
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

ENSURING QUALITY OF SERVICE IN BLOCKCHAIN-BASED HEALTHCARE

SYSTEM

BY

SALMA T. SHALABY

A Thesis Submitted to

the College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Computing

 June 2020

© 2020. Salma Shalaby. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Thesis of

Salma Shalaby defended on 22/04/2020.

Dr. Abdulla Al-Ali

 Thesis/Dissertation Supervisor

Dr. Amr Mohammed

 Co-Supervisor

Dr. Mohamed Abdallah

Committee Member

Dr. Aiman Erbad

Committee Member

Dr. Nizar Zorba

Committee Member

Approved:

Khalid Kamal Naji, Dean, College of Engineering

iii

ABSTRACT

SHALABY, SALMA, T., Masters : June : [2020], Masters of Science in Computing

Title: Ensuring Quality of Service in Blockchain-Based Healthcare System

Supervisor of Thesis: Abdulla, K., Al-Ali and Amr, M., Mohammed.

 Blockchain is a distributed secure ledger that eliminates the need for centralized

authority to store data. It provides decentralized, secure and trustless framework that

does not require a third party for transaction processing, while enhancing fault

tolerance. In this thesis, we investigate the potentials of customizing the behavior of

Blockchain network for versatile healthcare applications’ requirements. Firstly, we

conduct several experiments to evaluate the performance of the Hyperledger Fabric

(HLF) – a permissioned Blockchain framework. Several scenarios were evaluated to

depict the Blockchain behavior in terms of end-to-end transaction latency and network

throughput. In the second phase, we leverage a Blockchain framework that provides

Quality of Service (QoS) by integrating it with smart health system where the edge

gateway decides how the data will be sent to the Blockchain network by prioritizing the

transactions based on the patient’s case using the notion of Blockchain channels. We

design a system with three-channel Blockchain network, each has different

configuration, which enables some transactions to be processed faster than the others.

The results show that channels can be configured to provide fast track with minimal

latency regardless of the frequency of the transactions, which guarantees that urgent

transactions will have highest priority. On the other hand, other channels’ performance

varies depending on the number of transactions received and the frequency of sending

them.

iv

DEDICATION

To my Parents,

for their endless love and support

v

ACKNOWLEDGMENTS

 First, and foremost I praise Allah for giving me the power and guiding me

through this journey. Without his guidance nothing could have been accomplished,

Alhamdullah.

 Moreover, I would like to express my deep sincere and gratitude to my

supervisors Dr. Amr and Dr. Abdulla for their guidance and their valuable feedback

throughout this work. A Special thanks to Dr. Alaa Awad for his collaboration and for

his valuable advices. I also want to thank Eng. Tam for helping me in the

implementation at some point of this work.

 Lastly, I would like to thank my family and my friends for their continuous love,

support and encouragement, and for having faith in me.

vi

TABLE OF CONTENTS

DEDICATION .. iv

ACKNOWLEDGMENTS ... v

LIST OF TABLES .. ix

LIST OF FIGURES ... x

Chapter 1: Introduction .. 1

1. Motivation .. 1

2. Research Questions .. 2

3. Contribution ... 2

4. Document Overview .. 3

Chapter 2: Background .. 4

1. Blockchain ... 4

1.1. Permissioned and Permission-less Blockchain .. 5

1.2. Permissioned Blockchain .. 7

2. Edge Computing .. 16

2.1. What is Edge Computing? ... 16

2.2. Benefits of Edge Computing ... 17

2.3. Integrating Edge Computing and Blockchain ... 18

3. Literature Review... 22

Chapter 3: Performance Evaluation of HLF .. 26

vii

1. Building the Network ... 26

1.1. Network Infrastructure .. 26

1.2. Application Layer .. 27

2. Experiments ... 29

3. Results .. 31

3.1. Batch-timeout .. 31

3.2. Batch Size (Max. Number of Transactions per Block) 32

3.3. Endorsing peers ... 34

Chapter 4: Ensuring QoS on Blockchain ... 36

1. System Architecture ... 36

1.1. Multi-channel Blockchain framework ... 37

1.2. Edge Computing .. 39

2. Experiments ... 40

3. Results and Discussion .. 41

3.1. Fixed Time Gap ... 41

3.2. Varying Time Gap ... 43

3.3. Varying the Transactions Frequency ... 44

Chapter 5: Conclusion and Future Work ... 48

1. Conclusion ... 48

2. Future Work ... 49

viii

References .. 50

Appendix A: Multi-Channel Blockchain Implementation Steps 55

ix

LIST OF TABLES

Table 1: Emergeny Implication of Signal States ... 19

Table 2: Association Rules Generated from TD Features [32] 21

Table 3: The Business Model .. 28

Table 4: Experimental Setup .. 30

Table 5: System Specifications – Phase 1.. 31

Table 6: Matching Channels to Transactions' Emergency ... 37

Table 7: Channels Configuration ... 40

Table 8: System Specifications – Phase 2.. 41

Table 9: Experiments 1 results (Fixed time Gap) .. 42

Table 10: Experiments 2 Results (Varying time Gap) ... 44

x

LIST OF FIGURES

Figure 1. Simple representation of blockchain building blocks 4

Figure 2: Channels Concept ... 11

Figure 3: Execute-order-validate ... 13

Figure 4: Proposal phase .. 14

Figure 5: Ordering and packaging phase ... 15

Figure 6: Validation and committing phase ... 16

Figure 7: Rule extraction and classification Steps [32] ... 19

Figure 8: Converting TD feature values to fuzzy relation [32] 20

Figure 9: Converting TD fuzzy to crisp relation and finding optimal rectangle [32] .. 21

Figure 10: Block structure in a) Private blockchain b) Consortium blockchain [37] .. 23

Figure 11: High level architecture of the network ... 26

Figure 12: Average latency for varying batch-timeout .. 32

Figure 13: Average throughput for varying batch-timeout .. 32

Figure 14: Average latency for varying batch Size ... 33

Figure 15: Number of blocks commited .. 34

Figure 16: Average throughput with varying batch size .. 34

Figure 17: Average latency for varying number of endorsers 35

Figure 18: System architecture .. 36

Figure 19: Multi-channel blockchain framework .. 37

Figure 20: Deciding the transmission channel at the edge gateway 39

Figure 21: Transactions latency with fixed time gap ... 43

Figure 22: Transactions latency with varying time gap ... 44

Figure 23: Effect of varying the transactions frequency .. 46

xi

Figure 24: Number of transactions per block .. 46

Figure 25: Generating the Cryptographic material of the organizations 55

Figure 26: Creating Raft Genesis Block .. 55

Figure 27: Channel 1 artifacts creation and defining anchor peers 56

Figure 28: Channel 2 artifacts creation and defining anchor peers 56

Figure 29: Channel 3 artifacts creation and defining anchor peers 56

Figure 30: Bringing the network up ... 57

Figure 31: Creating channel-1 block and peers join the channel 57

Figure 32: Updating anchor peers’ definition inn channel 1 58

Figure 33: Creating channel 2 block and peers join the channel 58

Figure 34: Updating anchor peers’ definition in channel 2 ... 58

Figure 35: Creating channel 3 block and peers join the channel 59

Figure 36: Updating anchor peers’ definition in channel 3 ... 59

Figure 37: Installing the chaincode on the peers ... 59

Figure 38: Instantiating the chaincode on channel 1 ... 60

Figure 39: Instantiating the chaincode on channel 2 ... 60

Figure 40: Instantiating the chaincode on channel 3 ... 60

Figure 41: Fetching the current configuration of channel 3 .. 60

Figure 42: Convert the portobuf format to readable JSON format 60

Figure 43: create a new copy of the config file ... 60

Figure 44: Applying the modifications .. 61

Figure 45: converting teh modified JSON file to portobuf format 61

Figure 46: Computing teh difference and converting it to JSON 61

Figure 47: Signing the updates and sending the update transaction 62

1

CHAPTER 1: INTRODUCTION

1. Motivation

In 2009, Blockchain emerged as a distributed ledger for bitcoin transactions.

Although it was first introduced for cryptocurrency transactions, the financial service

is not the only application where Blockchain can be utilized. It can be used in different

sectors such as: business, industry, healthcare applications, Internet of Things (IoT) and

much more [1]. Blockchain is a distributed database that consists of chained blocks that

store the data. Each of these blocks, except the first block, is linked to the hash of the

previous block, which ensures that any change in the data will be recognized [2].

One of the important aspects that should be considered while sharing healthcare

data is preserving privacy. Healthcare data gains its sensitivity from the fact that it is

related to patients’ privacy and sharing will require a secure environment. Hence, there

is a need for a decentralized ledger that shares the data securely between different

entities, i.e. hospitals, Ministry of health, patients, etc. Compared to the centralized

approach, the decentralized systems do not require a man-in-middle to monitor and

facilitate the communication. Additionally, it is not subject to single point of failure [3].

Sharing and managing healthcare information is crucial because it provides a

full view of the patient’s state and engages him/her in the treatment process. It also

helps in tracking the health trends within a country. In addition, this data affects the

business decisions. Healthcare data is not only valuable for the hospital or the medical

organization that is issuing it. It is also used by other entities like the ministry of health

for statistics, research centers and universities for doing researches, patients and other

entities that might need the data, and insurance companies to provide premium

healthcare services. Hence, there is a need for these versatile health organizations to

have a peer-to-peer trust (i.e. preferably with no mediator to preserve privacy) in order

2

to facilitate the efficient exchange of medical information. However, one of the main

concerns in sharing healthcare data is the patient’s privacy, the personal data of the

patient and his/her medical records are valuable for attackers for different reasons.

