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ABSTRACT 

ALNAIMI, NOORA, R., Masters: June: 2020, Masters of Science in Computing 

Title: Rail Robot for Rail Track Inspection  

Supervisor of Thesis: Uvais Qidwai. 

Railway transportation requires constant inspections and immediate 

maintenance to ensure public safety. Traditional manual inspections are not only time 

consuming, but also expensive. In addition, the accuracy of defect detection is also 

subjected to human expertise and efficiency at the time of inspection. Computing and 

Robotics offer automated IoT based solutions where robots could be deployed on rail-

tracks and hard to reach areas, and controlled from control rooms to provide faster and 

low-cost inspection. In this thesis, a novel automated system based on robotics and 

visual inspection is proposed. The system provides local image processing while 

inspecting and cloud storage of information that consist of images of the defected 

railway tracks only. The proposed system utilizes state of the art Machine Learning 

system and applies it on the images obtained from the tracks in order to classify them 

as normal or suspicious. Such locations are then marked and more careful inspection 

can be performed by a dedicated operator with very few locations to inspect (as opposed 

to the full track).  
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CHAPTER 1: INTRODUCTION 

In  transport  systems,  safety  and  reliability  are  the  main factors  that  are  

always  questioned,  especially  in  railway transportation systems. Early inspection 

systems are crucial to maintain safe rail-tracks that will ensure safe journeys. Statistics  

show  that  60%  of  railway  accidents  are  due  to derailment, and 90% are due to 

railway cracks [1]. Railway track cracks could be inspected by human personnel; 

however, this  is  not  only  time  consuming,  but  also  the  accuracy  is subjective 

since not all cracks are identifiable by naked eyes.  

As Qatar Rail has launched the first train in Qatar in May 2019, it is very 

important to look for maintenance systems that suits Qatar’s climate for railway track 

inspections. This demand requires inspection systems that will continuously inspect the 

status of all tracks over Qatar and issue immediate maintenance alerts to avoid 

accidents. Over the years, machine-driven inspection systems proved to offer a solution 

for faster inspection and maintenance. Such inspection systems are common in their 

ability in finding cracks in rail tracks, as well as the crack’s location, which helps the 

maintenance team to reach and rectify the crack in lesser time. 

However, available solutions vary in terms of being software-based solutions 

that are known as non-contact based solutions that apply computer vision technologies 

on recorded videos; or robotic solutions that are also known as contact-based solutions 

which are automated systems that are deployed on rail tracks and detect cracks using 

external sensors such as ultrasonic or IR sensors. Software-based solutions consume 

time to extract and analyze the images from recorded videos, and robotic-based 

solutions are limited in their ability in only detecting cracks using sensors without 

generating results or images. 
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To address these limitations, a novel automated system is proposed in this work 

that can be implemented on a robotic platform which performs inspection using non-

destructive inspection (NDI) method based on visual inspection with local image 

processing and cloud storage of information that will consist of images of defected 

railway tracks only. Local image processing during the inspection is a novel inspection 

technique that will allow for faster inspection in parallel with cloud storage of 

information, which will only receive images of defected rail tracks. 

1.1. Railway Track Defects 

Railway track defects are divided into two main parts: Internal defects and 

surface defects [2]. These defects may exist in the head, weld or base section of the 

track. Figure 1 shows an example of an internal defect and Figure 2 shows an example 

of an external defects.  
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Figure 1. Example of an internal defect in a rail track [3]. 

 

 

Figure 2. Examples of surface defects [4]. 

 

The most common defects appearing in rail tracks are known as RCF (Rolling 

Contact Fatigue) as shown in Figure 3 which results from the friction in high-speed 

railways. Another common set of defects is the one resulting from the local climate 

condition and infrastructure peculiarities. High temperature and humid climate, as in 

Qatar, causes buckling and heat kinks - also known as sun kinks - in rail tracks. Defects 

like broken railway tracks or sun-kinks are more crucial than a loose ballast or growth 
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of vegetation. Figure 4 shows some examples of sun-kinks and broken railways tracks. 

