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ABSTRACT 

SHALABY, SALMA, T., Masters : June : [2020], Masters of Science in Computing 

Title: Ensuring Quality of Service in Blockchain-Based Healthcare System  

Supervisor of Thesis: Abdulla, K., Al-Ali and Amr, M., Mohammed. 

 Blockchain is a distributed secure ledger that eliminates the need for centralized 

authority to store data. It provides decentralized, secure and trustless framework that 

does not require a third party for transaction processing, while enhancing fault 

tolerance. In this thesis, we investigate the potentials of customizing the behavior of 

Blockchain network for versatile healthcare applications’ requirements. Firstly, we 

conduct several experiments to evaluate the performance of the Hyperledger Fabric 

(HLF) – a permissioned Blockchain framework. Several scenarios were evaluated to 

depict the Blockchain behavior in terms of end-to-end transaction latency and network 

throughput. In the second phase, we leverage a Blockchain framework that provides 

Quality of Service (QoS) by integrating it with smart health system where the edge 

gateway decides how the data will be sent to the Blockchain network by prioritizing the 

transactions based on the patient’s case using the notion of Blockchain channels. We 

design a system with three-channel Blockchain network, each has different 

configuration, which enables some transactions to be processed faster than the others. 

The results show that channels can be configured to provide fast track with minimal 

latency regardless of the frequency of the transactions, which guarantees that urgent 

transactions will have highest priority. On the other hand, other channels’ performance 

varies depending on the number of transactions received and the frequency of sending 

them.  
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CHAPTER 1: INTRODUCTION 

1. Motivation 

In 2009, Blockchain emerged as a distributed ledger for bitcoin transactions. 

Although it was first introduced for cryptocurrency transactions, the financial service 

is not the only application where Blockchain can be utilized. It can be used in different 

sectors such as: business, industry, healthcare applications, Internet of Things (IoT) and 

much more [1]. Blockchain is a distributed database that consists of chained blocks that 

store the data. Each of these blocks, except the first block, is linked to the hash of the 

previous block, which ensures that any change in the data will be recognized [2]. 

One of the important aspects that should be considered while sharing healthcare 

data is preserving privacy. Healthcare data gains its sensitivity from the fact that it is 

related to patients’ privacy and sharing will require a secure environment. Hence, there 

is a need for a decentralized ledger that shares the data securely between different 

entities, i.e. hospitals, Ministry of health, patients, etc. Compared to the centralized 

approach, the decentralized systems do not require a man-in-middle to monitor and 

facilitate the communication. Additionally, it is not subject to single point of failure [3].  

Sharing and managing healthcare information is crucial because it provides a 

full view of the patient’s state and engages him/her in the treatment process. It also 

helps in tracking the health trends within a country. In addition, this data affects the 

business decisions. Healthcare data is not only valuable for the hospital or the medical 

organization that is issuing it. It is also used by other entities like the ministry of health 

for statistics, research centers and universities for doing researches, patients and other 

entities that might need the data, and insurance companies to provide premium 

healthcare services. Hence, there is a need for these versatile health organizations to 

have a peer-to-peer trust (i.e. preferably with no mediator to preserve privacy) in order 
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to facilitate the efficient exchange of medical information. However, one of the main 

concerns in sharing healthcare data is the patient’s privacy, the personal data of the 

patient and his/her medical records are valuable for attackers for different reasons. 

Hence, to guarantee that this data cannot be accessed or tampered by any unauthorized 

user, the sharing environment should be completely secure and efficient. Another aspect 

is the diversity of policies and decision-making processes for the medical stakeholders. 

For example, entities such as health ministry, hospitals, drug organizations, etc. will 

have diverse policies that makes the exchange of medical data a real challenge. 

Therefore, blockchain platform will work on sharing the data between the different 

entities with providing different access levels based on using digital smart contracts that 

will help insure all policies are validated for different access level of the medical data 

exchange process. Besides the privacy of the patients, one of the points that should be 

considered while sharing medical data is the priority; some data has high emergency 

level, which requires minimal delay while some information can tolerate latency. Thus, 

Quality of Service (QoS) should be considered while sharing medical data.    

2. Research Questions 

• How can the block size and batch-timeout parameters affect the blockchain 

performance in terms of end-to-end latency and throughput?  

• How can Blockchain help in providing QoS in transferring medical data? 

3. Contribution 

1. Building a secure multi-channel Blockchain framework with customized smart 

contract for sharing healthcare data  

2. Studying the behavior of Hyperledger Fabric (HLF) and evaluating its performance 

by conducting several experiments that shows the effect of different parameters on 

the overall performance  

3. Integrating edge computing with our multi-channel blockchain framework to 
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prioritize the transactions based on their urgency and ensure QoS 

4. Document Overview 

The rest of this document is divided as follows: 

• Chapter 2: Provides a background of Blockchain and edge computing in 

addition to the literature review 

• Chapter 3: Performance evaluation of HLF that studies how different 

parameters can affect the performance 

• Chapter 4: Integration of edge computing with multi-channel blockchain 

framework to ensure QoS  

• Chapter 5: Conclusion and future work 
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CHAPTER 2: BACKGROUND 

 This chapter introduces the main concepts used in this work. It starts with a 

background about Blockchain and edge computing, then, it studies the previous work 

done in the area of using Blockchain in healthcare applications.   

1. Blockchain 

In 2009 Bitcoin emerged as the first decentralized cryptocurrency [4]. When 

Satoshi Nakamoto came up with this new digitalized currency, the main aim was to 

create a system that is not controlled by a single entity (i.e. banks). This was achieved 

by replacing the centralized database by Blockchain, which is a distributed ledger that 

could be accessed by everyone. As the name implies, Blockchain consists of connected 

blocks such that each block is attached to the previous one by storing its hash as shown 

in fig. 1. The fact that each block stores the hash of the previous block guarantees 

integrity, because if the data changed in any block its hash will change, hence, it will 

not match the previous hash in the next block anymore and the change will propagate 

through the rest of the chain and it will be recognized. Moreover, Blockchain enables 

the usage of smart contracts which  is an automated program that controls the 

transaction logic and does not require an intermediary to run it [5]. 

 

 

Figure 1. Simple representation of blockchain building blocks 
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1.1. Permissioned and Permission-less Blockchain 

When Blockchain came out, its main goal was to provide transparent transactions 

by having an open platform that anyone can participate in without depending on a 

central authority. Having such an open network is acceptable in some scenarios such as 

cryptocurrencies, social media, etc., however, in some applications, confidentiality and 

privacy are main requirements. To meet the requirements of such applications, 

permissioned blockchains emerged as a Distributed Ledger Technology (DLT) [6], [7]: 

• Permission-less Blockchains: They are open to anyone to access them, 

interestingly, there is no need for any central authority to guarantee access to the 

users, which makes the network fully decentralized. However, the fact that the 

number of participants is high slows the network down as they all have to agree on 

the transactions before they are committed to the ledger   

• Permissioned Blockchains: Only authorized users are allowed to participate in 

permissioned-blockchains, thus, there should be an entity or a group of entities that 

grant access to new participants, which results in a partially decentralized system. 

Compared to permission-less blockchains, permissioned blockchains are faster 

because the number of participants is usually much less.   

 Because each entity holds a copy of the ledger, they have to reach consensus 

between each other in order to agree on the same copy and be able to identify any 

unauthorized data manipulation. Proof-of-Work (PoW) and Proof-of-Stake (PoS) are 

two of the most popular consensus algorithms used in permission-less blockchains. 