Hence, to guarantee that this data cannot be accessed or tampered by any unauthorized

user, the sharing environment should be completely secure and efficient. Another aspect

is the diversity of policies and decision-making processes for the medical stakeholders.

For example, entities such as health ministry, hospitals, drug organizations, etc. will

have diverse policies that makes the exchange of medical data a real challenge.

Therefore, blockchain platform will work on sharing the data between the different

entities with providing different access levels based on using digital smart contracts that

will help insure all policies are validated for different access level of the medical data

exchange process. Besides the privacy of the patients, one of the points that should be

considered while sharing medical data is the priority; some data has high emergency

level, which requires minimal delay while some information can tolerate latency. Thus,

Quality of Service (QoS) should be considered while sharing medical data.

2. Research Questions

• How can the block size and batch-timeout parameters affect the blockchain

performance in terms of end-to-end latency and throughput?

• How can Blockchain help in providing QoS in transferring medical data?

3. Contribution

1. Building a secure multi-channel Blockchain framework with customized smart

contract for sharing healthcare data

2. Studying the behavior of Hyperledger Fabric (HLF) and evaluating its performance

by conducting several experiments that shows the effect of different parameters on

the overall performance

3. Integrating edge computing with our multi-channel blockchain framework to

3

prioritize the transactions based on their urgency and ensure QoS

4. Document Overview

The rest of this document is divided as follows:

• Chapter 2: Provides a background of Blockchain and edge computing in

addition to the literature review

• Chapter 3: Performance evaluation of HLF that studies how different

parameters can affect the performance

• Chapter 4: Integration of edge computing with multi-channel blockchain

framework to ensure QoS

• Chapter 5: Conclusion and future work

4

CHAPTER 2: BACKGROUND

 This chapter introduces the main concepts used in this work. It starts with a

background about Blockchain and edge computing, then, it studies the previous work

done in the area of using Blockchain in healthcare applications.

1. Blockchain

In 2009 Bitcoin emerged as the first decentralized cryptocurrency [4]. When

Satoshi Nakamoto came up with this new digitalized currency, the main aim was to

create a system that is not controlled by a single entity (i.e. banks). This was achieved

by replacing the centralized database by Blockchain, which is a distributed ledger that

could be accessed by everyone. As the name implies, Blockchain consists of connected

blocks such that each block is attached to the previous one by storing its hash as shown

in fig. 1. The fact that each block stores the hash of the previous block guarantees

integrity, because if the data changed in any block its hash will change, hence, it will

not match the previous hash in the next block anymore and the change will propagate

through the rest of the chain and it will be recognized. Moreover, Blockchain enables

the usage of smart contracts which is an automated program that controls the

transaction logic and does not require an intermediary to run it [5].

Figure 1. Simple representation of blockchain building blocks

5

1.1. Permissioned and Permission-less Blockchain

When Blockchain came out, its main goal was to provide transparent transactions

by having an open platform that anyone can participate in without depending on a

central authority. Having such an open network is acceptable in some scenarios such as

cryptocurrencies, social media, etc., however, in some applications, confidentiality and

privacy are main requirements. To meet the requirements of such applications,

permissioned blockchains emerged as a Distributed Ledger Technology (DLT) [6], [7]:

• Permission-less Blockchains: They are open to anyone to access them,

interestingly, there is no need for any central authority to guarantee access to the

users, which makes the network fully decentralized. However, the fact that the

number of participants is high slows the network down as they all have to agree on

the transactions before they are committed to the ledger

• Permissioned Blockchains: Only authorized users are allowed to participate in

permissioned-blockchains, thus, there should be an entity or a group of entities that

grant access to new participants, which results in a partially decentralized system.

Compared to permission-less blockchains, permissioned blockchains are faster

because the number of participants is usually much less.

 Because each entity holds a copy of the ledger, they have to reach consensus

between each other in order to agree on the same copy and be able to identify any

unauthorized data manipulation. Proof-of-Work (PoW) and Proof-of-Stake (PoS) are

two of the most popular consensus algorithms used in permission-less blockchains.

 In Bitcoin for example, PoW consensus scheme is used, in which miners

compete to solve a computationally intensive puzzle and once a miner solves this puzzle

it broadcasts the new block, in return, the wining miner gets a reward in addition to the

transactions’ fees, it is worth mentioning that this reward changes every four years in

6

Bitcoin Blockchain. In order to create a new block, miners compete to satisfy the

following condition:

𝐻𝑎𝑠ℎ(𝑛𝑜𝑛𝑐𝑒||𝑑𝑎𝑡𝑎||𝑝𝑟𝑒𝑣ℎ𝑎𝑠ℎ) ≤ 𝑡𝑎𝑟𝑔𝑒𝑡

The miner must generate a hash value that lies in the target space; in other words, the

hash value generated must be less than or equal to the target. This condition can be

satisfied by changing the nonce value until the miner gets a hash value that lies within

this space. Miners compete to satisfy this condition and the first miner to solve this

puzzle broadcasts the block and gets rewarded, if the block got verified. Although this

puzzle is hard to solve, it can be easily verified by other miners using the same input

that the broadcasting miner provided and generating the hash value. The difficulty of

this process comes from the fact that the target space is much smaller than the hash

output space given that Bitcoin uses SHA256 hashing algorithm which generates a hash

of 256 bits. Bitcoin Blockchain readjusts the target every 2016 blocks to guarantee that

one block is generated every 10 minutes in average; if the average time for generating

the blocks was less than 10 minutes, the target value decreases, which makes the puzzle

harder because the target space becomes smaller. In contrast, if the average time was

found to be more than 10 minutes, the target value is readjusted to a higher value giving

a bigger space to ease the mining process [8]. One of the limitations of PoW is that it is

vulnerable to 51% attack, which can happen if a single entity owns more than 51% of

the computational power of the Blockchain enabling them to take control of the whole

network [9].

 Peercoin [10] proposed PoS to decrease the computational overhead of PoW.

PoS depends on the amount of time that the miner holds a certain amount of currency.

This approach uses coin-age that is the number of days of holding the currency, times

the amount that it has been held. Based on the coin-age, the miners are chosen; the

7

probability of being chosen as the next block miner increases as the coin-age increases,

until it is maximized when the coin-age is 90 days. Unlike PoW, this approach does not

consume huge amount of resources. Also, it is not vulnerable to 51% attack as the

attacker needs to own more coins than the rest of the network; causing an increase in

the coin price, which makes the attack very costly and almost impossible [11]. PoW

and PoS are two of the most common consensus techniques in permission-less

blockchains that guarantee trust, however the mining process is time consuming. On

the contrary, permissioned Blockchain leverages faster protocols to achieve consensus

[12].

1.2.Permissioned Blockchain

Permissioned blockchains showed their ability to provide the confidentiality

requirements needed by some of applications and business use cases, they also showed

better performance in terms of throughput as the consensus process is not as slow as

most of permission-less consensus protocols. In this section, we explore some of the

available permissioned blockchains such as: Ethereum [13], Corda [14] and MultiChain

[15]. Then, Hyperledger Fabric [16] is explained in more details as it is the platform

used in this work.

1.2.1. Ethereum

 Ethereum [13] was established in 2015 and eventually it became one of the

biggest programmable blockchain frameworks. It acts as permission-less blockchain to

exchange Ether (ETH) cryptocurrency. However, Ethereum can offer more than this as

it is programmable and open source. Thus, it is also used as a permissioned blockchain

to develop customized decentralized applications [17]. While the current version of

Ethereum (Eth1) relies on PoW consensus algorithm, it is planned that Eth2, which is

under development, will utilize PoS [18]. Ethereum has two types of accounts [19]:

8

1. Externally Owned Accounts (EoA): used by the users to send their transactions

to the network

2. Contract accounts: used by the smart contracts to call each other by sending

internal transactions [20].

Ethereum Blockchain is considered as a state machine and the valid transactions are the

events that cause the state change [21]. Initially, Ethereum transactions start from an

EoA that will send ether and cause a direct change in the state, or, it can create a contract

account that will call one or multiple contracts through internal transactions and finally

change the state.

1.2.2. Corda

 Corda [14] is an open source Blockchain designed for recording and processing

business data. The main building block of Corda is the state object, which defines the

ledger. This state object represents a record of the current state and content of agreement

between two or more parties. Corda ledger updates are applied through transactions,

which consume existing state objects and produce new ones. To reach full consensus

on these transactions, two aspects are considered:

1. Transaction Validity: The participating parties have to check the contract

code, which is required to be deterministic. Then, they have to check if the old

transactions that the current transaction refers to are valid and finally, they have

to check that it has all the required signatures.

2. Transaction uniqueness: The uniqueness can be checked by verifying that the

transaction is not consuming any of the states that have been consumed earlier.

It is worth mentioning that Corda only allows the parties that are part of a transaction

to participate in the transaction validation process. However, for approving the

transaction uniqueness, Corda has pluggable services that allow multiple untrusting

9

nodes to participate in this process [22].

1.2.3. MultiChain

 Multichain [15] is a private blockchain that is based on a fork of Bitcoin’s

blockchain to serve financial institutions. The main goals of MultiChain are:

1. Provide a blockchain platform that is only accessible by chosen participants

2. Control the transactions exchanged by setting rules

3. Enable secure mining without having PoW in the loop because it is

computationally expensive

In Multichain, mining is restricted to a set of identified entities, it enforces the

participation of all the miners in the defined set by adopting round-robin schedule and

setting the mining diversity which is the proportion of the miners who have to

participate in the mining process to maintain the network. The process of validating a

block is done as follows [23]:

1. Apply the changes of the assets based on the transactions

2. Calculate the spacing by multiplying the number of miners by the mining

diversity. The spacing is defined as the number of blocks that each miner has to

wait to be eligible to mine again

3. If the miner has mined one of the previous spacing-1 blocks, then the block is

invalid.