 

 

Figure 3. An RCF defect [5]. 

 

 

Figure 4. Example of a sun-kink [6]. 

 

1.2. Research significance 

This research will be a pioneering work in the field of rail-tracks inspection due 

to the following reasons: 

1. This research will consist of two main modules: 

a. Local image processing to analyze images while inspecting. 

b. Cloud communication storage for captured images that are 

analyzed as defected for further analysis. 

2. The application of the rail robot with local image processing techniques 

combined with machine learning will replace the practice of 

overwhelming the cloud with all captured images. The cloud will 
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receive only images that are analyzed as defected with their location for 

further analysis; therefore, faster inspection and faster cloud processing. 

3. All vision-based rail-track inspection solutions are based on acquiring 

images from recorded videos. This research is expected to be the first to 

directly send captured defect images to a cloud. 

1.3. Research Questions 

This research intends to answer the following research questions: 

1. What are the best features to correctly classify the defects in the rail-

track in the local image processing? 

2. How would the cloud store received images? 

1.4. Research Objectives 

1. This research aims to provide a reliable cost-effective rail robot intelligence 

system for rail-tracks inspection based on non-destructive method by 

applying image processing.  

2. This research also aims to apply local image processing techniques to detect 

the state of rail-tracks while inspecting. In addition, machine learning 

techniques will be applied to locally classify rail-track images as normal 

and defected, and send only defected images to the cloud. 

1.5. Solution Overview 

In this work, a novel non-destructive inspection method based on visual 

inspection is proposed. The block diagram of the proposed system is shown in Figure 

5Figure 5.  
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Figure 5. The block diagram of the proposed system. 

 

The system consists of three main parts: 

 A  robot  deployed  on  the  rail-track  that  will  capture images from 

both sides of the track. 

 Local image processing module embedded in the robot. 

 Cloud communication and storage of the defected rail track sections. 

Most of the visual inspection solutions are based on image processing that is 

done after capturing the whole images of the rail-track, or after recording a video that 

is sent to the cloud or stored on local devices. That is, image processing is done at a 

control station away from the rail track. In this work however, image processing is done 

on the rail track while performing the inspection, and only defected rail track images 

are stored and sent to the cloud. This makes inspection faster and does not congest the 

cloud with unnecessary data. Figure 6 shows the flowchart of the system. 
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Figure 6. The flowchart of the propsed system. 

 

Once the robot is deployed on the rail track, it starts capturing images of both 

sides of the track from the installed camera. The captured images are then processed by 

the image processing module that classifies the image as normal or abnormal locally. 

The binary classification of the captured images is done with a 2DCNN (Convolutional 

Neural Network). Once a defect is detected, the location of the defect is mapped and 

saved with the image to the cloud.  

The following chapter gives a background on the machine learning algorithms 

used in this study. Chapter 3 describes the methodology and experimental procedures 

for binary classification and cloud storage. Chapter 4 presents the results and 

discussion, and finally Chapter 5 concludes this research, and provides some future 

directions for improvement and continuation of this study. 
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CHAPTER 2: BACKGROUND AND RELATED WORK 

Machine derived inspection systems used over the years proved to offer a 

solution for faster inspection and maintenance. Machine derived inspection systems are 

common in their ability in finding cracks in rail tracks as well as the crack’s location, 

which helps the maintenance team to reach and rectify the crack in less time. However, 

solutions vary in term of being contact-based solutions which are also known as robotic-

based solutions, or non-contact based solution which are also known as software-based 

solutions. Contact-based solutions are automated systems that are deployed on rail 

tracks, and non-contact based solution are systems that apply machine vision 

technologies in rail track inspection. In this section, background information and 

available solutions in the literature are covered. 