  In Bitcoin for example, PoW consensus scheme is used, in which miners 

compete to solve a computationally intensive puzzle and once a miner solves this puzzle 

it broadcasts the new block, in return, the wining miner gets a reward in addition to the 

transactions’ fees, it is worth mentioning that this reward changes every four years in 
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Bitcoin Blockchain. In order to create a new block, miners compete to satisfy the 

following condition:  

𝐻𝑎𝑠ℎ(𝑛𝑜𝑛𝑐𝑒||𝑑𝑎𝑡𝑎||𝑝𝑟𝑒𝑣ℎ𝑎𝑠ℎ) ≤ 𝑡𝑎𝑟𝑔𝑒𝑡    

The miner must generate a hash value that lies in the target space; in other words, the 

hash value generated must be less than or equal to the target. This condition can be 

satisfied by changing the nonce value until the miner gets a hash value that lies within 

this space. Miners compete to satisfy this condition and the first miner to solve this 

puzzle broadcasts the block and gets rewarded, if the block got verified. Although this 

puzzle is hard to solve, it can be easily verified by other miners using the same input 

that the broadcasting miner provided and generating the hash value. The difficulty of 

this process comes from the fact that the target space is much smaller than the hash 

output space given that Bitcoin uses SHA256 hashing algorithm which generates a hash 

of 256 bits. Bitcoin Blockchain readjusts the target every 2016 blocks to guarantee that 

one block is generated every 10 minutes in average; if the average time for generating 

the blocks was less than 10 minutes, the target value decreases, which makes the puzzle 

harder because the target space becomes smaller. In contrast, if the average time was 

found to be more than 10 minutes, the target value is readjusted to a higher value giving 

a bigger space to ease the mining process [8]. One of the limitations of PoW is that it is 

vulnerable to 51% attack, which can happen if a single entity owns more than 51% of 

the computational power of the Blockchain enabling them to take control of the whole 

network [9].  

 Peercoin [10] proposed PoS to decrease the computational overhead of PoW. 

PoS depends on the amount of time that the miner holds a certain amount of currency. 

This approach uses coin-age that is the number of days of holding the currency, times 

the amount that it has been held. Based on the coin-age, the miners are chosen; the 
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probability of being chosen as the next block miner increases as the coin-age increases, 

until it is maximized when the coin-age is 90 days. Unlike PoW, this approach does not 

consume huge amount of resources. Also, it is not vulnerable to 51% attack as the 

attacker needs to own more coins than the rest of the network; causing an increase in 

the coin price, which makes the attack very costly and almost impossible [11]. PoW 

and PoS are two of the most common consensus techniques in permission-less 

blockchains that guarantee trust, however the mining process is time consuming. On 

the contrary, permissioned Blockchain leverages faster protocols to achieve consensus 

[12]. 

1.2.Permissioned Blockchain 

Permissioned blockchains showed their ability to provide the confidentiality 

requirements needed by some of applications and business use cases, they also showed 

better performance in terms of throughput as the consensus process is not as slow as 

most of permission-less consensus protocols. In this section, we explore some of the 

available permissioned blockchains such as: Ethereum [13], Corda [14] and MultiChain 

[15]. Then, Hyperledger Fabric [16] is explained in more details as it is the platform 

used in this work. 

1.2.1. Ethereum 

 Ethereum [13] was established in 2015 and eventually it became one of the 

biggest programmable blockchain frameworks. It acts as permission-less blockchain to 

exchange Ether (ETH) cryptocurrency. However, Ethereum can offer more than this as 

it is programmable and open source. Thus, it is also used as a permissioned blockchain 

to develop customized decentralized applications [17]. While the current version of 

Ethereum (Eth1) relies on PoW consensus algorithm, it is planned that Eth2, which is 

under development, will utilize PoS [18]. Ethereum has two types of accounts [19]:  
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1. Externally Owned Accounts (EoA): used by the users to send their transactions 

to the network 

2.  Contract accounts: used by the smart contracts to call each other by sending 

internal transactions [20].   

Ethereum Blockchain is considered as a state machine and the valid transactions are the 

events that cause the state change [21]. Initially, Ethereum transactions start from an 

EoA that will send ether and cause a direct change in the state, or, it can create a contract 

account that will call one or multiple contracts through internal transactions and finally 

change the state.   

1.2.2. Corda 

 Corda [14] is an open source Blockchain designed for recording and processing 

business data. The main building block of Corda is the state object, which defines the 

ledger. This state object represents a record of the current state and content of agreement 

between two or more parties. Corda ledger updates are applied through transactions, 

which consume existing state objects and produce new ones. To reach full consensus 

on these transactions, two aspects are considered: 

1. Transaction Validity: The participating parties have to check the contract 

code, which is required to be deterministic. Then, they have to check if the old 

transactions that the current transaction refers to are valid and finally, they have 

to check that it has all the required signatures. 

2. Transaction uniqueness: The uniqueness can be checked by verifying that the 

transaction is not consuming any of the states that have been consumed earlier. 

It is worth mentioning that Corda only allows the parties that are part of a transaction 

to participate in the transaction validation process. However, for approving the 

transaction uniqueness, Corda has pluggable services that allow multiple untrusting 
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nodes to participate in this process [22]. 

1.2.3. MultiChain 

 Multichain [15] is a private blockchain that is based on a fork of Bitcoin’s 

blockchain to serve financial institutions. The main goals of MultiChain are:  

1. Provide a blockchain platform that is only accessible by chosen participants 

2. Control the transactions exchanged by setting rules 

3. Enable secure mining without having PoW in the loop because it is 

computationally expensive 

In Multichain, mining is restricted to a set of identified entities, it enforces the 

participation of all the miners in the defined set by adopting round-robin schedule and 

setting the mining diversity which is the proportion of the miners who have to 

participate in the mining process to maintain the network. The process of validating a 

block is done as follows [23]:  

1. Apply the changes of the assets based on the transactions 

2. Calculate the spacing by multiplying the number of miners by the mining 

diversity. The spacing is defined as the number of blocks that each miner has to 

wait to be eligible to mine again 

3. If the miner has mined one of the previous spacing-1 blocks, then the block is 

invalid. 

By applying these steps, Multichain ensures that the all the identified miners have 

participated in the process, however, this reveals a limitation where the network might 

freeze if the miners are inactive especially if the mining diversity is very high. On the 

other hand, if the mining diversity is small then the mining process is only rotating 

between a small number of miners which raises the centralization level.    



  

10 

 

1.2.4. Hyperledger Fabric 

Hyperledger Fabric (HLF) [16] is an open source permissioned Blockchain 

established by the Linux Foundation that is mainly used to serve enterprises. What 

distinguishes HLF from other platforms is its new transaction architecture called 

Execute-Order-Validate architecture. This new architecture replaces the traditional 

order-execute one used by all of the existing platforms. In order-execute architecture, 

first, transactions are ordered based on the consensus protocol. Then, in the execution 

phase, each peer executes transactions sequentially in the same order. This execution 

phase has a negative impact on the performance of the network as the peers have to go 

through all the transactions in the block and execute them, which increases the latency. 

Another point that differentiates HLF is that it supports general-purpose programming 

language smart contracts or “chaincodes” as HLF calls them. It is obligatory that smart 

contracts in platforms that follow the order-execute architecture have to be 

deterministic; and that is why some platforms require writing the smart contract in a 

Domain Specific Language (DSL) to eliminate the non-deterministic operations [24], 

[25]. 

1.2.4.1.Channels 

 Based on the requirements, HLF allows the creation of several channels within 

the same network. A channel could be referred to as a private communication network 

within the main network. Each channel has its own ledger, therefore, only the peers and 

organizations that are members of this channel will have a copy of this ledger. These 

members are defined in the channel policy in the configuration block that also defines 

the type of ordering service. Whenever any configuration is modified, a new 

configuration block is created and added to the chain [25]. Fig. 2 clarifies the channel 

concept, where organization A and organization B have access to channel 1 and 
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organization B and organization C have access to channel 2. Peers in organization 1 

have a copy of the ledger that belongs to channel 1 only. Similarly, peers in organization 

C have a copy of the ledger that belongs to channel 2 only. Since organization B is a 

member in both channels, its peers have copy of both ledgers. This could be useful in 

scenarios where there are competing companies as it allows private communication 

between the organizations on the same channel. 