By applying these steps, Multichain ensures that the all the identified miners have

participated in the process, however, this reveals a limitation where the network might

freeze if the miners are inactive especially if the mining diversity is very high. On the

other hand, if the mining diversity is small then the mining process is only rotating

between a small number of miners which raises the centralization level.

10

1.2.4. Hyperledger Fabric

Hyperledger Fabric (HLF) [16] is an open source permissioned Blockchain

established by the Linux Foundation that is mainly used to serve enterprises. What

distinguishes HLF from other platforms is its new transaction architecture called

Execute-Order-Validate architecture. This new architecture replaces the traditional

order-execute one used by all of the existing platforms. In order-execute architecture,

first, transactions are ordered based on the consensus protocol. Then, in the execution

phase, each peer executes transactions sequentially in the same order. This execution

phase has a negative impact on the performance of the network as the peers have to go

through all the transactions in the block and execute them, which increases the latency.

Another point that differentiates HLF is that it supports general-purpose programming

language smart contracts or “chaincodes” as HLF calls them. It is obligatory that smart

contracts in platforms that follow the order-execute architecture have to be

deterministic; and that is why some platforms require writing the smart contract in a

Domain Specific Language (DSL) to eliminate the non-deterministic operations [24],

[25].

1.2.4.1.Channels

 Based on the requirements, HLF allows the creation of several channels within

the same network. A channel could be referred to as a private communication network

within the main network. Each channel has its own ledger, therefore, only the peers and

organizations that are members of this channel will have a copy of this ledger. These

members are defined in the channel policy in the configuration block that also defines

the type of ordering service. Whenever any configuration is modified, a new

configuration block is created and added to the chain [25]. Fig. 2 clarifies the channel

concept, where organization A and organization B have access to channel 1 and

11

organization B and organization C have access to channel 2. Peers in organization 1

have a copy of the ledger that belongs to channel 1 only. Similarly, peers in organization

C have a copy of the ledger that belongs to channel 2 only. Since organization B is a

member in both channels, its peers have copy of both ledgers. This could be useful in

scenarios where there are competing companies as it allows private communication

between the organizations on the same channel.

Figure 2: Channels Concept

1.2.4.2.Ordering Service

 To achieve consensus, HLF introduces orderer nodes. As the name implies, the

main responsibility of orderer nodes is ordering the transactions in the blocks and

broadcasting them to the peers for validation. HLF offers three different

implementations of the ordering service [25]:

• Solo: In solo-based implementation there is only one ordering node, which

makes it a single-point-of-failure. Consequently, solo-based ordering service is

not suitable for production. Nevertheless, it could be applied for testing and for

academic usage as it eliminates the administrative overhead in the other

implementation schemes.

• Kafka: This mode follows leader and follower approach, where the leader

12

orderer sends the transactions to the follower orderer nodes. The choice of the

leader is done in dynamic fashion and as long as the majority of the nodes is up,

the system is Crash Fault Tolerant (CFT). This scheme utilizes zookeeper

coordination service [26] for managing Kafka cluster. Zookeeper helps in tasks

coordination, distributed synchronization and cluster membership. Although

this scheme was the only option that supports multiple orderers since HLF v1.0,

the setup of Kafka-based ordering service is challenging, and it requires experts

to deploy it [25].

• Raft: Recently, HLF added Raft ordering service that is based on Raft protocol.

It is similar to Kafka, as it has the advantage of being CFT and it follows the

leader and follower approach. From the functional point of view there are no

differences between Raft and Kafka, however, Raft is easier to setup [25].

1.2.4.3.Transaction Flow

 HLF introduces two types of transactions: Update Transactions and Query

Transactions. In the former, all the peers need to agree on the transactions before

updating the ledger, which is known as consensus. In order to achieve consensus in

HLF, the update transactions go through a three-phase process known as Execute-

Order-Validate process, summarized in fig. 3, the process starts once the transaction is

proposed and ends when it is committed to the ledger. On the other hand, query

transactions go through the first phase only because there are no changes that would

affect the ledger, thus, not all the peers have to be involved [25].

13

Figure 3: Execute-order-validate

Phase 1: Proposal (Execute)

The main aim of this phase is endorsing the transactions. As shown in fig. 4, this phase

is divided into 3 main steps:

1. The application client sends a transaction proposal to the endorsing peers.

• The set of the endorsing peers chosen is determined by the endorsement

policy

2. Each endorsing peer executes the chaincode individually and checks the

following:

• The proposal is well structured

• The application is not trying to duplicate a transaction that already exists

• The signature of the issuer is valid

• The issuer is allowed to perform the proposed operation

Based on the execution results the endorsing peer generates transaction response

and signs it

3. The endorsers send the signed response to the client

• Depending on the number of endorsing peers defined in the endorsement

policy, the client waits until it receives a certain number of

endorsements, which marks the end of the first phase.

14

Figure 4: Proposal phase

Phase 2: Ordering and Packaging (Order)

This phase is concerned with packaging the transactions, which is the orderer’s main

responsibility. The orderer does not look into the content of the transactions, it only

packages them into a block, unless it is a configuration transaction. As illustrated in fig.

5, this phase goes through the following steps:

1. The ordering service receives transactions response from different client

applications

2. The ordering services package the transactions into a block

• It is worth noting that the number of transactions per block is decided by the

channel configuration, and it affects the overall latency of admitting the

transaction into the Blockchain.

15

Figure 5: Ordering and packaging phase

Phase 3: Validation and Committing (Validate)

The last phase is when the block is finally committed to the ledger, it is divided into the

following steps as shown in fig. 6:

1. The orderers send the block to all the peers connected to it

• Peers that are not connected to the orderer will eventually receive the

block by gossiping

2. Each peer on the channel will validate the transactions in the block separately

then commit the block to the ledger

• Although each peer validates the transactions separately, this is done in

a deterministic way, which guarantees that each peer will have an

identical copy of the ledger.

The process of validation includes ensuring that the transaction is endorsed by

the required endorsers according to the endorsement policy. To commit the

block to the ledger, the peers perform a consistency check to ensure that none

of the assets was updated by any other transaction when phase 1 and 2 were

taking place.

16

Figure 6: Validation and committing phase

2. Edge Computing

 In this section, we give a background about edge computing and its benefits.

Then we discuss the motivation behind integrating Blockchain and edge computing.

2.1. What is Edge Computing?

 The emergence of IoT and the enormous amount of data produced by its devices

changed the computing map where data was stored and processed at the cloud side and

pushed towards Edge Computing [27]. The term Edge computing refers to allowing the

computations to be done at the proximity of the data producers rather than doing it at

the cloud side [28]. The fact that the data is generated at the edge of the network makes

processing it near to the producers more efficient as it reduces the network load and

consumes less time compared to cloud computing [29]. Typically, edge computing can

be divided into three layers: end devices (front-end), edge server (near-end) and core

cloud (far-end) [30]. The end devices are the data collectors and the actuators that

interact with the environment. However, these light-weight devices cannot perform

17

computations because of their limited resources. The edge server is introduced to

facilitate traffic flow in the network and provide computational requirements such as

real-time processing as well as data storage and caching. As the third tier (i.e. core

cloud) is more powerful it is responsible for heavy computations and storing big data.

2.2.Benefits of Edge Computing

 Applying edge computing brings several benefits that can be summarized in the

following points:

1. Faster Processing: Although cloud computing proved to be efficient for many

years, with the enormous increase of the number of devices and the amount of

data produced from the edge, the data transfer speed became a bottleneck. This

degradation of speed affects the time in which the data is sent to the cloud, thus,

causing the response time to be very long. On the other hand, edge computing

provide faster processing as the source devices are already close to the edge,

thus the transfer time is much less and consequently the overall response time

will be less [28].

2. Security and privacy: For some applications, privacy is a main concern, by

having the computation done at the edge privacy can be enforced prior to

sending the data to the cloud [31]. Moreover, one of the disadvantages of cloud

computing is that it is centralized which makes it a single point of failure and in

case it is attacked, the security of all the devices communicating with it might

be compromised.

3. Scalability: Another benefit of edge computing is that it provides scalability as

the edge will be processing data from a small set of devices only. Moreover,

when integrating edge computing with cloud computing the edge will take the

responsibility of some of the processing that should be done and will send the

18

results only to the cloud which will reduce the bandwidth consumption and

allow more devices to send their data [31].

2.3.Integrating Edge Computing and Blockchain

 Integrating Blockchain and edge computing would merge the benefits of both

of them; providing the privacy and security features of Blockchain as a distributed

ledger and the ability of edge computing to carry out computing, storage and

networking tasks at the network edge [30].

 In this work, we integrated the Edge-based Electroencephalography (EEG)

classification done by Awad et al. in [32] with our Blockchain framework to ensure

QoS. The authors in [32] propose a smart monitoring health system for epileptic seizure

detection at the network edge by classifying EEG signals as they proved to have a

significant contribution in diagnosing several brain disorders [33]. The proposed

system consists of three layers, i.e. IoT devices, edge, cloud. The edge layer,

represented by a smartphone in their work, has three main tasks: acquiring the data from

IoT devices, feature extraction and classification, and data reduction. To allow reliable

detection, the authors apply Time-Domain (TD) and Frequency-Domain (FD) feature

extraction and use these features to develop a fuzzy classification technique for EEG

signals. They used the dataset in [34] considering three patients’ classes. Each of these

classes has 100 EEG segment and 4096 samples with a sampling rate of 173.6 sample/s

and a sensing time frame of 23.6s:

1. Seizure-free (SF): Normal patients that have no seizures

2. Non-active (NAC): Patients that had a seizure, but it is not active

3. Active (AC): Patients with active seizure

These three classes reflect different emergency levels and different channel requirement

as shown in table 1.

