust system, 

we prepared a custom dataset using 3 different publicly available datasets to train and 

test our model using the light-weight MobileNetV2 architecture. The final dataset that 

we used in our experiments is an amalgamation of retinal fundus images from the three 

datasets mentioned below: 

1. EyePacs dataset: EyePacs has provided a large dataset of retinal images from 

diabetic screening programmes [65]. The dataset is sponsored by the California 

Health care Foundation and was used in the Kaggle DR Detection Challenge. This 

dataset comprises a large set of high-resolution retina images taken under a variety 

of imaging conditions. It has a total of 88,702 JPEG images. The competition 

sponsors pre-allocated 31,615 (35.6%) of these images for training, 3,511 (4.0%) 

for validation, and 53,576 (60.4%) for testing. Class labels were provided by the 

competition for the training, validation, and test images. The dataset is labelled with 

a severity grade of DR from 0 to 4. All images were rated by a certified reader 

according to a standard diabetic retinopathy grading scale. 

2. APTOS 2019 dataset: APTOS stands for Asia Pacific Tele-Ophthalmology 

Society [64]. It is a subset of the EyePacs dataset obtained after performing some 
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preliminary operations and available in different image formats. It consists of 3000+ 

images.  

3. Messidor 2 dataset: The Messidor 2 is an extension of the original Messidor dataset 

for diabetic retinopathy [66].  It contains 1500+ retinal fundus images which are 

labelled with 4 classes from 0 to 4. 

We performed data normalization on images from the 3 datasets in a way that each 

of the 5 classes has relatively the same number of images. This was done to ensure that 

the dataset is not biased towards any one particular class. We used partial datasets from 

EyePacs and APTOS 2019 dataset and used 50% of the Messidor2 dataset to create this 

custom dataset for training our classifier in our experiments and we only choose images 

which were of a good quality and would contribute good features to the classifiers. The 

other 50% of Messidor2 dataset was kept aside and was used for testing the 

performance of our classifier. The testing dataset has 961 images belonging to the 5 

classes, explained above.  

4.2 Image Pre-processing and Augmentations 

For testing the performance of the 3 classifiers we experimented with a few 

preprocessing techniques. For each image we have applied the following 

transformations i.e. horizontally flip 50% of all images, vertically flip 20% of all 

images, scaled images to 80-120% of their size, individually per axis, translated by -20 

to +20 percent (per axis), rotated by -45 to +45 degrees, shear by -16 to +16 degrees, 

used nearest neighbor or bilinear interpolation (fast). We further converted images into 

their super pixel representation and blurred the images with a sigma between 0 and 3.0. 

We add further processing by blurring the image using local means and medians with 

kernel sizes between 2 and 7. We added gaussian noise to the images and randomly 

remove up to 10% of the pixels. We experimented with using inverted color channels 
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and changed the brightness of the images (by -10 to 10 of original value) and also with 

changing the hue and saturation. We have also removed any ovals from the dataset and 

kept only the circular ones so that we can remove any bias and train the algorithms with 

images where every image contributes equally to the learning process. We used these 

transformations on the images based on our literature survey that we conducted and 

chose the techniques which gave promising results. 

 

 

 

 

Figure 12. Diagrammatic overview of the methodology – Part 2. 

 

 

Further when we worked on building a lightweight mobile friendly 

MobileNetV2 model which gave promising results. We employed certain image 
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preprocessing techniques to improve the quality of the images. We changed the 

luminous intensity of the image which altered the brightness and made the details of 

the image more visible. We considered changing alpha, beta and gamma channels 

which are the important channels which control the amount of the light. We checked 

for images which were too dark or over-bright and could be augmented by altering the 

alpha, beta and gamma channels and controlled the light by using alpha = 2.5, beta = 

40 and gamma = 1.44. These values were obtained using trial and error method on 

several dim images using OpenCV’s ConvertscaleAbs function [67].  