 

 

Figure 2: Channels Concept 

 

1.2.4.2.Ordering Service 

 To achieve consensus, HLF introduces orderer nodes. As the name implies, the 

main responsibility of orderer nodes is ordering the transactions in the blocks and 

broadcasting them to the peers for validation. HLF offers three different 

implementations of the ordering service [25]: 

• Solo: In solo-based implementation there is only one ordering node, which 

makes it a single-point-of-failure. Consequently, solo-based ordering service is 

not suitable for production. Nevertheless, it could be applied for testing and for 

academic usage as it eliminates the administrative overhead in the other 

implementation schemes. 

• Kafka: This mode follows leader and follower approach, where the leader 
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orderer sends the transactions to the follower orderer nodes. The choice of the 

leader is done in dynamic fashion and as long as the majority of the nodes is up, 

the system is Crash Fault Tolerant (CFT). This scheme utilizes zookeeper 

coordination service [26] for managing Kafka cluster. Zookeeper helps in tasks 

coordination, distributed synchronization and cluster membership. Although 

this scheme was the only option that supports multiple orderers since HLF v1.0, 

the setup of Kafka-based ordering service is challenging, and it requires experts 

to deploy it [25]. 

• Raft: Recently, HLF added Raft ordering service that is based on Raft protocol. 

It is similar to Kafka, as it has the advantage of being CFT and it follows the 

leader and follower approach. From the functional point of view there are no 

differences between Raft and Kafka, however, Raft is easier to setup [25]. 

1.2.4.3.Transaction Flow 

 HLF introduces two types of transactions: Update Transactions and Query 

Transactions. In the former, all the peers need to agree on the transactions before 

updating the ledger, which is known as consensus. In order to achieve consensus in 

HLF, the update transactions go through a three-phase process known as Execute-

Order-Validate process, summarized in fig. 3, the process starts once the transaction is 

proposed and ends when it is committed to the ledger. On the other hand, query 

transactions go through the first phase only because there are no changes that would 

affect the ledger, thus, not all the peers have to be involved [25]. 
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Figure 3: Execute-order-validate 

 

Phase 1: Proposal (Execute) 

The main aim of this phase is endorsing the transactions. As shown in fig. 4, this phase 

is divided into 3 main steps: 

1. The application client sends a transaction proposal to the endorsing peers. 

• The set of the endorsing peers chosen is determined by the endorsement 

policy 

2. Each endorsing peer executes the chaincode individually and checks the 

following: 

• The proposal is well structured 

• The application is not trying to duplicate a transaction that already exists 

• The signature of the issuer is valid 

• The issuer is allowed to perform the proposed operation 

Based on the execution results the endorsing peer generates transaction response 

and signs it 

3. The endorsers send the signed response to the client 

• Depending on the number of endorsing peers defined in the endorsement 

policy, the client waits until it receives a certain number of 

endorsements, which marks the end of the first phase.  
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Figure 4: Proposal phase 

 

Phase 2: Ordering and Packaging (Order) 

This phase is concerned with packaging the transactions, which is the orderer’s main 

responsibility. The orderer does not look into the content of the transactions, it only 

packages them into a block, unless it is a configuration transaction. As illustrated in fig. 

5, this phase goes through the following steps: 

1. The ordering service receives transactions response from different client 

applications 

2. The ordering services package the transactions into a block 

• It is worth noting that the number of transactions per block is decided by the 

channel configuration, and it affects the overall latency of admitting the 

transaction into the Blockchain.  
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Figure 5: Ordering and packaging phase 

 

Phase 3: Validation and Committing (Validate) 

The last phase is when the block is finally committed to the ledger, it is divided into the 

following steps as shown in fig. 6: 

1. The orderers send the block to all the peers connected to it 

• Peers that are not connected to the orderer will eventually receive the 

block by gossiping 

2. Each peer on the channel will validate the transactions in the block separately 

then commit the block to the ledger 

• Although each peer validates the transactions separately, this is done in 

a deterministic way, which guarantees that each peer will have an 

identical copy of the ledger. 

The process of validation includes ensuring that the transaction is endorsed by 

the required endorsers according to the endorsement policy. To commit the 

block to the ledger, the peers perform a consistency check to ensure that none 

of the assets was updated by any other transaction when phase 1 and 2 were 

taking place. 
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Figure 6: Validation and committing phase 

 

2. Edge Computing 

 In this section, we give a background about edge computing and its benefits. 

Then we discuss the motivation behind integrating Blockchain and edge computing.    

2.1. What is Edge Computing? 

 The emergence of IoT and the enormous amount of data produced by its devices 

changed the computing map where data was stored and processed at the cloud side and 

pushed towards Edge Computing [27]. The term Edge computing refers to allowing the 

computations to be done at the proximity of the data producers rather than doing it at 

the cloud side [28]. The fact that the data is generated at the edge of the network makes 

processing it near to the producers more efficient as it reduces the network load and 

consumes less time compared to cloud computing [29]. Typically, edge computing can 

be divided into three layers: end devices (front-end), edge server (near-end) and core 

cloud (far-end) [30]. The end devices are the data collectors and the actuators that 

interact with the environment. However, these light-weight devices cannot perform 
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computations because of their limited resources. The edge server is introduced to 

facilitate traffic flow in the network and provide computational requirements such as 

real-time processing as well as data storage and caching. As the third tier (i.e. core 

cloud) is more powerful it is responsible for heavy computations and storing big data.    

2.2.Benefits of Edge Computing 

 Applying edge computing brings several benefits that can be summarized in the 

following points: 

1. Faster Processing: Although cloud computing proved to be efficient for many 

years, with the enormous increase of the number of devices and the amount of 

data produced from the edge, the data transfer speed became a bottleneck. This 

degradation of speed affects the time in which the data is sent to the cloud, thus, 

causing the response time to be very long. On the other hand, edge computing 

provide faster processing as the source devices are already close to the edge, 

thus the transfer time is much less and consequently the overall response time 

will be less [28].   

2. Security and privacy: For some applications, privacy is a main concern, by 

having the computation done at the edge privacy can be enforced prior to 

sending the data to the cloud [31]. Moreover, one of the disadvantages of cloud 

computing is that it is centralized which makes it a single point of failure and in 

case it is attacked, the security of all the devices communicating with it might 

be compromised.  

3. Scalability: Another benefit of edge computing is that it provides scalability as 

the edge will be processing data from a small set of devices only. Moreover, 

when integrating edge computing with cloud computing the edge will take the 

responsibility of some of the processing that should be done and will send the 
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results only to the cloud which will reduce the bandwidth consumption and 

allow more devices to send their data [31].  

2.3.Integrating Edge Computing and Blockchain 

 Integrating Blockchain and edge computing would merge the benefits of both 

of them; providing the privacy and security features of Blockchain as a distributed 

ledger and the ability of edge computing to carry out computing, storage and 

networking tasks at the network edge [30].  