19

Table 1: Emergeny Implication of Signal States

Class Emergency Channel Requirements

Active (AC) Very High Guaranteed service with minimal

latency

Non-active (NAC) Moderate Some delay is acceptable

Seizure-free (SF) Low Transactions can handle higher latency

2.3.1. Classification Module

 In this section, the developed rule extraction and classification done in [32] are

explained. As shown in fig. 7, the rule extraction and classification process consist of 6

steps.

Figure 7: Rule extraction and classification Steps [32]

• Step 1: Feature Extraction

In this step a set of epileptic features are identified to differentiate between the EEG

signals, these features are divided into two categories: Time-Domain (TD) features and

Frequency-Domain (FD) features. Firstly, four TD features are considered which are:

the absolute mean of the signal, the variance, the waveform length and finally the auto-

regression coefficients. Secondly, for the FD feature extraction, the signals were

initially converted to FD using Fast Fourier Transform (FFT) which revealed an

important property which is the amplitude range as each of the classes appeared to have

20

different amplitude range. The signals were divided into five frequency sub-bands:

𝛿 (0.2 − 3)𝐻𝑧, 𝜃 (3 − 8)𝐻𝑧, 𝛼 (8 − 12)𝐻𝑧, 𝛽 (12 − 32)𝐻𝑧 𝑎𝑛𝑑 𝛾 (> 32)𝐻𝑧.

Both TD and FD features were calculated for three patients from each class (i.e. SF,

NAC and AC), then, only the features with high correlation with its class label and low

correlation with the other classes are chosen, which are the mean, variance and the auto-

regression features.

• Step 2: Transform Feature Values to Fuzzy Relation

Let 𝑈 = 𝑂 × 𝑃 be the universe, where 𝑂 is the set of all patients and 𝑃 is the set of all

features. The fuzzy set 𝑅 on the universe U represents the strength of the relation by a

membership value 𝜇𝑅(𝑜, 𝑝) between any pair (𝑜, 𝑝) where 𝑜 is the patient and 𝑝 is the

feature, 𝑜 ∈ 𝑂 and 𝑝 ∈ 𝑃. To convert the feature values to fuzzy relation, first, the

absolute values of the features are taken. Then, the values are normalized in order to

map the selected features to values within [0,1] range (fig. 8).

Figure 8: Converting TD feature values to fuzzy relation [32]

• Step 3: Transform Fuzzy Relations to Crisp Relation

In this step, the obtained fuzzy relations 𝑅 values are converted to crisp relation 𝑅𝛼,

based on a certain 𝛼 − 𝑐𝑢𝑡, 𝛼 ∈ [0, 1] such that for any (𝑜, 𝑝) ∈ 𝑈, 𝜇𝑅𝛼(𝑜, 𝑝) = 1, if

𝜇𝑅(𝑜, 𝑝) ≥ 𝛼, otherwise, 𝜇𝑅𝛼(𝑜, 𝑝) = 0. Fig. 9 shows the conversion of the fuzzy

21

relation to crisp relation using 𝛼 = 0.3

Figure 9: Converting TD fuzzy to crisp relation and finding optimal rectangle [32]

• Step 4: Finding Optimal Rectangles

Getting the binary crisp relation paves the way for identifying optimal rectangles that

covers maximum number of patients that share the maximum number of features from

the same class. As illustrated in fig. 9, there are three optimal rectangles, each

corresponds to a class.

• Step 5: Transform Optimal Rectangles to Rules

In this step, the identified rectangles are used to set the association rules that will

classify the data into the three classes in both TD and FD features. The conditions of

the rules are decided based on the features within the rectangle and the classification

decision reflects the corresponding class. Table 2 shows the association rules generated

from the TD features.

Table 2: Association Rules Generated from TD Features [32]

Rule Class

If 𝐵1 = 0 AND 𝐵3 = 0 AND (𝐵6 = 1 OR 𝐵8 = 1) SF

Else If 𝐵3 = 0 NAC

Else If 𝐵1 = 1 AND 𝐵3 = 1 AND 𝐵6 = 1 AND 𝐵8 = 1 higher latency

22

• Step 6: Classification

Finally, the association rules are used in implementing the classifier on the smartphone

to be applied on the data received from the patients’ devices.

 After the classification is done, the data will be sent to our multi-channel

Blockchain depending on its priority (See Chapter 4).

3. Literature Review

 In the last decade, the data generated by the healthcare sector increased

remarkably [35]. This growth in the amount of data generated will continue to increase

through the years specially in the era of IoT that witnesses a high demand for wearable

devices operated in healthcare monitoring. It is expected that by next year 50.2 million

patients will use remote health monitoring. As these numbers are increasing, one of the

main concerns is efficient secure healthcare data sharing [36]. Permissioned

blockchains act as a secure environment for storing data as it provides integrity,

confidentiality and availability. This section explores some of the work done in the area

of storing and sharing healthcare data using Blockchain.

For sharing Personal Health Information (PHI), [37] proposes Blockchain-

based Secure and Privacy-Preserving PHI sharing (BSPP). The proposed scheme

consists of two blockchains: 1- A private Blockchain within each hospital 2- A

consortium Blockchain where all the hospitals participate in. The main aim of the

private Blockchain is to store the PHI of each patient, on the other hand, the consortium

is utilized to store only keywords that are used to search the patient’s information that

is stored in the private Blockchain. The designed system has three main entities:

1. System Manager: It takes the responsibility of registering the users (patients

and doctors) by generating their public keys.

2. Hospitals: Each hospital has a server and a number of clients:

23

a. Server: It keeps the register table of the users. Moreover, it collects new

blocks from the private blockchain and formulates new blocks for the

consortium, it also works on verifying the consortium’s blocks.

Furthermore, the server authenticates the doctors outside the private

blockchain to access the patient’s PHI.

b. Clients: Used by the doctors to enter patient’s data and create new blocks

3. Patients: Before meeting the doctor, patients must register to the server to get

a token. This token is later used as a proof of the interaction between the patient

and the doctor allowing the latter to create the patient’s PHI.

Figs. 10a and 10b show the structure of the private Blockchain and consortium,

respectively. For simplicity, the block headers, timestamp and issuer signature are

eliminated. The private Blockchain blocks the issuing doctor’s ID, patient’s ID, his/her

encrypted PHI and the keywords needed to search for it. The consortium’s block stores

the issuing server ID and secure indices, which consists of 𝑛 transactions. Each of these

transactions has the Block ID in which the PHI is stored, PHI keywords and patient’s

ID.

Figure 10: Block structure in a) Private blockchain b) Consortium blockchain [37]

 In [38] the authors propose a Blockchain based storage scheme for healthcare

24

data. The system has three main participants with different access permissions:

hospitals, patients and third-party agencies. The main role of the hospitals is generating

the medical records of the patients. Third-party agencies represent institutions

responsible for appointment registration, hospital recommendations services, etc. The

third participant, which are the patients, have control over their data as they can provide

access to other participants to access their data as needed. Because of scalability and

capacity issues, only indices are stored in the Blockchain, while the raw data is stored

on cloud. The proposed system has three functionalities:

1. Data Release: Beside generating the data, the doctor also generates its hash

digest then post it on the Blockchain after signing it with his/her private key.

Additionally, an encrypted copy of the data is sent to the patient along with its

encrypted encryption key. It is worth noting that this key is encrypted using the

patient’s public key.

2. Data Storage: To store the data, the patient verifies the signature of the issuing

doctor. Then, the patient’s private key is used to decrypt the encrypted

encryption key to be able to decrypt the original data. Finally, the patient

encrypts the data again with a new key and post it in the cloud.

3. Data Sharing: data sharing is under the control of the patient; access can be

given to any institution by providing them with decryption key. The control

policy defines the location, the access levels and the expiration data for

accessing the data.

 In [39], the authors propose a user-centric Blockchain-based system that

collects medical data from the user’s wearable devices, manual data entry and medical

devices then send them to the cloud. The system incorporates six parties:

1. Users: Users are the owner of data in which it is collected from them through

25

their wearable devices, medical devices or through manual entry by their

doctors. They are responsible for granting or denying access to other parties

2. Wearable Devices: They take the responsibility of collecting the data and

transfer it to human readable format and then synchronized with their associated

user account.

3. Healthcare Providers: Represents the doctors who are appointed by the users

to do their medical tests and provide treatments. These doctors are given access

under the user’s permission.

4. Health Insurance Companies: The user can request a quotation from the

insurance companies. To provide the quote, the insurance companies request

data access from the user to check his/her medical health history and wearable

devices data. In this case the user cannot deny access to the insurance companies

to avoid fraud.

5. Blockchain: It used to store the data collected by the wearable devices,

healthcare providers and insurance companies’ quotation. In addition, all the

access requests are stored in the blockchain.

6. Cloud Database: It is the point of communication between the users and the

Blockchain. It is a client application that the user, healthcare provider or the

insurance company interact with to update the ledger or read from after

validating the access permissions.

26

CHAPTER 3: PERFORMANCE EVALUATION OF HLF

 As explained in chapter 2, HLF is a distributed permissioned Blockchain that is

highly customizable. In this chapter, HLF performance is studied by conducting several

experiments to measure how the batch-timeout, the batch size and the number of

endorsers would affect the end-to-end latency and the throughput.

1. Building the Network

 In this section, the main components of building an HLF network are discussed.

Building HLF network is divided into two main parts:

1- Network Infrastructure

2- Application Layer

1.1.Network Infrastructure

As shown in Fig. 11, healthnet network consists of one channel that connects

two peer organizations: org1 and org2 and one orderer, each of the peer organizations

has 2 connected peers. These peer organizations can be representing any institution

such as hospital, pharmacy, etc. The ordering service utilizes the Solo-based design as

it will not be used for production.