In order to transform the image to perform texture analysis with an enhanced 

signal to noise ratio and provide better luminance ranges to the input images we used 

OpenCV’s Bioinspired_retina function on some of the retrieved dim images and then 

augmented some particular parameters [68]. This function helps in performing texture 

analysis and improves the signal to noise ratio. We particularly altered the default 

values of the following parameters in the function using retina configurations:   

 photoreceptorsLocalAdaptationSensitivity: 0.69 

 photoreceptorsTemporalConstant: 8.9999997615814209e-01 

 photoreceptorsSpatialConstant: 5.2999997138977051e-01 

 horizontalCellsGain: 0.75 

 hcellsSpatialConstant: 7.0 

 ganglionCellsSensitivity: 0.75 

These preprocessing steps helped us in bringing up enriched features from the 

images, following which, we applied data augmentation using horizontal and vertical 

flips and rotation using -20 to +20-degree rotation. We were able to bring 3400+ images 

in each class with a total of 17,121 images in the final dataset. 80 % of the images were 

used for training, and 20 % were used for validation. We tested the performance of the 
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dataset on unseen data, which was 50% of the messidor2 dataset kept aside specifically 

for this purpose. 

4.3 Model Architecture and Training 

We compared 2-different models for our experimentation which were heavily 

used in the literature i.e.  DenseNet121, VGG16 and a light weight MobileNetV2. We 

used pretrained weights on ImageNet dataset. The last layer was modified and we 

introduced Global Average Pooling (GAP layers). This was done to reduce the total 

number of parameters and thus reduce overfitting. The GAP layers are used to reduce 

the spatial dimensions of a 3-d tensor just like the Max pooling layers. And then 

Dropout with 0.5 as regularizer. During training we freeze the first layers and trained 

the last 4 layers including classifier for transfer learning. Feature extractor was trained 

on ImageNet. These experiments were conducted with an intuition to compare the 

performance of the lightweight architecture of MobilenetV2 with the other heavy and 

dense architectures and record their results. Architecture of one of the transfer learning 

algorithms - the DenseNet121 is depicted in Figure 13 below.  

Since the aim of the study was to build a light weight mobile friendly 

architecture using MobileNetV2, transfer learning using Image net weights on 

MobileNetV2 has be taken into consideration in this work as this is the state-of-the-art 

approach in the most mobile compatible networks. MobileNetsV1 are a neural network 

architecture which are very efficient for mobile devices. MobileNetV2 is an 

enhancement of MobileNetV1 and is much more efficient and powerful than its 

predecessor. According to Sandler et.al. [9] MobileNetV2 is similar to MobileNetV1, 

with differences in the architecture which contribute to its effectiveness which have 

been explained in Chapter 2 (section 2.2.3). The structure of our final model tested on 

the custom dataset is given in Table 4. 
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Figure 13. Schematic representation of Classification with DenseNet121. 

 

 

Table 4. The structure of MobileNetV2 architecture used for DR Classification. 

Input Dimension 

 

Operator 

 

t c n 

S 

 

2242 x 3 Conv2D - 48 1 2 

1122 x 48 Residual Module 1 24 1 1 

1122 x 24 Residual Module 6 32 2 2 

562 x 32 Residual Module 6 48 3 2 

282 x 48 Residual Module 6 88 4 2 

142 x 88 Residual Module 6 136 3 1 

142 x 136 Residual Module 6 224 3 2 

72 x 224 Residual Module 6 448 1 1 

72 x 448 Conv2D 1x1 - 1792 1 1 

72 x 1792 AvgPool 7x7 - - 1 - 

12 x 1024 Dense 1 1024 2 1 

12 x 512 Dense 1 512 1 1 

12 x 5 Dense - Final 1 5 1 - 
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4.4 Training and Hyperparameter tuning  

We trained our final model on the custom dataset and validated its performance 

using the validation set. The 80% of our custom dataset was used as training set and the 

other 20% was used for validation.  

We chose a learning rate of 0.00015 where the network converged faster. We 

used Adam with AMSGrad as our optimizer after trying several other optimizers and 

used a batch size of 32 for CPU training. We used a Dropout of 0.1. We ran a grid 

search on number of unfreezing layers and found that when we unfreeze half of the 

MobileNetV2 layers the model accuracy is more and the learning is very fast and the 

model converges very fast.  

We freezed the first 80 layers and unfreezed the rest of the layers for better 

training. We tested unfreezing of different layers and found that unfreezing from the 

80th layer learned better features from the dataset.  