 In this work, we integrated the Edge-based Electroencephalography (EEG) 

classification done by Awad et al. in [32] with our Blockchain framework to ensure 

QoS. The authors in  [32] propose a smart monitoring health system for epileptic seizure 

detection at the network edge by classifying EEG signals as they proved to have a 

significant contribution in diagnosing several brain disorders [33]. The proposed 

system consists of three layers, i.e. IoT devices, edge, cloud. The edge layer, 

represented by a smartphone in their work, has three main tasks: acquiring the data from 

IoT devices, feature extraction and classification, and data reduction. To allow reliable 

detection, the authors apply Time-Domain (TD) and Frequency-Domain (FD) feature 

extraction and use these features to develop a fuzzy classification technique for EEG 

signals. They used the dataset in [34] considering three patients’ classes. Each of these 

classes has 100 EEG segment and 4096 samples with a sampling rate of 173.6 sample/s 

and a sensing time frame of 23.6s:  

1. Seizure-free (SF): Normal patients that have no seizures 

2. Non-active (NAC): Patients that had a seizure, but it is not active 

3. Active (AC): Patients with active seizure 

These three classes reflect different emergency levels and different channel requirement 

as shown in table 1.  
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Table 1: Emergeny Implication of Signal States 

Class Emergency Channel Requirements 

Active (AC) Very High Guaranteed service with minimal 

latency 

Non-active (NAC) Moderate Some delay is acceptable  

Seizure-free (SF) Low Transactions can handle higher latency 

 

2.3.1. Classification Module 

 In this section, the developed rule extraction and classification done in [32] are 

explained. As shown in fig. 7, the rule extraction and classification process consist of 6 

steps. 

 

 

Figure 7: Rule extraction and classification Steps [32] 

 

• Step 1: Feature Extraction 

In this step a set of epileptic features are identified to differentiate between the EEG 

signals, these features are divided into two categories: Time-Domain (TD) features and 

Frequency-Domain (FD) features.  Firstly, four TD features are considered which are: 

the absolute mean of the signal, the variance, the waveform length and finally the auto-

regression coefficients. Secondly, for the FD feature extraction, the signals were 

initially converted to FD using Fast Fourier Transform (FFT) which revealed an 

important property which is the amplitude range as each of the classes appeared to have 
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different amplitude range. The signals were divided into five frequency sub-bands: 

𝛿 (0.2 − 3)𝐻𝑧, 𝜃 (3 − 8)𝐻𝑧, 𝛼 (8 − 12)𝐻𝑧, 𝛽 (12 − 32)𝐻𝑧 𝑎𝑛𝑑 𝛾 (> 32)𝐻𝑧. 

Both TD and FD features were calculated for three patients from each class (i.e. SF, 

NAC and AC), then, only the features with high correlation with its class label and low 

correlation with the other classes are chosen, which are the mean, variance and the auto-

regression features.  

• Step 2: Transform Feature Values to Fuzzy Relation 

Let 𝑈 = 𝑂 × 𝑃 be the universe, where 𝑂 is the set of all patients and 𝑃 is the set of all 

features. The fuzzy set 𝑅 on the universe U represents the strength of the relation by a 

membership value  𝜇𝑅(𝑜, 𝑝)  between any pair (𝑜, 𝑝) where 𝑜 is the patient and 𝑝 is the 

feature, 𝑜 ∈ 𝑂 and 𝑝 ∈ 𝑃. To convert the feature values to fuzzy relation, first, the 

absolute values of the features are taken. Then, the values are normalized in order to 

map the selected features to values within [0,1] range (fig. 8).   

 

 

Figure 8: Converting TD feature values to fuzzy relation [32] 

 

• Step 3: Transform Fuzzy Relations to Crisp Relation 

In this step, the obtained fuzzy relations 𝑅 values are converted to crisp relation 𝑅𝛼, 

based on a certain 𝛼 − 𝑐𝑢𝑡, 𝛼 ∈ [0, 1] such that for any (𝑜, 𝑝) ∈ 𝑈, 𝜇𝑅𝛼(𝑜, 𝑝) = 1, if 

𝜇𝑅(𝑜, 𝑝) ≥ 𝛼, otherwise,  𝜇𝑅𝛼(𝑜, 𝑝) = 0. Fig. 9 shows the conversion of the fuzzy 
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relation to crisp relation using 𝛼 = 0.3   

 

 

Figure 9: Converting TD fuzzy to crisp relation and finding optimal rectangle [32] 

 

• Step 4: Finding Optimal Rectangles 

Getting the binary crisp relation paves the way for identifying optimal rectangles that 

covers maximum number of patients that share the maximum number of features from 

the same class. As illustrated in fig. 9, there are three optimal rectangles, each 

corresponds to a class.  

• Step 5: Transform Optimal Rectangles to Rules 

In this step, the identified rectangles are used to set the association rules that will 

classify the data into the three classes in both TD and FD features. The conditions of 

the rules are decided based on the features within the rectangle and the classification 

decision reflects the corresponding class. Table 2 shows the association rules generated 

from the TD features.  

 

Table 2: Association Rules Generated from TD Features [32] 

Rule  Class 

If 𝐵1 = 0 AND 𝐵3 = 0 AND (𝐵6 = 1 OR 𝐵8 = 1) SF 

Else If 𝐵3 = 0 NAC  

Else If 𝐵1 = 1 AND 𝐵3 = 1 AND 𝐵6 = 1 AND 𝐵8 = 1 higher latency 
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• Step 6: Classification 

Finally, the association rules are used in implementing the classifier on the smartphone 

to be applied on the data received from the patients’ devices. 

 After the classification is done, the data will be sent to our multi-channel 

Blockchain depending on its priority (See Chapter 4).  

3. Literature Review 

 In the last decade, the data generated by the healthcare sector increased 

remarkably [35]. This growth in the amount of data generated will continue to increase 

through the years specially in the era of IoT that witnesses a high demand for wearable 

devices operated in healthcare monitoring. It is expected that by next year 50.2 million 

patients will use remote health monitoring. As these numbers are increasing, one of the 

main concerns is efficient secure healthcare data sharing [36]. Permissioned 

blockchains act as a secure environment for storing data as it provides integrity, 

confidentiality and availability. This section explores some of the work done in the area 

of storing and sharing healthcare data using Blockchain. 

For sharing Personal Health Information (PHI), [37] proposes Blockchain-

based Secure and Privacy-Preserving PHI sharing (BSPP). The proposed scheme 

consists of two blockchains: 1- A private Blockchain within each hospital 2- A 

consortium Blockchain where all the hospitals participate in. The main aim of the 

private Blockchain is to store the PHI of each patient, on the other hand, the consortium 

is utilized to store only keywords that are used to search the patient’s information that 

is stored in the private Blockchain. The designed system has three main entities:  

1. System Manager: It takes the responsibility of registering the users (patients 

and doctors) by generating their public keys.  

2. Hospitals: Each hospital has a server and a number of clients:  
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a. Server: It keeps the register table of the users. Moreover, it collects new 

blocks from the private blockchain and formulates new blocks for the 

consortium, it also works on verifying the consortium’s blocks. 

Furthermore, the server authenticates the doctors outside the private 

blockchain to access the patient’s PHI.   

b. Clients: Used by the doctors to enter patient’s data and create new blocks 

3. Patients: Before meeting the doctor, patients must register to the server to get 

a token. This token is later used as a proof of the interaction between the patient 

and the doctor allowing the latter to create the patient’s PHI. 

Figs. 10a and 10b show the structure of the private Blockchain and consortium, 

respectively. For simplicity, the block headers, timestamp and issuer signature are 

eliminated. The private Blockchain blocks the issuing doctor’s ID, patient’s ID, his/her 

encrypted PHI and the keywords needed to search for it. The consortium’s block stores 

the issuing server ID and secure indices, which consists of 𝑛 transactions. Each of these 

transactions has the Block ID in which the PHI is stored, PHI keywords and patient’s 

ID.  

 

 

Figure 10: Block structure in a) Private blockchain b) Consortium blockchain [37] 

  

 In [38] the authors propose a Blockchain based storage scheme for healthcare 
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data. The system has three main participants with different access permissions: 

hospitals, patients and third-party agencies. The main role of the hospitals is generating 

the medical records of the patients. Third-party agencies represent institutions 

responsible for appointment registration, hospital recommendations services, etc. The 

third participant, which are the patients, have control over their data as they can provide 

access to other participants to access their data as needed. Because of scalability and 

capacity issues, only indices are stored in the Blockchain, while the raw data is stored 

on cloud. The proposed system has three functionalities:  

1. Data Release: Beside generating the data, the doctor also generates its hash 

digest then post it on the Blockchain after signing it with his/her private key. 