Figure 11: High level architecture of the network

27

The channel Configuration is defined by two main parameters, Batch-timeout and

Batch Size:

• Batch-timeout: It defines the orderer’s waiting time before creating block

• Batch Size: It controls the number of transactions per block; it is defined by

three variables:

1. Maximum transaction Count: The maximum number of transactions per

block

2. Absolute Maximum Bytes: The maximum number of bytes per block

that cannot be exceeded

3. Preferred maximum bytes: The preferred number of bytes per block

The aforementioned parameters have big impact on the performance of the network.

The transactions are batched as a block whenever one of the limits is reached; meaning

that if the batch-timeout is reached but the number of transactions is still less than batch

size then, the orderer will batch the transactions into a block as discussed in chapter 2.

1.2.Application Layer

In this work, Hyperledger Composer is used to ease the process of implementing

the application layer. It helps in modeling the business network that is being packaged

to an archive (.bna file) to be used on top of HLF infrastructure. The business network

is defined using three main files: Model File, Script File and Access Control File [40]:

• Model File: A .cto file that defines all the assets, participants and transactions.

It is written in Hyperledger Composer Modeling Language.

• Script File: A .js file that is considered as the smart contract where the

transactions logic is implemented, it is written in JavaScript.

• Access Control File: In HLF, users do not have the same access level. A .acl

file defines the access control rules that states the CRUD (Create, Read, Update

28

and Delete) operations a user can perform in the business network like creating

assets, participants or transactions. For example, some users can only read data,

others can read, write create and delete.

Our application is designed for sharing medical data between healthcare participating

entities. The model file defines one asset, two participants, and three transactions as

shown in table 3.

Table 3: The Business Model

Assets participants Transactions

Case Doctor CreateDoctor

 AdminStaff CreateCase

 TransferCase

 It is worth noting that in such scenarios, the business model should be more

complicated, however, the main aim of this work is evaluating the network. Regarding

the access control rules, only the Network Admins are allowed to add new assets,

participants, and transactions. In real networks, the access rules have to be more

complicated. For example, only the Network Admins can add new Staff, e.g., new

doctors using the CreateDoctor transaction. Regarding the assets, only the doctors will

be allowed to add a new Case using CreateCase transaction. Both Admins and doctors

will be allowed to transfer a case from a doctor to another doctor. Each of the cases is

defined by some attributes like the name of the patient, age, vitals, description, a

supervising doctor, etc. It should be noted that all the experiments in this study were

done using the createCase transaction to guarantee that all the transactions have the

same size.

29

1.2.1. Transaction logic

• CreateCase:

1. Create a new Case instance

2. Assign the attributes to the case instance

3. Assign a doctor to the case

4. Add this case to the doctor’s list

5. Update Case Registry

6. Update Doctor Registry

• CreateDoctor:

1. Create a new Doctor instance

2. Assign the attributes to the doctor instance

3. Update Doctor Registry

• TransfereCase:

1. Assign the case to another doctor

2. Add this case to the doctor’s list

3. Update Case Registry

4. Update Doctor Registry

2. Experiments

Seven different experiments were conducted to show how HLF performance is

affected by changing the batch-timeout, batch size (by changing the maximum

transactions count) and the number of endorsing peers. Table 4 shows the exact setup,

in experiments 1, 2 and 3 the batch size is fixed to 45 transactions (Tx) and the number

of endorsers is fixed to 4 to examine the effect of changing the batch-timeout.

Experiments 4, 5 and 6 study the effect of the batch size by fixing the batch-timeout to

200s and the endorsers to 4 and changing the batch size only. In experiments 1 and 7

30

the batch-timeout and batch size are set to 2s and 45 Tx, respectively, and only the

number of endorsing peers changes. For each of the experiments the average end-to-

end latency and the average throughput are measured by taking the average of 10 trials

while having different number of parallel transactions. To study the effect of the batch-

timeout and the number of endorsers, we started from 1 transaction up to 30 parallel

transactions, however, while studying the effect of the batch size we started from 10

parallel transactions and not from 1 transaction; because if there is only one transaction

then the batch size will never be reached and the delay will be caused by the batch-

timeout which is set to 200s.

Table 4: Experimental Setup

Exp# Batch-timeout Batch Size* Number of Endorsers

Exp. 1 2 seconds 45 Tx 4 endorsers

Exp. 2 5 seconds 45 Tx 4 endorsers

Exp. 3 8 seconds 45 Tx 4 endorsers

Exp.4 200 seconds 2 Tx 4 endorsers

Exp.5 200 seconds 5 Tx 4 endorsers

Exp. 6 200 seconds 10 Tx 4 endorsers

Exp. 7 2 seconds 45 Tx 2 endorsers

*Batch size was changed by changing the maximum number of transactions per block

The end-to-end latency and throughput are defined as follows:

• End-to-end latency (s): The total time needed by the transaction to be

committed to the ledger, it starts once the transaction is sent until it is committed

to the ledger.

• Throughput (transaction/s): Number of transactions that can be processed in

one second, it is measured using the following equation:

𝑁𝑜. 𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝐿𝑎𝑡𝑒𝑛𝑐𝑦

31

 As shown in table 5, in this phase, Fabric v1.2.0 was used on Ubuntu 16.04

LTS platform with processor Intel Core i7-4510U.

 Table 5: System Specifications – Phase 1

3. Results

The experiments done are divided into three sets, the first set shows the effect of

changing the batch-timeout, the second set studies how the block size affects the

performance and the third set focuses on the number of endorsers.

3.1.Batch-timeout

In experiments 1, 2 and 3 we study how the end-to-end latency and throughput are

affected by changing the batch-timeout as the number of concurrent transactions

increases to 30 while fixing the batch size to 45 Tx which is big enough to avoid

reaching the maximum batch size before the timeout and to accommodate all the

transactions in one block. Fig. 12 shows that the latency increases as the number of

parallel transactions increases. It also shows that it increases by increasing the batch-

timeout. Fig. 13 shows that the throughput increases as the number of parallel

transactions increases; this happens because the number of transactions within the block

increases meaning that more transactions will be processed at a time. It is also observed

that as the batch-timeout increases the throughput decreases as a result of increasing

the delay.

Specification Details

Operating System Ubuntu 16.04 LTS

Processor Intel Core i7-4510U CPU @ 2.00 GHz x 4

Fabric Version 1.2.0

Application Layer Hyperledger Composer

32

Figure 12: Average latency for varying batch-timeout

Figure 13: Average throughput for varying batch-timeout

3.2.Batch Size (Max. Number of Transactions per Block)

In experiments 4, 5 and 6 the batch-timeout is fixed to 200 seconds and the batch

size varies by changing the maximum number of transactions per block to study how it

affects the end-to-end latency and throughput. The batch-timeout was set to a high value

0

5

10

15

20

25

30

35

40

45

1 10 20 30

L
a
te

n
c
y
 (

s
)

No. of parallel Transactions

2s 5s 8s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30

T
h
ro

u
g
h
p
u
t

(t
ra

n
s
a
c
ti
o
n
s
/s

)

No. of parallel Transactions

2s 5s 8s

33

(200 seconds) to ensure that the blocks will never timeout before reaching the block

size. Fig. 14 shows that the latency almost doubles when the number of transactions

increases. It also shows that increasing the batch size decreases the latency; this change

is clear when the batch size increases from 2 Tx to 5 Tx, but as it increases from 5 Tx

to 10 Tx the change is negligible. The reason behind that is illustrated in fig. 15 which

shows that the number of blocks in which the transactions were packaged and

committed; the difference between the number of blocks committed is small when the

batch size increased from 5 Tx to 10 Tx when it is compared to the difference between

the number of blocks when it increased from 2 Tx to 5 Tx. This is reflected on the

latency as it increases as the number of blocks increases because there are more blocks

to be validated as discussed in chapter 2. Fig. 16 shows that the throughput decreases

as the number of parallel transactions increases. On the other hand, it demonstrates that

the throughput increases as the batch size increases.

Figure 14: Average latency for varying batch Size

0

5

10

15

20

25

30

35

40

45

50

55

10 20 30

L
a
te

n
c
y
 (

s
)

No. of parallel Transactions

2 Tx 5 Tx 10 Tx

34

Figure 15: Number of blocks commited

Figure 16: Average throughput with varying batch size

3.3.Endorsing peers

In experiments 1 and 7 we examine how the number of endorsing peers affects the

latency. In both experiments, the batch-timeout is set to 200 seconds and the batch size

is set to 45 Tx. From Fig. 17, it is observed that the latency increases as the number of

parallel transactions increases. It also shows that increasing the numbers of endorsers

leads to a slight increase in the latency, because with increasing the number of endorsers

0

2

4

6

8

10

12

14

16

10 20 30

N
o
.

o
f
B

lo
c
k
s
 C

o
m

m
it
e
d

No. of parallel Transactions

2 Tx 5 Tx 10 Tx

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30

T
h
ro

u
g
h
p
u
t

(t
ra

n
s
a
c
ti
o
n
s
/s

)

No. of Parallel Transactions

2 Tx 5 Tx 10 Tx

35

the client has to wait for more endorsed transactions responses before sending to the

orderer in the second phase of the transaction flow.

Figure 17: Average latency for varying number of endorsers

 From the results presented, we deduce that applications with large number of

parallel transactions, the batch-timeout and block size should be large in order to

maintain high throughput while for application with urgent transactions, the batch-

timeout and block size should be limited in order to obtain low latency (especially, in

case of emergency).