4.5 Performance Evaluation 

We used a number of metrics to measure the performance of our model. 

Evaluation metrics are tied to machine learning tasks. There are different metrics for 

different tasks. This experimentation is based on classification, so the focus will be on 

metrics that can evaluate a classification task. 

  A confusion matrix is an N x N matrix, where N is the number of classes being 

predicted. For the problem in hand, there are 3 classes, and a 3 x 3 matrix. The following 

are the values represented in confusion matrix 

-True Positive (TP) - An outcome where the model correctly predicts the positive 

class.       

-True Negative (TN) - An outcome where the model correctly predicts the negative 

class 
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-False Positive (FP) - An outcome where the model incorrectly predicts the positive 

class.       

-False Negative (FN) - An outcome where the model incorrectly predicts the 

negative class. 

4. Accuracy: Accuracy in a classification problem is the number of correct predictions 

made by the model over all kind’s of predictions made. 

Accuracy = (TP + TN) / (TP + FP + FN + TN) 

5. Precision: Precision calculates the rate of actual positives out of those predicted 

positive. It is given by the formula:  

Precision = TP / (TP + FP) 

6. Recall/Sensitivity: Recall measures the rate of actual positives over all predicted 

values that are actually positive. It is given by the formula: 

Recall = TP / TP + FN) 

7. Specificity: Specificity measures the True negatives over the sum of true negatives 

and false positives. 

Specificity = (TN) / (TN + FP) 

8. f1-score: f1-score is the harmonic mean of the precision and recall and conveys the 

balance between the precision and the recall. It is calculated by the formula: 

f1-score = 2* [(Precision*Recall)/ (Precision+ Recall)] 

9. Kappa Score: The Kappa statistic (or score) compares an observed accuracy with 

an expected accuracy (random chance). Observed Accuracy is the number of 

correctly classified instances throughout the entire confusion matrix. Expected 

accuracy is defined as the accuracy that any random classifier would be expected to 

achieve based on the confusion matrix and hence the Kappa score is given by 

Kappa = (observed accuracy - expected accuracy) / (1 - expected 
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accuracy) 

10. AUC ROC: which stands for Receiver Operating Characteristics curve is plotted 

with recall along the y-axis and the false positive rate (which is given by 1-

Specificity) along the x-axis. Area under the ROC Curve also called AUC gives the 

degree of separability of classes which means it tells how much the model is capable 

of distinguishing between the classes. Higher value of AUC denotes a better model. 

11. Macro-Precision, Macro-Recall and Macro-F1 measure: A macro-average will 

compute the metric independently for each class and then take the average (hence 

treating all classes equally). We find the precision and recall for each class 

separately and then find the average of all of the values, to get the Macro-Precision 

and Macro-Recall. Macro – F1 score is the harmonic mean of macro precision and 

macro recall. 

Summary 

In this chapter we try to explain the methodology adopted for conducting this 

research. We explain the dataset used, the preprocessing techniques and the model 

architecture of our network. We then highlight the hyperparameter tuning and the 

performance metrics used for our research. 
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CHAPTER 5: RESULTS AND DISCUSSIONS 

In this chapter, we present the results of our experiments to get an understanding 

of the performance of our model on unseen data. We then compare them to previous 

related work and give our insights as discussions.  

5.1 Experimental Setting 

We first trained and validated MobileNetV2, DenseNet121 and VGG16 models 

using the APTOS dataset. We evaluated the models using accuracy, AUC and Kappa 

score. We found that MobleNetV2, even though is a lightweight network gives the best 

performance in terms of distinguishing between the classes (Figure 15, 16 and 17). 

Hence, we decided to conduct further experiments using MobileNetV2, since this is a 

multiclass classification problem. 

We trained our MobileNetV2 network using 12 GB of RAM, 10 GB swap 

memory having i5 processor. We trained our MobileNetV2 model, applied the 

preprocessing and hyperparameter tuning settings mentioned earlier and achieved an 

accuracy of 91.68% on the test set mainly due to the good quality images that we fed 

into the network. The accuracy rapidly improved over the 20 epochs. (Figure 14) 

We used a width multiplier of 1.4 and an input size of 224 x 224 x 3 for each 

input image. Table 4 shows the architecture of our network.  
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Figure 14. Validation and Testing accuracy improves over 20 epoch.  