Additionally, an encrypted copy of the data is sent to the patient along with its 

encrypted encryption key. It is worth noting that this key is encrypted using the 

patient’s public key.   

2. Data Storage: To store the data, the patient verifies the signature of the issuing 

doctor. Then, the patient’s private key is used to decrypt the encrypted 

encryption key to be able to decrypt the original data. Finally, the patient 

encrypts the data again with a new key and post it in the cloud. 

3. Data Sharing: data sharing is under the control of the patient; access can be 

given to any institution by providing them with decryption key. The control 

policy defines the location, the access levels and the expiration data for 

accessing the data.   

 In [39], the authors propose a  user-centric Blockchain-based system that 

collects medical data from the user’s wearable devices, manual data entry and medical 

devices then send them to the cloud. The system incorporates six parties: 

1. Users: Users are the owner of data in which it is collected from them through 
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their wearable devices, medical devices or through manual entry by their 

doctors. They are responsible for granting or denying access to other parties 

2. Wearable Devices: They take the responsibility of collecting the data and 

transfer it to human readable format and then synchronized with their associated 

user account.  

3. Healthcare Providers: Represents the doctors who are appointed by the users 

to do their medical tests and provide treatments. These doctors are given access 

under the user’s permission. 

4.  Health Insurance Companies: The user can request a quotation from the 

insurance companies. To provide the quote, the insurance companies request 

data access from the user to check his/her medical health history and wearable 

devices data. In this case the user cannot deny access to the insurance companies 

to avoid fraud.  

5. Blockchain: It used to store the data collected by the wearable devices, 

healthcare providers and insurance companies’ quotation. In addition, all the 

access requests are stored in the blockchain. 

6. Cloud Database: It is the point of communication between the users and the 

Blockchain. It is a client application that the user, healthcare provider or the 

insurance company interact with to update the ledger or read from after 

validating the access permissions.  
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CHAPTER 3: PERFORMANCE EVALUATION OF HLF 

 As explained in chapter 2, HLF is a distributed permissioned Blockchain that is 

highly customizable. In this chapter, HLF performance is studied by conducting several 

experiments to measure how the batch-timeout, the batch size and the number of 

endorsers would affect the end-to-end latency and the throughput. 

1. Building the Network  

 In this section, the main components of building an HLF network are discussed. 

Building HLF network is divided into two main parts: 

1- Network Infrastructure 

2- Application Layer 

1.1.Network Infrastructure 

As shown in Fig. 11, healthnet network consists of one channel that connects 

two peer organizations: org1 and org2 and one orderer, each of the peer organizations 

has 2 connected peers. These peer organizations can be representing any institution 

such as hospital, pharmacy, etc. The ordering service utilizes the Solo-based design as 

it will not be used for production.  

 

 

Figure 11: High level architecture of the network 
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The channel Configuration is defined by two main parameters, Batch-timeout and 

Batch Size: 

• Batch-timeout: It defines the orderer’s waiting time before creating block 

• Batch Size: It controls the number of transactions per block; it is defined by 

three variables: 

1. Maximum transaction Count: The maximum number of transactions per 

block 

2. Absolute Maximum Bytes: The maximum number of bytes per block 

that cannot be exceeded 

3. Preferred maximum bytes: The preferred number of bytes per block 

The aforementioned parameters have big impact on the performance of the network. 

The transactions are batched as a block whenever one of the limits is reached; meaning 

that if the batch-timeout is reached but the number of transactions is still less than batch 

size then, the orderer will batch the transactions into a block as discussed in chapter 2.  

1.2.Application Layer 

In this work, Hyperledger Composer is used to ease the process of implementing 

the application layer. It helps in modeling the business network that is being packaged 

to an archive (.bna file) to be used on top of HLF infrastructure. The business network 

is defined using three main files: Model File, Script File and Access Control File [40]: 

• Model File: A .cto file that defines all the assets, participants and transactions. 

It is written in Hyperledger Composer Modeling Language. 

• Script File: A .js file that is considered as the smart contract where the 

transactions logic is implemented, it is written in JavaScript. 

• Access Control File: In HLF, users do not have the same access level. A .acl 

file defines the access control rules that states the CRUD (Create, Read, Update 
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and Delete) operations a user can perform in the business network like creating 

assets, participants or transactions. For example, some users can only read data, 

others can read, write create and delete. 

Our application is designed for sharing medical data between healthcare participating 

entities. The model file defines one asset, two participants, and three transactions as 

shown in table 3.  

 

Table 3: The Business Model 

Assets participants Transactions 

Case Doctor CreateDoctor 

 AdminStaff CreateCase 

  TransferCase 

 

 

 It is worth noting that in such scenarios, the business model should be more 

complicated, however, the main aim of this work is evaluating the network. Regarding 

the access control rules, only the Network Admins are allowed to add new assets, 

participants, and transactions. In real networks, the access rules have to be more 

complicated. For example, only the Network Admins can add new Staff, e.g., new 

doctors using the CreateDoctor transaction. Regarding the assets, only the doctors will 

be allowed to add a new Case using CreateCase transaction. Both Admins and doctors 

will be allowed to transfer a case from a doctor to another doctor. Each of the cases is 

defined by some attributes like the name of the patient, age, vitals, description, a 

supervising doctor, etc. It should be noted that all the experiments in this study were 

done using the createCase transaction to guarantee that all the transactions have the 

same size.  
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1.2.1. Transaction logic 

• CreateCase: 

1. Create a new Case instance 

2. Assign the attributes to the case instance 

3. Assign a doctor to the case 

4. Add this case to the doctor’s list 

5. Update Case Registry 

6. Update Doctor Registry 

• CreateDoctor: 

1. Create a new Doctor instance 

2. Assign the attributes to the doctor instance 

3. Update Doctor Registry 

• TransfereCase: 

1. Assign the case to another doctor  

2. Add this case to the doctor’s list 

3. Update Case Registry 

4. Update Doctor Registry 

2. Experiments 

Seven different experiments were conducted to show how HLF performance is 

affected by changing the batch-timeout, batch size (by changing the maximum 

transactions count) and the number of endorsing peers. Table 4 shows the exact setup, 

in experiments 1, 2 and 3 the batch size is fixed to 45 transactions (Tx) and the number 

of endorsers is fixed to 4 to examine the effect of changing the batch-timeout. 

Experiments 4, 5 and 6 study the effect of the batch size by fixing the batch-timeout to 

200s and the endorsers to 4 and changing the batch size only. In experiments 1 and 7 
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the batch-timeout and batch size are set to 2s and 45 Tx, respectively, and only the 

number of endorsing peers changes. For each of the experiments the average end-to-

end latency and the average throughput are measured by taking the average of 10 trials 

while having different number of parallel transactions. To study the effect of the batch-

timeout and the number of endorsers, we started from 1 transaction up to 30 parallel 

transactions, however, while studying the effect of the batch size we started from 10 

parallel transactions and not from 1 transaction; because if there is only one transaction 

then the batch size will never be reached and the delay will be caused by the batch-

timeout which is set to 200s. 

 

Table 4: Experimental Setup 

Exp# Batch-timeout Batch Size*  Number of Endorsers 

Exp. 1 2 seconds 45 Tx 4 endorsers 

Exp. 2 5 seconds 45 Tx 4 endorsers 

Exp. 3 8 seconds 45 Tx 4 endorsers 

Exp.4 200 seconds 2   Tx 4 endorsers 

Exp.5 200 seconds 5   Tx 4 endorsers 

Exp. 6 200 seconds 10 Tx 4 endorsers 

Exp. 7 2 seconds 45 Tx 2 endorsers 

*Batch size was changed by changing the maximum number of transactions per block 

 

The end-to-end latency and throughput are defined as follows: 

• End-to-end latency (s): The total time needed by the transaction to be 

committed to the ledger, it starts once the transaction is sent until it is committed 

to the ledger. 