0

5

10

15

20

25

30

35

40

1 10 20 30

L
a
te

n
c
y
 (

s
)

No. of Parallel Transactions

2 endorser 4 endorsers

36

CHAPTER 4: ENSURING QOS ON BLOCKCHAIN

Based on the analysis done in chapter 3 that shows that different channel

configurations affect the performance of HLF blockchain in terms of end-to-end

latency, we propose merging edge computing with HLF framework to ensure Quality

of Service (QoS). In this chapter, a multi-channel Blockchain framework is built and

integrated with edge computing, where the gateway formulates the transaction and

decides on which channel it will be sent based on its priority.

1. System Architecture

As shown in fig. 18, the proposed system is divided into two parts:

1- A multi-channel Blockchain framework

2- Edge computing for classifying the transactions

The edge gateway collects the data either from the connected devices or from data

entered manually by the users at each institution, then, it formulates the transaction and

sends it to the suitable blockchain channel based on its priority. The proposed

blockchain framework consists of three different channels each has its own

configuration implying different behavior.

Figure 18: System architecture

37

1.1.Multi-channel Blockchain framework

1.1.1. Network Infrastructure

 As shown in fig. 19, the network consists of three channels connecting two peer

organizations: org1 and org2 and a Raft-based ordering service with 5 orderers. Each

channel has different configuration, based on the urgency of the transaction the edge

gateway will decide the channel in which the transaction will be sent to. Having three

channels implies having three ledgers, and since all the peers are connected to the three

channels, each peer will have a copy of the 3 different ledgers.

Figure 19: Multi-channel blockchain framework

 Table 6 matches the channels to the emergency level and shows how the

gateway will react to different emergency levels. If the emergency of the transaction is

high, it will be sent to channel 1, if it is low it will be sent to channel 3 as it can tolerate

some latency and if it is moderate then it will be sent to channel 2.

Table 6: Matching Channels to Transactions' Emergency

Channel No. Emergency

Channel 1 Very High

Channel 2 Moderate

Channel 3 Low

38

 Based on the performance evaluation done in chapter 3, we enforced different

channels behavior by varying the batch-timeout and the block size (by changing

maximum number of transactions per block). The results in chapter 3 showed that

transactions that require low latency should have small batch-timeout and small block

size while transactions that can tolerate delay should have higher batch-timeout and

bigger block size. Accordingly, we set minimal batch-timeout to channel 1 as it requires

very low latency while channels 2 and 3 have higher batch-timeout and block sizes as

they can tolerate the delay.

 To implement multiple channels, initially, the three channels are given the same

configuration, then the channels are updated using a configuration block, the detailed

implementation steps are explained in Appendix A.

1.1.2. Application layer

 For the application layer, we built the chaincode natively on HLF infrastructure

without using hyperledger composer as an intermediary layer as it does not support

multiple channels.

For developing our patient chaincode, Golang programming language is used. It mainly

has one transaction which is createPatient transaction, similar to the createCase

transaction in chapter 3. Also, the patient class has the same attributes that the Case

Asset has such as: personal information, vitals, description, etc. but additionally, it also

has EEG and state attributes.

 After developing the chaincode, first, it has to be installed on the peers, this can be

thought of as being physically hosted on the peer. Then, it is instantiated on the channel

meaning making it logically available on the channel and accessible by its members,

these steps are covered in more details in Appendix A.

39

1.2.Edge Computing

 The main aim of this phase is classifying the transactions and mapping them to

a specific class of service (i.e. channel) based on their emergency. This provides QoS

and ensures that transactions with high priority have guaranteed service with minimum

latency, while less important transactions can handle latency.

 Fig. 20 shows how the edge gateway sends the data to the Blockchain. In this

work we integrated the EEG classification done in [32] with our multi-channel

Blockchain (See chapter 2, section 2.3.1). Based on the classification done, if the data

is classified as AC, then it has high priority and it will be sent to channel 1 which

provides low latency. If the data is classified as NAC, then it will be sent to channel 2,

otherwise it will be sent to channel 3.

Figure 20: Deciding the transmission channel at the edge gateway

40

2. Experiments

 In this chapter, three experiments are considered; the first two experiment are

applied on the three channels and the third experiment is applied on the second and

third channels only. Table 7 shows the configurations of each channel, channel 1 should

be used for urgent transactions; thus, the batch-timeout is set to 2 seconds and the block

size (by setting the maximum number of transactions) is set to 10 transactions. For

channel 2, the batch-timeout is set to 200 seconds as it can tolerate some latency and

the block size is set to 10, which ensures that the block will be sent to the next step in

case the batch reached 10 transactions even if the batch-timeout is not reached yet.

Finally, channel 3 is responsible for the transactions that can handle high delay; thus,

the batch-timeout is set to 200 seconds and the block size is set to 25 transactions. It is

worth mentioning that in our study we considered only the batch-timeout and the

maximum number of transactions per block while the absolute maximum bytes were

fixed to the default value in all the channels.

Table 7: Channels Configuration

Parameter Channel 1 Channel 2 Channel 3

Batch-timeout 2 Seconds 200 Seconds 200 Seconds

Maximum Transactions count 10 Tx 10 Tx 25 Tx

Absolute maximum bytes 99 MB 99 MB 99 MB

 In the first two experiments 30 consecutive transactions are sent to the

blockchain and the latency is calculated per transaction from the time it was submitted

until the block is committed to the ledger. In the first experiment the time gap between

each two transactions is set to 20 seconds, while in the second experiment the time gap

starts with three seconds and keeps incrementing by 3 seconds until it reaches 84

seconds between the last two transactions. (3s, 6s, 9s, …84s). In the third experiment,

41

we study how the latency in channels 2 and 3 is affected when the frequency of sending

transactions varies. This is done by setting four different time gaps (5s, 10s, 45s and

50s), then measuring the average latency on both channels. In this experiment, the

latency was measured relative to the time gaps, where the average latency for 30-time

gaps was considered (i.e. 31 transactions).

 As shown in table 8, in this phase, Fabric v1.4.4 was used on Ubuntu 16.04 LTS

platform with processor Intel Core i7-4600U.

Table 8: System Specifications – Phase 2

Specification Details

Operating System Ubuntu 16.04 LTS

Processor Intel Core i7-4600U CPU @ 2.10 GHz x 4

Fabric Version 1.4.4

Application Layer Native Hyperledger Fabric

3. Results and Discussion

 This section discusses the results of the three sets of experiments, the first

experiment shows how the transaction latency is affected on each channel when the

time gap between consecutive transactions is fixed. In the second set we study how the

latency is affected on each of the three channels as the time gap between consecutive

transactions varies. Finally, the third experiment shows how the latency is affected as

the time gap between consecutive transactions increases which implies a decrease in

the frequency of sending the transactions.

3.1.Fixed Time Gap

 In this experiment a total of 30 transactions is sent to each channel in which a

transaction is sent every 20 seconds. Fig. 21 illustrates that channel 1 has very low

latency compared to channel 2 and 3, also, the latency is almost stable in this channel

42

and the variance is very small as shown in table 9. This stability resulted from the small

batch-timeout that guarantees that the orderer will send the block to the validation step

withing a very short time period (i.e. 2 seconds). In channel 2 the latency keeps

fluctuating; it starts with the maximum value and it keeps decreasing until it reaches its

minimum value at the 10th transaction, this trend keeps repeating every 10 transactions.

As the figure depicts, channel 2 never reaches the batch-timeout; meaning that the block

is sent to the next step as a result of reaching the maximum number of transactions.

Similar to channel 2, channel 3 has the same trend as it starts declining from transaction

1 until it reaches the 10th transaction then it peaks at 200 seconds again at the 11th

transaction. Although channel 2 and channel 3 have the same trend, in channel 3 the

block is sent to its next step because the batch-timeout is reached, while in channel 2,

the block is sent to the next step because it reached its maximum block size before the

batch-timeout is reached. This difference results in higher average in channel 3 as

shown in table 9. The table also shows that the variance in channels 2 and 3 is almost

the same however in channel 1 the variance is much smaller which ensures QoS and

guarantees that urgent transactions will be committed within a short time period.

Table 9: Experiments 1 results (Fixed time Gap)

 Channel 1 Channel 2 Channel 3

Average 2.122367 91.95853 108.4802

Variance 0.000359 3542.672 3541.612

Standard Deviation 0.018944 59.52035 59.51144

43

Figure 21: Transactions latency with fixed time gap

3.2.Varying Time Gap

 Similar to the first experiment, 30 transactions are sent to the three channels,

however, in this experiment the time gap between consecutive transactions increases

by 3 seconds; meaning that the frequency of sending the transactions keeps decreasing.

The results in fig. 22 shows that the latency in channel 1 is stable and the variance is

very small as shown in table 10. In channel 2 and channel 3, the latency follows the

same trend except that it has higher value on channel 3 when the frequency of sending

transactions was high but as the gap between sending the transactions increases, the

delay in both channels becomes almost the same. This change in the behavior happened

because in the beginning, channel 2 was depending on the block size to start the next

phase in the execute-order-validate process as it had the chance to reach the maximum

block size before reaching the batch-timeout. On the other hand, channel 3 was

depending on the batch-timeout because the maximum number of transactions per block

is high, hence, the batch-timeout was reached first. By the time the frequency of sending

0

50

100

150

200

250

T
x
1

T
x
2

T
x
3

T
x
4

T
x
5

T
x
6

T
x
7

T
x
8

T
x
9

T
x
1

0

T
x
1

1

T
x
1

2

T
x
1

3

T
x
1

4

T
x
1

5

T
x
1

6

T
x
1

7

T
x
1

8

T
x
1

9

T
x
2

0

T
x
2

1

T
x
2

2

T
x
2

3

T
x
2

4

T
x
2

5

T
x
2

6

T
x
2

7

T
x
2

8

T
x
2

9

T
x
3

0

L
a
te

n
c
y
 (

S
e
c
o
n
d
s
)

Channel1 Channel2 Channel3

44

transactions decreased, both channels started depending on the batch-timeout because

the maximum block size in both channels was never reached within the given batch-

timeout (i.e. 200 seconds) which resulted in the similar behavior.