2.1 Railway Track Inspection Methods 

Railway track inspection methods are either contact-based which are known as 

NDT (Non Destructive Testing), or non-contact based methods which is based on 

analyzing images or videos of the rail-track. Some examples of each type is: 

2.1.1 Contact-based Methods 

 Ultrasonic Inspection: this method can detect deep internal defects, but 

fails to detect surface and near surface defects [2],[7],[8],[9]. 

 MFL (Magnetic Flux Leakage): this technique can detect near surface 

defects such as RFC, but fails to detect deep internal defects [2]. 

 Eddy Current Inspection: this technique is based on magnetic fields; 

therefore, similar to MFL, this technique can detect surface defects, but 

fails to detect deep internal defects. To  overcome  this  shortage, hybrid 

solutions combining both ultrasonic and eddy current inspections are 

available [9].  
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 Acoustic Emission Inspection: this method is common with steel rail-

tracks, where it is used to detect crack’s growth and accumulation as 

well as source of crack localization [2]. 

2.1.2 Non-contact-based Methods 

 Visual Inspection: this technique is the most efficient technique used 

for surface defects detection. It is based on high-speed cameras that 

capture images of the railway tracks to be processed later based on 

pattern recognition of the captured images; therefore, it is economical 

and time saving, but requires higher computational time [2].   

2.2 Contact-based Methods in Literature 

An autonomous robot-based cost-effective railway crack detector is proposed 

in [1]. This system detects cracks and analyzes faults using an ultrasonic sensor, and 

alerts the control room through SMS with the crack’s location. The architecture of the 

system, shown in Figure 7, consists of the Arduino micro-controller that connects the 

sensing parts (Ultrasonic sensors, GPS sensor and Optical encoder), with the actuating 

parts (Motors, GSM modem and LCD display, and the motor circuits that drive the robot 

with DC motors). 

The ultrasonic sensors keep on reading distances to find cracks by sending 

sound waves and comparing the echoes received to a predefined threshold. If an echo is 

greater than the threshold, then a crack exists, and the GSM modem directly sends an 

alert message to the control room with the crack’s location that is read from the GPS 

sensor. The LCD display shows real-time status of the system, and the Optical encoder 

is used to measure the robots’ speed in RPM (Revolutions per Minutes), as a second 

check on the robot’s location. 
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Figure 7. Block diagram of SCANOBOT [1]. 

 

Another ultrasonic based detection system is proposed in [8]. The authors 

proposed a hybrid feature extraction and selection method based on laser ultrasonic 

detected signals. The system combines WPT (Wavelet Packet Transform) which 

preprocesses data by decomposing different frequencies of the input signal into 

different frequency bands that are the feature sets, KPCA (Kernel Principal Component 

Analysis) which is used to reduce redundancy among the feature sets, and SVM 

(Support Vector Machine) which is used to classify the defects in the input signals. This 

method has achieved an accuracy of 98.73%. 

Similar to [1], in [10] a robot-based system is proposed to detect cracks in rail 

tracks using IR sensor through voltage variations, and sends the detected location by 

GPS to the control station through a GSM module, which is then displayed on a map 

through .NET software. The architecture of the proposed system is shown in Figure 8 

and Figure 9. 
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Figure 8. Block diagram of system [10]. 

 

 
Figure 9. Block diagram of control room [10]. 

 

 The PIC microcontroller detects cracks through reading the IR transmitter and 

receiver values, and sends the crack’s location to the control station over ZigBee 

protocol. The microcontroller controls the robot’s movement though the driver circuits, 

and the LCD Display Unit displays the IR sensors readings. The ZigBee protocol is also 

used at the control station to read the sent alerts from the robot. Once the robot is 

deployed on the rail, the IR sensors keeps reading to detect voltage variations in 

comparison with a predefined voltage threshold. If a crack is detected, the location 

retrieved by the GPS sensor is sent through GSM to the control room, in which the 

location will be mapped using .NET software. 