• Throughput (transaction/s): Number of transactions that can be processed in 

one second, it is measured using the following equation:  

𝑁𝑜. 𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
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 As shown in table 5, in this phase, Fabric v1.2.0 was used on Ubuntu 16.04 

LTS platform with processor Intel Core i7-4510U. 

 

 Table 5: System Specifications – Phase 1 

 

3. Results 

The experiments done are divided into three sets, the first set shows the effect of 

changing the batch-timeout, the second set studies how the block size affects the 

performance and the third set focuses on the number of endorsers. 

3.1.Batch-timeout 

In experiments 1, 2 and 3 we study how the end-to-end latency and throughput are 

affected by changing the batch-timeout as the number of concurrent transactions 

increases to 30 while fixing the batch size to 45 Tx which is big enough to avoid 

reaching the maximum batch size before the timeout and to accommodate all the 

transactions in one block. Fig. 12 shows that the latency increases as the number of 

parallel transactions increases. It also shows that it increases by increasing the batch-

timeout. Fig. 13 shows that the throughput increases as the number of parallel 

transactions increases; this happens because the number of transactions within the block 

increases meaning that more transactions will be processed at a time. It is also observed 

that as the batch-timeout increases the throughput decreases as a result of increasing 

the delay. 

 

 

Specification Details 

Operating System Ubuntu 16.04 LTS 

Processor  Intel Core i7-4510U CPU @ 2.00 GHz x 4  

Fabric Version  1.2.0 

Application Layer Hyperledger Composer 
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Figure 12: Average latency for varying batch-timeout 

 

 

Figure 13: Average throughput for varying batch-timeout 

 

3.2.Batch Size (Max. Number of Transactions per Block) 

In experiments 4, 5 and 6 the batch-timeout is fixed to 200 seconds and the batch 

size varies by changing the maximum number of transactions per block to study how it 

affects the end-to-end latency and throughput. The batch-timeout was set to a high value 
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(200 seconds) to ensure that the blocks will never timeout before reaching the block 

size. Fig. 14 shows that the latency almost doubles when the number of transactions 

increases. It also shows that increasing the batch size decreases the latency; this change 

is clear when the batch size increases from 2 Tx to 5 Tx, but as it increases from 5 Tx 

to 10 Tx the change is negligible. The reason behind that is illustrated in fig. 15 which 

shows that the number of blocks in which the transactions were packaged and 

committed; the difference between the number of blocks committed is small when the 

batch size increased from 5 Tx to 10 Tx when it is compared to the difference between 

the number of blocks when it increased from 2 Tx to 5 Tx. This is reflected on the 

latency as it increases as the number of blocks increases because there are more blocks 

to be validated as discussed in chapter 2. Fig. 16 shows that the throughput decreases 

as the number of parallel transactions increases. On the other hand, it demonstrates that 

the throughput increases as the batch size increases. 

 

 

Figure 14: Average latency for varying batch Size 
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Figure 15: Number of blocks commited 

 

 

Figure 16: Average throughput with varying batch size 

 

3.3.Endorsing peers 

In experiments 1 and 7 we examine how the number of endorsing peers affects the 

latency. In both experiments, the batch-timeout is set to 200 seconds and the batch size 

is set to 45 Tx. From Fig. 17, it is observed that the latency increases as the number of 

parallel transactions increases. It also shows that increasing the numbers of endorsers 

leads to a slight increase in the latency, because with increasing the number of endorsers 
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the client has to wait for more endorsed transactions responses before sending to the 

orderer in the second phase of the transaction flow. 

 

 

Figure 17: Average latency for varying number of endorsers  

 

 From the results presented, we deduce that applications with large number of 

parallel transactions, the batch-timeout and block size should be large in order to 

maintain high throughput while for application with urgent transactions, the batch-

timeout and block size should be limited in order to obtain low latency (especially, in 

case of emergency).  
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CHAPTER 4: ENSURING QOS ON BLOCKCHAIN  

Based on the analysis done in chapter 3 that shows that different channel 

configurations affect the performance of HLF blockchain in terms of end-to-end 

latency, we propose merging edge computing with HLF framework to ensure Quality 

of Service (QoS). In this chapter, a multi-channel Blockchain framework is built and 

integrated with edge computing, where the gateway formulates the transaction and 

decides on which channel it will be sent based on its priority.  

1. System Architecture 

As shown in fig. 18, the proposed system is divided into two parts: 

1- A multi-channel Blockchain framework 

2- Edge computing for classifying the transactions 

The edge gateway collects the data either from the connected devices or from data 

entered manually by the users at each institution, then, it formulates the transaction and 

sends it to the suitable blockchain channel based on its priority. The proposed 

blockchain framework consists of three different channels each has its own 

configuration implying different behavior.  

 

 

Figure 18: System architecture 
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1.1.Multi-channel Blockchain framework 

1.1.1. Network Infrastructure 

 As shown in fig. 19, the network consists of three channels connecting two peer 

organizations: org1 and org2 and a Raft-based ordering service with 5 orderers. Each 

channel has different configuration, based on the urgency of the transaction the edge 

gateway will decide the channel in which the transaction will be sent to. Having three 

channels implies having three ledgers, and since all the peers are connected to the three 

channels, each peer will have a copy of the 3 different ledgers. 

 

 

Figure 19: Multi-channel blockchain framework 

 

 Table 6 matches the channels to the emergency level and shows how the 

gateway will react to different emergency levels. If the emergency of the transaction is 

high, it will be sent to channel 1, if it is low it will be sent to channel 3 as it can tolerate 

some latency and if it is moderate then it will be sent to channel 2. 

 

Table 6: Matching Channels to Transactions' Emergency 

Channel No.  Emergency 

Channel 1 Very High 

Channel 2 Moderate 

Channel 3 Low 
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 Based on the performance evaluation done in chapter 3, we enforced different 

channels behavior by varying the batch-timeout and the block size (by changing 

maximum number of transactions per block). The results in chapter 3 showed that 

transactions that require low latency should have small batch-timeout and small block 

size while transactions that can tolerate delay should have higher batch-timeout and 

bigger block size. Accordingly, we set minimal batch-timeout to channel 1 as it requires 

very low latency while channels 2 and 3 have higher batch-timeout and block sizes as 

they can tolerate the delay.  

 To implement multiple channels, initially, the three channels are given the same 

configuration, then the channels are updated using a configuration block, the detailed 

implementation steps are explained in Appendix A.  

1.1.2. Application layer 

 For the application layer, we built the chaincode natively on HLF infrastructure 

without using hyperledger composer as an intermediary layer as it does not support 

multiple channels.  

For developing our patient chaincode, Golang programming language is used. It mainly 

has one transaction which is createPatient transaction, similar to the createCase 

transaction in chapter 3. Also, the patient class has the same attributes that the Case 

Asset has such as: personal information, vitals, description, etc. but additionally, it also 

has EEG and state attributes. 

 After developing the chaincode, first, it has to be installed on the peers, this can be 

thought of as being physically hosted on the peer. Then, it is instantiated on the channel 

meaning making it logically available on the channel and accessible by its members, 

these steps are covered in more details in Appendix A. 

 



  

39 

 

1.2.Edge Computing 

 The main aim of this phase is classifying the transactions and mapping them to 

a specific class of service (i.e. channel) based on their emergency. This provides QoS 

and ensures that transactions with high priority have guaranteed service with minimum 

latency, while less important transactions can handle latency. 