Table 10: Experiments 2 Results (Varying time Gap)

 Channel 1 Channel 2 Channel 3

Average 2.119633 103.9158 124.3701

Variance 0.000246 4023.488 4066.6

Standard Deviation 0.01569 63.43097 63.7699

Figure 22: Transactions latency with varying time gap

3.3.Varying the Transactions Frequency

 In this experiment, we study how the latency is affected as the number of

transactions sent per time slot changes, this is done by changing the time gap between

each two consecutive transactions. Four different values are considered in this

0

50

100

150

200

250

T
x
1

T
x
2

T
x
3

T
x
4

T
x
5

T
x
6

T
x
7

T
x
8

T
x
9

T
x
1

0

T
x
1

1

T
x
1

2

T
x
1

3

T
x
1

4

T
x
1

5

T
x
1

6

T
x
1

7

T
x
1

8

T
x
1

9

T
x
2

0

T
x
2

1

T
x
2

2

T
x
2

3

T
x
2

4

T
x
2

5

T
x
2

6

T
x
2

7

T
x
2

8

T
x
2

9

T
x
3

0

L
a
te

n
c
y
 (

S
e
c
o
n
d
s
)

Channel 1 Channel 2 Channel 3

45

experiment: 5 seconds, 10 seconds, 45 seconds and finally 50 seconds. As shown in fig.

23, the latency generally increases as the time gap increases. By considering the two

channels, when the time gap is small (i.e. 5s and 10s), there is a considerable delay

difference. However, when the frequency of sending transaction decreases as in the

case of 45 s and 50s, there is almost no difference. In the case of short time gap, the

block is batched based on the block size, thus, in channel 2, the orderer waits until it

receives only 10 transactions while in channel 3 it should wait until it receive 25

transactions as defined in the channels’ configuration. Although, it was expected that

channel 3 will have its transactions batched when they reach 25 transactions, we noticed

that it was affected by another factor which is the absolute maximum bytes resulting in

three blocks (fig.24), where the first and second blocks have 15 transactions when the

time gap was 5 seconds. What is more interesting is channel’s 3 behavior when the time

gap was 10 seconds, the first block was batched after 15 transactions similar to the first

case, but the second block was batched after 5 transactions only, this happened because

the first block did not reach either the maximum number of transactions nor the batch-

timeout and it was batched because it reached the absolute maximum bytes. As a result,

the second block did not reset its batch-timeout, and it batched the transactions when

the batch-timeout of the first block was reached resulting in a block with a smaller

number of transactions. Fig 24 also shows that as the frequency of sending the

transactions decreases (i.e. longer time gap), the number of blocks created increases

because the orderers start depending on the batch-timeout.

46

Figure 23: Effect of varying the transactions frequency

Figure 24: Number of transactions per block

 The results of the conducted experiments prove that using multi-channel

blockchain framework can provide QoS and give higher priority to some transactions

over others. In our system, the gateway sends transactions with high priority, AC

seizures in our case, to channel 1 which guarantees that the transaction will be

0

20

40

60

80

100

120

140

5 10 45 50

L
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Time Gap (seconds)

Channel 2 Channel 3

0

2

4

6

8

10

12

14

16

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

B
lo

c
k

Channel2-5s Channel2-10s Channel2-45s Channel2-50s

Channel3-5s Channel3-10s Channel3-45s Channel3-50s

47

committed to the ledger with minimum delay. In case the transaction is less urgent like

NAC seizures it will be sent to channel 2 that has higher latency but the block size is

not that high, hence, if the number of transactions sent exceeds 10, each 10 transactions

will be processed to the validation phase once they reach the orderer. In the third

channel, both the batch-timeout and the block size are high resulting in high latency,

this could be suitable for SF patients.

48

CHAPTER 5: CONCLUSION AND FUTURE WORK

1. Conclusion

 In this work we started by investigating the performance of HLF, where we

conducted several scenarios to study the average end-to-end latency and throughput.

The parameters that were considered in this phase are the batch-timeout, block size and

the number of endorsing peers, while varying the number of parallel transactions. The

results reveal that the latency increases as the number of transactions and batch-timeout

increase. Also, we show that the number of generated blocks and number of transactions

per block have an impact on the obtained throughput. Indeed, the throughput increases

as the block size increases, because more transactions in one block means that more

transactions will be validated at the same time. It is also observed that increasing the

batch-timeout leads to an increase in the latency because each block has to wait for the

timeout even if it has received all the transactions.

 Based on these findings, we developed a multi-channel Blockchain framework

and integrated it with edge based smart-health classification scheme that classifies the

EEG signals into AC, NAC and SF patients then, maps the transactions to one of the

channels based on their emergency level, thus ensuring QoS. Channel 1 has small batch-

timeout and small block size guaranteeing that the transaction will be committed in a

very short time regardless of the frequency of sending transactions. In the second

channel, the batch-timeout is set to a high value while the block size is small, thus, if

the number of transactions is a multiple of the maximum number of transactions per

block, the transactions will be batched without waiting for the batch-timeout. The last

channel has high batch-timeout and large block size, which makes the latency higher in

this case.

 The developed multi-channel framework proved to provide QoS and give higher

49

priority to some transactions over others. The system gives higher priority to AC seizure

as the patients in this case are in high risk which requires a quick action from the

healthcare providers (i.e. Medical staff). For NAC patients, the transactions have less

priority and can handle more latency, but they need to be sent periodically to the

healthcare providers to monitor the patients. Finally, the SF patients has the lowest

priority as they are in stable state.

2. Future Work

 For the future work, more parameters will be studied, such as the effect of the

number of orderers, and the number of validators, particularly on the security aspect of

the transaction management process. Furthermore, the studies here can be extended to

analyze the scalability issues by studying large size network and with increasing the

number of organizations and parallel transactions. In such large-scale environments,

the configurations for the individual channels can be estimated dynamically to optimize

transaction QoS through addressing the trade-off between transaction latency and

security. Security can be guaranteed through more rigorous transaction validation,

which in turn affect the latency end-to-end. Therefore, addressing this trade-off through

efficient algorithm and trying this on the experimental testbed, can be a topic of future

work.

50

REFERENCES

[1] B. A. Tama, B. J. Kweka, Y. Park, and K.-H. Rhee, “A critical review of

blockchain and its current applications,” in 2017 International Conference on

Electrical Engineering and Computer Science (ICECOS), Aug. 2017, pp. 109–

113, doi: 10.1109/ICECOS.2017.8167115.

[2] A. Goranović, M. Meisel, L. Fotiadis, S. Wilker, A. Treytl, and T. Sauter,

“Blockchain applications in microgrids an overview of current projects and

concepts,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial

Electronics Society, Oct. 2017, pp. 6153–6158, doi:

10.1109/IECON.2017.8217069.

[3] F. Dai, Y. Shi, N. Meng, L. Wei, and Z. Ye, “From Bitcoin to cybersecurity: A

comparative study of blockchain application and security issues,” in 2017 4th

International Conference on Systems and Informatics (ICSAI), Nov. 2017, pp.

975–979, doi: 10.1109/ICSAI.2017.8248427.

[4] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System” [Online].

Available: https://bitcoin.org/bitcoin.pdf. (accessed Nov. 05, 2019)

[5] V. Singla, I. K. Malav, J. Kaur, and S. Kalra, “Develop Leave Application using

Blockchain Smart Contract,” in 2019 11th International Conference on

Communication Systems Networks (COMSNETS), Jan. 2019, pp. 547–549, doi:

10.1109/COMSNETS.2019.8711422.

[6] S. D. Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and V. Sassone,

“PBFT vs Proof-of-Authority: Applying the CAP Theorem to Permissioned

Blockchain,” p. 11.

[7] X. Xu., I. Weber, M. Staples, L. Zhu, J. Bosch, C. Pautasso and P. Rimba “A

Taxonomy of Blockchain-Based Systems for Architecture Design,” in 2017 IEEE

51

International Conference on Software Architecture (ICSA), Apr. 2017, pp. 243–

252, doi: 10.1109/ICSA.2017.33.

[8] X. Zhang, R. Qin, Y. Yuan, and F.-Y. Wang, “An Analysis of Blockchain-based

Bitcoin Mining Difficulty: Techniques and Principles,” in 2018 Chinese

Automation Congress (CAC), Nov. 2018, pp. 1184–1189, doi:

10.1109/CAC.2018.8623140.

[9] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bitcoin and

Cryptocurrency Technologies: A Comprehensive Introduction. Princeton

University Press, 2016.

[10] S. King and S. Nadal, “PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-

Stake”, self-published paper, 2012.

[11] “Peercoin University.” https://university.peercoin.net/ (accessed Nov. 12, 2019).

[12] M. E. Peck, “Blockchain world - Do you need a blockchain? This chart will tell

you if the technology can solve your problem,” IEEE Spectrum, vol. 54, no. 10,

pp. 38–60, Oct. 2017, doi: 10.1109/MSPEC.2017.8048838.

[13] “Home | Ethereum,” ethereum.org. https://ethereum.org (accessed Nov. 13, 2019).

[14] “Corda | Open Source Blockchain Platform for Business,” Corda.

https://www.corda.net/ (accessed Mar. 13, 2020).

[15] “MultiChain | Open source blockchain platform.” https://www.multichain.com/

(accessed Mar. 13, 2020).

[16] “Hyperledger Fabric,” Hyperledger. https://www.hyperledger.org/projects/fabric

(accessed Nov. 09, 2019).