The proposed systems in [1] and [10] are similar in the architectural model and 

functionality, varying only in the cracks detection sensor. Also, [10] provides mapped 

locations of all cracks, which would help the maintenance staff to directly reach the 
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cracks and fix them. However, the location is provided as coordinates 

Similar to [10], a robot based system that detects rail track cracks using an IR 

sensor is proposed in [11]. However, the authors have used a 5W solar panel to power up 

the system, which is an advantage over traditional systems that are powered by lithium 

batteries. 

Finally, in [12], a robot based solution that can detect both internal and external 

defects, and communicate with the base station wirelessly using ZigBee protocol is 

proposed. The robot can detect external cracks with IR (Infrared) and Ultrasonic 

sensors, and can detect internal cracks with density sensor and locate the defect with 

GPS, however, no evolution metric was provided. 

2.3 Non-contact-based Methods in Literature 

Non-contact-based methods are based on analyzing images or video records of 

the rail tracks to detects faults or defects. This technique is based on visual inspection 

of the state of the rail track. Visual inspection based systems - which are also known as 

computer vision - are one of the most effective and important inspection tools for 

flexible automated rail monitoring [13]. Computer vision based techniques makes rail-

track inspection possible from grayscale images only without additional sensors[14]. 

Computer vision based applications consist of two main steps: Image 

acquisition that consists of capturing images using a camera, and Image Processing 

which consists of improving image quality by reducing the noise generated due to 

illumination, climate factor, or shaking camera [15], [16]. Visual inspection techniques 

are the most efficient techniques used for surface defects detection. It is based on high-

speed cameras that capture images of the railway tracks to be processed later based on 

pattern recognition of the captured images; therefore, it is economical and time saving, 

but requires higher computational time [2].    
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Computer vision based solution would not interfere with the train schedules; 

therefore, would not cause any interruption or delay. Once the image is captured, faults 

in track are localized by using detection methods such as Canny Edge detection method 

which locates discontinuities in the image. In feature extraction, single features do not 

provide enough information; therefore, multiple feature based systems are richer in 

useful information. 

In [17], the authors proposed a computer vision based method by capturing 

images of the two neighboring rail tracks to determine the rail in the image and the 

distance between the rails. Images are captured by a camera placed on the train that 

captures the current main rail track of the moving train, and the neighboring rail track. 

This method detects pitch fault, contraction and expansion faults by comparing the 

image’s pixel to a predefined threshold value by using canny edge detection, feature 

extraction methods and the closing morphological operation. The camera used in this 

system can capture 100 frames per second; however, the authors have used only 10 

images per second to achieve fast processing. 

In [9], the authors suggest an automatic inspection method of images captured 

by a digital scan line cameras  installed  on both sides of the rail track. Binary Image 

Based Rail (BIBRE) technique is used to extract the rail section of the rail tracks. The 

extracted rail sections are then enhanced with improvement techniques, and then faults 

in the rail are recognized using Gabor channels. The images are preprocessed using the 

Otsu algorithm, and the rail sections are detected using Canny edge detection and 

Hough change calculations. 

In [16], an intelligent image processing algorithm that detects RCF (Rolling 

Contact Fatigue) is proposed. Region defects are detected in the images using adaptive 

histogram equalization, then segmented after detection by an adaptive threshold 
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method. The authors created a 3D crack growth model using the COMSOL simulation 

software, designed by identified geometrical properties. The algorithm consists of 

multiple stages:  

 The preprocessing stage that consists of removing noise from the image 

using the median filtering technique.  

 The defect-processing stage in which segmentation thresholding is done 

to identify defects in the preprocessed images using the automatic 

iterative selection method.  

 The defect post-processing stage where the images resulting from the 

previous step are further processed to remove any remaining noise and 

false defects by morphological operations.  

The authors have also designed a crack growth detecting algorithm based on 

LEFM (linear elastic fracture mechanics). Although this system have a comparatively 

high accuracy; however, it is a complex and expensive system.  