 Fig. 20 shows how the edge gateway sends the data to the Blockchain. In this 

work we integrated the EEG classification done in [32] with our multi-channel 

Blockchain (See chapter 2, section 2.3.1 ). Based on the classification done, if the data 

is classified as AC, then it has high priority and it will be sent to channel 1 which 

provides low latency. If the data is classified as NAC, then it will be sent to channel 2, 

otherwise it will be sent to channel 3.  

 

 

Figure 20: Deciding the transmission channel at the edge gateway 
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2. Experiments 

 In this chapter, three experiments are considered; the first two experiment are 

applied on the three channels and the third experiment is applied on the second and 

third channels only. Table 7 shows the configurations of each channel, channel 1 should 

be used for urgent transactions; thus, the batch-timeout is set to 2 seconds and the block 

size (by setting the maximum number of transactions) is set to 10 transactions. For 

channel 2, the batch-timeout is set to 200 seconds as it can tolerate some latency and 

the block size is set to 10, which ensures that the block will be sent to the next step in 

case the batch reached 10 transactions even if the batch-timeout is not reached yet. 

Finally, channel 3 is responsible for the transactions that can handle high delay; thus, 

the batch-timeout is set to 200 seconds and the block size is set to 25 transactions. It is 

worth mentioning that in our study we considered only the batch-timeout and the 

maximum number of transactions per block while the absolute maximum bytes were 

fixed to the default value in all the channels.    

 

Table 7: Channels Configuration 

Parameter Channel 1 Channel 2 Channel 3 

Batch-timeout 2 Seconds 200 Seconds 200 Seconds 

Maximum Transactions count 10 Tx 10 Tx 25 Tx  

Absolute maximum bytes  99 MB 99 MB 99 MB 

 

  

 In the first two experiments 30 consecutive transactions are sent to the 

blockchain and the latency is calculated per transaction from the time it was submitted 

until the block is committed to the ledger. In the first experiment the time gap between 

each two transactions is set to 20 seconds, while in the second experiment the time gap 

starts with three seconds and keeps incrementing by 3 seconds until it reaches 84 

seconds between the last two transactions. (3s, 6s, 9s, …84s). In the third experiment, 
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we study how the latency in channels 2 and 3 is affected when the frequency of sending 

transactions varies. This is done by setting four different time gaps (5s, 10s, 45s and 

50s), then measuring the average latency on both channels. In this experiment, the 

latency was measured relative to the time gaps, where the average latency for 30-time 

gaps was considered (i.e. 31 transactions).  

 As shown in table 8, in this phase, Fabric v1.4.4 was used on Ubuntu 16.04 LTS 

platform with processor Intel Core i7-4600U.  

 

Table 8: System Specifications – Phase 2 

Specification Details 

Operating System Ubuntu 16.04 LTS 

Processor  Intel Core i7-4600U CPU @ 2.10 GHz x 4  

Fabric Version  1.4.4 

Application Layer Native Hyperledger Fabric 

 

3. Results and Discussion  

 This section discusses the results of the three sets of experiments, the first 

experiment shows how the transaction latency is affected on each channel when the 

time gap between consecutive transactions is fixed. In the second set we study how the 

latency is affected on each of the three channels as the time gap between consecutive 

transactions varies. Finally, the third experiment shows how the latency is affected as 

the time gap between consecutive transactions increases which implies a decrease in 

the frequency of sending the transactions.  

3.1.Fixed Time Gap 

 In this experiment a total of 30 transactions is sent to each channel in which a 

transaction is sent every 20 seconds. Fig. 21 illustrates that channel 1 has very low 

latency compared to channel 2 and 3, also, the latency is almost stable in this channel 
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and the variance is very small as shown in table 9. This stability resulted from the small 

batch-timeout that guarantees that the orderer will send the block to the validation step 

withing a very short time period (i.e. 2 seconds). In channel 2 the latency keeps 

fluctuating; it starts with the maximum value and it keeps decreasing until it reaches its 

minimum value at the 10th transaction, this trend keeps repeating every 10 transactions. 

As the figure depicts, channel 2 never reaches the batch-timeout; meaning that the block 

is sent to the next step as a result of reaching the maximum number of transactions. 

Similar to channel 2, channel 3 has the same trend as it starts declining from transaction 

1 until it reaches the 10th transaction then it peaks at 200 seconds again at the 11th 

transaction. Although channel 2 and channel 3 have the same trend, in channel 3 the 

block is sent to its next step because the batch-timeout is reached, while in channel 2, 

the block is sent to the next step because it reached its maximum block size before the 

batch-timeout is reached. This difference results in higher average in channel 3 as 

shown in table 9. The table also shows that the variance in channels 2 and 3 is almost 

the same however in channel 1 the variance is much smaller which ensures QoS and 

guarantees that urgent transactions will be committed within a short time period.        

 

Table 9: Experiments 1 results (Fixed time Gap) 

 Channel 1 Channel 2 Channel 3 

Average 2.122367 91.95853 108.4802 

Variance 0.000359 3542.672 3541.612 

Standard Deviation 0.018944 59.52035 59.51144 
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Figure 21: Transactions latency with fixed time gap 

 

3.2.Varying Time Gap 

 Similar to the first experiment, 30 transactions are sent to the three channels, 

however, in this experiment the time gap between consecutive transactions increases 

by 3 seconds; meaning that the frequency of sending the transactions keeps decreasing. 

The results in fig. 22 shows that the latency in channel 1 is stable and the variance is 

very small as shown in table 10. In channel 2 and channel 3, the latency follows the 

same trend except that it has higher value on channel 3 when the frequency of sending 

transactions was high but as the gap between sending the transactions increases, the 

delay in both channels becomes almost the same. This change in the behavior happened 

because in the beginning, channel 2 was depending on the block size to start the next 

phase in the execute-order-validate process as it had the chance to reach the maximum 

block size before reaching the batch-timeout. On the other hand, channel 3 was 

depending on the batch-timeout because the maximum number of transactions per block 

is high, hence, the batch-timeout was reached first. By the time the frequency of sending 
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transactions decreased, both channels started depending on the batch-timeout because 

the maximum block size in both channels was never reached within the given batch-

timeout (i.e. 200 seconds) which resulted in the similar behavior. 

 

Table 10: Experiments 2 Results (Varying time Gap) 

 Channel 1 Channel 2 Channel 3 

Average 2.119633 103.9158 124.3701 

Variance 0.000246 4023.488 4066.6 

Standard Deviation 0.01569 63.43097 63.7699 

   

 

 

Figure 22: Transactions latency with varying time gap 

 

3.3.Varying the Transactions Frequency 

 In this experiment, we study how the latency is affected as the number of 
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experiment: 5 seconds, 10 seconds, 45 seconds and finally 50 seconds. As shown in fig. 