 

 

5.2 Results and Discussions 

The results from analyzing the performance of the 3 classifiers i.e. 

DenseNet121, VGG16, and a light weight MobileNetV2 are depicted in Table 5. Figure 

15, 16 and 17 present the performance diagrammatically. We have analyzed the 

performance of these classifiers based on accuracies, kappa score and AUC score. 

These experiments were conducted on the APTOS dataset. 

 

 

Table 5. Performance of DenseNet121, VGG16 and MobileNetV2 on APTOS Dataset 
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VGG16 79.3 79.01 0.7978 

MobileNetV2 88.73 83.33 0.9289 



  

43 

 

 

Figure 15. Graphical representation of accuracy on the APTOS Dataset. 

  

 

Figure 16. Graphical representation of AUC – Score on the APTOS Dataset. 

 

 

Figure 17. Graphical representation of Kappa – Score on the APTOS Dataset 
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Following these experiments, as depicted by table 5 we clearly see that although 

MobileNetV2 gives less accuracy that DenseNet121 and much more than VGG16, both 

of which are heavy and dense architecture; and MobileNetV2 gives the best results in 

terms of AUC score which is a metric to compare the degree of separability between 

the classes of the model, we therefore conclude that light weight architecture 

MobileNetV2 gives comparable results to dense architecture of DenseNet121. Hence, 

we conclude that even though MobileNetV2 is a lightweight architecture, it still gives 

better results that the other heavy architecture. Since we aim to build mobile efficient 

models we choose to build our refined model by training MobielNetv2 on the custom 

dataset.   

Hence, we tested the performance of lightweight MobileNetV2 architecture on 

our custom dataset which was created using handpicked images and roughly same 

amount of good quality images where kept for each class (i.e. approximately 3400 + 

images in each class) to remove any kind of biases. Using the various preprocessing 

techniques mentioned in section 4.2. We tested the performance of our classifier on 

unseen data which is 50% of Messidor2 dataset kept aside solely for testing purpose. 

Table 6 presents the confusion matrix obtained from testing the model on an 

unseen dataset which is the test set for the MobleNetV2 architecture. Table 7 presents 

the precision, recall and f1-score per class and Table 8 presents the key performance 

measures of our MobileNetV2 classifier. The results demonstrate the model to have 

good generalization abilities with 91.68% testing accuracy and is compared with other 

related work in the literature. 
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Table 6. Confusion matrix - Test set Messidor2 dataset – MobileNetV2. 

 

Table 7. Performance metrics per class - MobileNetV2. 

 

Table 8. Performance measures for MobileNetV2. 

 

 

On comparing with other related previous work, we see that our model has been 

able to achieve promising results. The previous related work [63] achieved 90.8% 

accuracy using the same architecture of MobileNetV2 but on a different dataset. We 

see that Gao et.al. in [63] divided the problem into a 2-class problem of DR and RDR 

(referable DR). According to them, grade 0 and 1 of the Messidor dataset form the DR 

category while grade 2 and 3 are considered the referable DR category which needs 

urgent attention. Their MobileNetV2 model has achieved and accuracy of 90.8% for 

class DR and 92.3% for class RDR. Our work on the contrary has studied the problem 

 Predicted labels 

 

 

 

 

Actual 

labels  

 0 1 2 3 4  

0 576 11 14 3 2  

1 9 130 9 1 1  

2 3 5 143 7 3  

3 0 1 3 19 3  

4 1 1 1 2 13  

 0 1 2 3 4 

 

Precision  0.9779 0.8784 0.8412 0.5938 0.5909 

Recall 0.9505 0.8667 0.8882 0.7308 0.7222 

f1-score 0.9640 0.8725 0.8640 0.6552 0.6500 

Performance measure Value 

 

Macro Precision 77.64% 

Macro Recall 83.17% 

Macro f1-score 80.11% 

Training accuracy 98.45% 

Validation accuracy 91.90% 

Testing accuracy 91.68% 
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as a 5-class problem with classes 0, 1, 2, 3 and 4 as explained in section 3.1 and we 

have achieved an average accuracy of 91.68% and an AUC of 0.9 using our custom 

dataset for training and testing it on 50% of the Messidor2 dataset which is our unseen 

test set.  