[17] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong, “Performance

Analysis of Private Blockchain Platforms in Varying Workloads,” in 2017 26th

International Conference on Computer Communication and Networks (ICCCN),

52

Jul. 2017, pp. 1–6, doi: 10.1109/ICCCN.2017.8038517.

[18] “mining - ETHWIKI.” https://eth.wiki/mining/ (accessed Mar. 13, 2020).

[19] “ethereum/wiki,” GitHub. https://github.com/ethereum/wiki (accessed Mar. 13,

2020).

[20] S. Rouhani and R. Deters, “Performance analysis of ethereum transactions in

private blockchain,” in 2017 8th IEEE International Conference on Software

Engineering and Service Science (ICSESS), Nov. 2017, pp. 70–74, doi:

10.1109/ICSESS.2017.8342866.

[21] “Wood - ETHEREUM A SECURE DECENTRALISED GENERALISED

TRANS.pdf.” Accessed: Apr. 05, 2020. [Online]. Available:

https://ethereum.github.io/yellowpaper/paper.pdf.

[22] R. G. Brown, “The Corda Platform: An Introduction”, (accessed Apr. 05, 2020).

[23] “MultiChain-White-Paper.pdf.” Accessed: Mar. 13, 2020. [Online]. Available:

https://www.multichain.com/download/MultiChain-White-Paper.pdf.

[24] E. Androulaki et al., “Hyperledger fabric: a distributed operating system for

permissioned blockchains,” presented at the Proceedings of the Thirteenth

EuroSys Conference, Apr. 2018, p. 30, doi: 10.1145/3190508.3190538.

[25] “hyperledger-fabricdocs Documentation,” p. 507.

[26] “Apache ZooKeeper.” https://zookeeper.apache.org/ (accessed Nov. 09, 2019).

[27] C. Martín Fernández, M. Díaz Rodríguez, and B. Rubio Muñoz, “An Edge

Computing Architecture in the Internet of Things,” in 2018 IEEE 21st

International Symposium on Real-Time Distributed Computing (ISORC), May

2018, pp. 99–102, doi: 10.1109/ISORC.2018.00021.

[28] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and

Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, Oct.

53

2016, doi: 10.1109/JIOT.2016.2579198.

[29] A. Nawaz, T. N. Gia, J. P. Queralta, and T. Westerlund, “Edge AI and Blockchain

for Privacy-Critical and Data-Sensitive Applications,” in 2019 Twelfth

International Conference on Mobile Computing and Ubiquitous Network (ICMU),

Nov. 2019, pp. 1–2, doi: 10.23919/ICMU48249.2019.9006635.

[30] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated Blockchain and Edge

Computing Systems: A Survey, Some Research Issues and Challenges,” IEEE

Communications Surveys Tutorials, vol. 21, no. 2, pp. 1508–1532, Secondquarter

2019, doi: 10.1109/COMST.2019.2894727.

[31] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer, vol. 50,

no. 1, pp. 30–39, Jan. 2017, doi: 10.1109/MC.2017.9.

[32] A. Awad Abdellatif, A. Emam, C.-F. Chiasserini, A. Mohamed, A. Jaoua, and R.

Ward, “Edge-based compression and classification for smart healthcare systems:

Concept, implementation and evaluation,” Expert Systems with Applications, vol.

117, pp. 1–14, Mar. 2019, doi: 10.1016/j.eswa.2018.09.019.

[33] H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr, “A Wavelet-Chaos Methodology

for Analysis of EEGs and EEG Subbands to Detect Seizure and Epilepsy,” IEEE

Transactions on Biomedical Engineering, vol. 54, no. 2, pp. 205–211, Feb. 2007,

doi: 10.1109/TBME.2006.886855.

[34] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger,

“Indications of nonlinear deterministic and finite-dimensional structures in time

series of brain electrical activity: Dependence on recording region and brain

state,” Phys. Rev. E, vol. 64, no. 6, p. 061907, Nov. 2001, doi:

10.1103/PhysRevE.64.061907.

[35] H. Kupwade Patil and R. Seshadri, “Big Data Security and Privacy Issues in

54

Healthcare,” in 2014 IEEE International Congress on Big Data, Jun. 2014, pp.

762–765, doi: 10.1109/BigData.Congress.2014.112.

[36] M. H. Kassab, J. DeFranco, T. Malas, P. Laplante, G. Destefanis, and V. V.

Graciano Neto, “Exploring Research in Blockchain for Healthcare and a Roadmap

for the Future,” IEEE Transactions on Emerging Topics in Computing, pp. 1–1,

2019, doi: 10.1109/TETC.2019.2936881.

[37] A. Zhang and X. Lin, “Towards Secure and Privacy-Preserving Data Sharing in

e-Health Systems via Consortium Blockchain,” J Med Syst, vol. 42, no. 8, p. 140,

Jun. 2018, doi: 10.1007/s10916-018-0995-5.

[38] Y. Chen, S. Ding, Z. Xu, H. Zheng, and S. Yang, “Blockchain-Based Medical

Records Secure Storage and Medical Service Framework,” J Med Syst, vol. 43,

no. 1, p. 5, Jan. 2019, doi: 10.1007/s10916-018-1121-4.

[39] X. Liang, J. Zhao, S. Shetty, J. Liu, and D. Li, “Integrating blockchain for data

sharing and collaboration in mobile healthcare applications,” in 2017 IEEE 28th

Annual International Symposium on Personal, Indoor, and Mobile Radio

Communications (PIMRC), Oct. 2017, pp. 1–5, doi:

10.1109/PIMRC.2017.8292361.

[40] “Introduction | Hyperledger Composer.”

https://hyperledger.github.io/composer/latest/introduction/introduction (accessed

Nov. 03, 2019).

55

APPENDIX A: MULTI-CHANNEL BLOCKCHAIN IMPLEMENTATION STEPS

This section shows the implementation steps. Initially, when the channels are created,

they have the same configuration then, the configuration is changed later using a

configuration block that starts at step 8. This update is done to channels 2 and 3 only

while channel 1 does not require any changes as its parameters (Batch-timeout and

Block Size) are already set to the required values.

1. Generating the cryptographic material

The cryptogen tool consumes crypto-config.yaml file to generate the cryptographic

material of the organizations, peers and orderers defined in the file. A file named

Crypto-config is created that contains the certificates and the keys of each of these

components.

Figure 25: Generating the Cryptographic material of the organizations

2. Create Raft genesis block

Based on the defined profile in configtx.yaml, the configtxgen tool generates the

genesis block for the ordering service. In this case Raft ordering service is used.

Figure 26: Creating Raft Genesis Block

3. Creating channels configurations and defining the anchor peers

In this step, the configtxgen tool consumes contfigtx.yaml file to create channels

artifacts based on the defined profile (i.e. TwoOrgsChannel in this case). Then, the

56

anchor peer for each organization on the channel is defined. An anchor peer is the peer

that allows the organization to communicate with other organizations.

3.1. Channel 1

Figure 27: Channel 1 artifacts creation and defining anchor peers

3.2. Channel 2

Figure 28: Channel 2 artifacts creation and defining anchor peers

3.3. Channel 3

Figure 29: Channel 3 artifacts creation and defining anchor peers

57

4. Bring the network up by bringing the docker containers up

In this step we start the network by bringing the docker containers up

Figure 30: Bringing the network up

5. Create the channel block for each channel and joining it

In this step, the configurations generated in step 3 are used to create the channels genesis

block. Then the peers start joining the channels. Finally, the anchor peers are defined

for each organization on the channel.

5.1. Creating channel block and the peers join Channel 1

Figure 31: Creating channel-1 block and peers join the channel

58

5.2. Updating anchor peers’ definition anchor peers in Channel 1

Figure 32: Updating anchor peers’ definition inn channel 1

5.3. Creating channel block and the peers join Channel 2

Figure 33: Creating channel 2 block and peers join the channel

5.4. Updating anchor peers’ definition anchor peers in Channel 2

Figure 34: Updating anchor peers’ definition in channel 2

59

5.5. Creating channel block and the peers join Channel 3

Figure 35: Creating channel 3 block and peers join the channel

5.6. Updating anchor peers’ definition anchor peers in Channel 3

Figure 36: Updating anchor peers’ definition in channel 3

6. Install the chaincode (patientCC) on the peers

In this step the chaincode is installed on the peers, this step is done only once for the

peers that will be using the chaincode

Figure 37: Installing the chaincode on the peers

7. Instantiate the chaincode on each channel

Unlike the installing that is done per peer, the instantiation of the chaincode is done per

channel, each channel that will be using the chaincode should have a copy of it.

60

7.1. Instantiating the patient chaincode on channel 1

Figure 38: Instantiating the chaincode on channel 1

7.2. Instantiating the patient chaincode on channel 2

Figure 39: Instantiating the chaincode on channel 2

7.3. Instantiating the patient chaincode on channel 3

Figure 40: Instantiating the chaincode on channel 3

8. Fetching the current channel configuration of the channels in portobuf format

Figure 41: Fetching the current configuration of channel 3

9. Translate the portobuf format to readable JSON format

Figure 42: Convert the portobuf format to readable JSON format

10. Create a new copy of the json file to apply the modifications

Figure 43: create a new copy of the config file

61

11. Modify the configurations on the new copy of the JSON file

Figure 44: Applying the modifications

12. Convert the old and the modified JSON files to portobuf format

Figure 45: converting teh modified JSON file to portobuf format

13. Compute the difference between the old portobuf file and the new one, then

convert the difference to JSON format

Figure 46: Computing teh difference and converting it to JSON

62

14. Sign the updates by the orderer and send the channel update transaction to the

ledger

Figure 47: Signing the updates and sending the update transaction