23, the latency generally increases as the time gap increases. By considering the two 

channels, when the time gap is small (i.e. 5s and 10s), there is a considerable delay 

difference. However, when the frequency of sending transaction decreases as in the 

case of 45 s and 50s, there is almost no difference. In the case of short time gap, the 

block is batched based on the block size, thus, in channel 2, the orderer waits until it 

receives only 10 transactions while in channel 3 it should wait until it receive 25 

transactions as defined in the channels’ configuration. Although, it was expected that 

channel 3 will have its transactions batched when they reach 25 transactions, we noticed 

that it was affected by another factor which is the absolute maximum bytes resulting in 

three blocks (fig.24), where the first and second blocks have 15 transactions when the 

time gap was 5 seconds. What is more interesting is channel’s 3 behavior when the time 

gap was 10 seconds, the first block was batched after 15 transactions similar to the first 

case, but the second block was batched after 5 transactions only, this happened because 

the first block did not reach either the maximum number of transactions nor the batch-

timeout and it was batched because it reached the absolute maximum bytes. As a result, 

the second block did not reset its batch-timeout, and it batched the transactions when 

the batch-timeout of the first block was reached resulting in a block with a smaller 

number of transactions. Fig 24 also shows that as the frequency of sending the 

transactions decreases (i.e. longer time gap), the number of blocks created increases 

because the orderers start depending on the batch-timeout.  
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Figure 23: Effect of varying the transactions frequency 

 

 

Figure 24: Number of transactions per block 
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committed to the ledger with minimum delay. In case the transaction is less urgent like 

NAC seizures it will be sent to channel 2 that has higher latency but the block size is 

not that high, hence, if the number of transactions sent exceeds 10, each 10 transactions 

will be processed to the validation phase once they reach the orderer. In the third 

channel, both the batch-timeout and the block size are high resulting in high latency, 

this could be suitable for SF patients.      
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CHAPTER 5: CONCLUSION AND FUTURE WORK  

1. Conclusion 

 In this work we started by investigating the performance of HLF, where we 

conducted several scenarios to study the average end-to-end latency and throughput. 

The parameters that were considered in this phase are the batch-timeout, block size and 

the number of endorsing peers, while varying the number of parallel transactions. The 

results reveal that the latency increases as the number of transactions and batch-timeout 

increase. Also, we show that the number of generated blocks and number of transactions 

per block have an impact on the obtained throughput. Indeed, the throughput increases 

as the block size increases, because more transactions in one block means that more 

transactions will be validated at the same time. It is also observed that increasing the 

batch-timeout leads to an increase in the latency because each block has to wait for the 

timeout even if it has received all the transactions.  

 Based on these findings,  we developed a multi-channel Blockchain framework 

and integrated it with edge based smart-health classification scheme that classifies the 

EEG signals into AC, NAC and SF patients then, maps the transactions to one of the 

channels based on their emergency level, thus ensuring QoS. Channel 1 has small batch-

timeout and small block size guaranteeing that the transaction will be committed in a 

very short time regardless of the frequency of sending transactions. In the second 

channel, the batch-timeout is set to a high value while the block size is small, thus, if 

the number of transactions is a multiple of the maximum number of transactions per 

block, the transactions will be batched without waiting for the batch-timeout. The last 

channel has high batch-timeout and large block size, which makes the latency higher in 

this case.  

 The developed multi-channel framework proved to provide QoS and give higher 



  

49 

 

priority to some transactions over others. The system gives higher priority to AC seizure 

as the patients in this case are in high risk which requires a quick action from the 

healthcare providers (i.e. Medical staff). For NAC patients, the transactions have less 

priority and can handle more latency, but they need to be sent periodically to the 

healthcare providers to monitor the patients. Finally, the SF patients has the lowest 

priority as they are in stable state.   

2. Future Work 

 For the future work, more parameters will be studied, such as the effect of the 

number of orderers, and the number of validators, particularly on the security aspect of 

the transaction management process. Furthermore, the studies here can be extended to 

analyze the scalability issues by studying large size network and with increasing the 

number of organizations and parallel transactions. In such large-scale environments, 

the configurations for the individual channels can be estimated dynamically to optimize 

transaction QoS through addressing the trade-off between transaction latency and 

security. Security can be guaranteed through more rigorous transaction validation, 

which in turn affect the latency end-to-end. Therefore, addressing this trade-off through 

efficient algorithm and trying this on the experimental testbed, can be a topic of future 

work. 
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APPENDIX A: MULTI-CHANNEL BLOCKCHAIN IMPLEMENTATION STEPS 

This section shows the implementation steps. Initially, when the channels are created, 

they have the same configuration then, the configuration is changed later using a 

configuration block that starts at step 8. This update is done to channels 2 and 3 only 

while channel 1 does not require any changes as its parameters (Batch-timeout and 

Block Size) are already set to the required values.    

1. Generating the cryptographic material  

The cryptogen tool consumes crypto-config.yaml  file to generate the cryptographic 

material of the organizations, peers and orderers defined in the file. A file named 

Crypto-config is created that contains the certificates and the keys of each of these 

components.  

 

Figure 25: Generating the Cryptographic material of the organizations   

 

2. Create Raft genesis block  

Based on the defined profile in configtx.yaml, the configtxgen tool generates the 

genesis block for the ordering service. In this case Raft ordering service is used.  

 

Figure 26: Creating Raft Genesis Block 

 

3. Creating channels configurations and defining the anchor peers  

In this step, the configtxgen tool consumes contfigtx.yaml file to create channels 

artifacts based on the defined profile (i.e. TwoOrgsChannel in this case). Then, the 
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anchor peer for each organization on the channel is defined. An anchor peer is the peer 

that allows the organization to communicate with other organizations.  

3.1. Channel 1  

 

Figure 27: Channel 1 artifacts  creation and defining anchor peers 

 

3.2. Channel 2  

 

Figure 28: Channel 2 artifacts  creation and defining anchor peers 

 

3.3. Channel 3  

 

Figure 29: Channel 3 artifacts creation and defining anchor peers 
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4. Bring the network up by bringing the docker containers up 

In this step we start the network by bringing the docker containers up  

 

Figure 30: Bringing the network up  

 

5. Create the channel block for each channel and joining it 

In this step, the configurations generated in step 3 are used to create the channels genesis 

block. Then the peers start joining the channels. Finally, the anchor peers are defined 

for each organization on the channel.   

5.1. Creating channel block and the peers join Channel 1  

 

Figure 31: Creating channel-1 block and peers join the channel 
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5.2. Updating anchor peers’ definition anchor peers in Channel 1  

 

Figure 32: Updating anchor peers’ definition inn channel 1 

 

5.3. Creating channel block and the peers join Channel 2  

 

Figure 33: Creating channel 2 block and peers join the channel 

 

5.4. Updating anchor peers’ definition anchor peers in Channel 2  

 

Figure 34: Updating anchor peers’ definition in channel 2 
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5.5. Creating channel block and the peers join Channel 3  

 

Figure 35: Creating channel 3 block and peers join the channel 

 

5.6. Updating anchor peers’ definition anchor peers in Channel 3  

 

Figure 36: Updating anchor peers’ definition in channel 3 

 

6. Install the chaincode (patientCC) on the peers  

In this step the chaincode is installed on the peers, this step is done only once for the 

peers that will be using the chaincode  

 

Figure 37: Installing the chaincode on the peers 

 

7. Instantiate the chaincode on each channel 

Unlike the installing that is done per peer, the instantiation of the chaincode is done per 

channel, each channel that will be using the chaincode should have a copy of it.  
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7.1. Instantiating the patient chaincode on channel 1  

 

Figure 38: Instantiating the chaincode on channel 1 

 

7.2. Instantiating the patient chaincode on channel 2  

 

Figure 39: Instantiating the chaincode on channel 2 

 

7.3. Instantiating the patient chaincode on channel 3  

 

Figure 40: Instantiating the chaincode on channel 3 

8. Fetching the current channel configuration of the channels in portobuf format  

 

Figure 41: Fetching the current configuration of channel 3 

 

9. Translate the portobuf format to readable JSON format  

 

Figure 42: Convert the portobuf format to readable JSON format 

 

10. Create a new copy of the json file to apply the modifications  

 

Figure 43: create a new copy of the config file 
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11. Modify the configurations on the new copy of the JSON file  

 

Figure 44: Applying the modifications 

 

12. Convert the old and the modified JSON files to portobuf format  

 

Figure 45: converting teh modified JSON file to portobuf format 

 

13. Compute the difference between the old portobuf file and the new one, then 

convert the difference to JSON format  

 

Figure 46: Computing teh difference and converting it to JSON 
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14. Sign the updates by the orderer and send the channel update transaction to the 

ledger  

 

Figure 47: Signing the updates and sending the update transaction 

 

 