Another paper [25] proposed a network called Zoom-in-Net which does two 

tasks simultaneously i.e. it mimics the zooming in of the clinician to examine retinal 

images by developing attention maps and highlights suspicious regions and make 

predictions based on these suspicious regions and also the whole image. Due to a 

difference in the annotation scales used in the datasets used for the study they have also 

used similar technique of Gao et.al. [63] and transformed the problem into a binary 

classification task of referable vs non-referable and achieved an accuracy of 91.1% on 

the Messidor dataset and an accuracy of 90.5% on the EyePacs dataset. Thus, we see 

that the performance of our model is comparable to the state-of-the-art and can be 

applied in clinical settings using mobile applications for testing purposes. 

Since the papers in the literature point out that MobileNetV2 architecture (as 

explained in chapter 2 and chapter 3) is much more lightweight that the other heavy and 

dense architectures, like DenseNet121, even though, we have not conducted any 

experiments to validate these findings of the efficiency we conclude that our model is 

much more lightweight and efficient than other models in terms of speed and memory 

consumption and is ideal for resource constrained devices like mobile environment.  

Summary  

In this chapter we present the results and discussions for our research work 

and give deeper insights into the results obtained. We demonstrate that the results are 

comparable to previous works in the literature and could be further improved and 

clinically tested. 
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CHAPTER 6: CONCLUSION 

In this research, we have been able to achieve promising results on our DR 

severity classification system using a custom-made dataset with several pre-

processing and image augmentation techniques. Our model used the computationally 

efficient architecture of MobileNetV2 which is known to be fast and computationally 

efficient algorithm. The model was tested on unseen data to test the generalizability 

of the model. Our results show that the model has been able to achieve good 

performance due to the various techniques that we used at every stage of the ML 

pipeline. In future, we aim to deploy and test the model in a smartphone and thereby 

test its effectiveness as a point-of-care technology for grading the severity of DR. We 

may also experiment with other variations of the MobileNet architecture and compare 

their effectiveness amongst each other and hence improve the state-of-the-art.  

We have studied the various trends in the literature for diabetic retinopathy 

detection using artificial intelligence and have studied the behavior of lightweight 

mobileNetV2 architecture with other transfer learning architectures. We then tested 

the performance of the classifiers and demonstrate that light weight architectures give 

comparable results with the added benefits of faster computation and efficiency in 

computational cost.  

In our experiments we see that we have obtained the testing accuracy of 91.68% 

on unseen data and the model demonstrates good generalizability ability using light 

weight mobile friendly architecture of MobileNetV2.  

6.1 Future Research Directions 

A number of future directions can be listed out to benefit the research community 

and they are explained below: 
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1 Improve the existing model: The existing model can be fine-tuned using various 

hyperparameter tuning and could also be improved using different 

preprocessing techniques. This could help in building models which can have 

better performance than the existing system. Improving the model to have good 

generalizability is the key for any good deep learning model.  

2 Build an android application and test in clinical setting: We could test the 

performance of this model by incorporating it into an android application and 

hence test it in a real clinical setting with real patients. This would give a better 

insight into the effectiveness of such systems in clinical settings.  

3 Further research: Since the MobileNetV2 is used for its lightweight architecture, 

speed and computational efficiency, it would be worthwhile to do a comparative 

study of the models based on these criteria as future work. 

6.2 Related Publications 

[1]  S. Sheikh and U. Qidwai, “Using MobileNetV2 to Classify the Severity of Diabetic 

Retinopathy”, published  in UKSim-AMSS 22nd International Conference on 

Modelling & Simulation, Cambridge, UK, 25-27 March 2020. 

 [2]  S. Sheikh and U. Qidwai, "Smartphone-based Diabetic Retinopathy Severity 

Classification using Convolution Neural Networks", [Accepted] in Intelligent Systems 

Conference (IntelliSys) 2020, Amsterdam, September 2020. 
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