In [18], a vision based technique called TrcakNet is proposed that mitigates the 

false alarm rate such as vegetation, or birds droppings from captured images. This 

system is based on two deep learning networks that perform semantic segmentation of 

the captured the track, and binary classification to classify false and true alarms. Image 

segmentation is done by two paths which captures context and enables precise 

localization, and the neural network is trained using the Adam algorithm and the Binary 

cross entropy as the loss function. Faulty regions are then cropped from the segmented 

images which are then fed into the second neural network for classification that trains 

on 75% of the data. The proposed system was tested with ResNet and DenseNet neural 

networks and has achieved an accuracy rate of 88.8% and 90.3% respectively. 
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In [19], another computer vision based system is introduced that determines 

defected rail surfaces and identifies missing or defected rail components. The system is 

tested on images captured from two cameras fixed on a test rail vehicle. Images are 

processed by applying Canny edge extraction algorithm which is used for feature 

extraction, and a the rail track is extracted from the image by applying a search to obtain 

a 0 and 90 degree straight lines. This results in finding the rail track and its components 

in the image that are then inspected. Images are then converted to greyscale format and 

processed with padding, Average filtering and binariazation to check if a certain region 

is defected. This system was implemented on Visual Studio software using the Emgu 

CV library; however, evaluation metrics were not mentioned. 

In [20], a computer vision based vehicle is proposed that runs on the rail tracks 

and captures images from a CCD (Charged-coupled Device) camera that are processed 

for crack image segmentation, crack identification, and parameter information 

extraction. Images are preprocessed by the Weighted Median filter algorithm for noise 

filtering, the Histogram Equalization algorithm for and image enhancement, and 

threshold segmentation for crack region extraction. Then Pixel Integral Projection is 

used to find the integral projection of the vertical and horizontal direction of the rack, 

and to obtain the parameter information of the crack by drawing the projection curve. 

The system was implemented on MATLAB; however, no evaluation metric was 

provided. 

In [21] and [22], the authors have designed a rail defect detecting system with 

real time image processing in which the rail as well as the rail defects are detected. Rails 

are detected using Hough transform, Canny edge detection and morphological methods 

for feature extractions. Rail defects are detected using Robert’s edge detection, 

Laplacian low pass filter and morphological methods for feature extractions. In this 
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method, the system targets faults in head-checks, scours, fractures and undulation 

faults. This method achieved an average accuracy rate of 85.3%. 

An automated video analysis based system is proposed in [23] that uses a vision-

based system for rail track inspection to replace manual visual checks. This system 

detects rail track clips, which are metals that hold rail tracks to the ground, which if 

broken or missing may lead to accidents. The proposed system inspects rail tracks using 

images from a recorded video using an algorithm that can detect if the clip is old, 

broken, or missing.  

The algorithm analyzes clips condition by applying color analysis such that a 

new clip is shaded by blue and an old clip is shaded by gray, which helps the 

maintenance staff later to inspect only the old (gray) clips instead of inspecting all 

clips at all locations. The system has two main parts: Image pre-processing and Clips 

locating.  

The Image pre-processing consists of applying Gaussian Smoothing filter to 

reduce noise pixels in the image, Edge Detection algorithm to separate non-related 

regions from the targeted region - which is the track, clip and wheel, and Short Line 

Removal algorithm to remove all parts of the image that is not part of the target. On 

average, the system is 95.3% accurate in recognizing clips, and can detect gray clips 

with 86.5% accuracy, blue clips with 95.3% accuracy, missing clips from a track with 

84.7 % accuracy. Figure 10 illustrates the system’s output.  
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Figure 10. The system’s ability to detect blue (new) clips in (a), grey (old) clips in (b) 

and missing clips in (c) [23]. 

 

A deep multitask learning based rail track inspection system is proposed in [24]. 

This system is designed to detect cracks in rail tracks as well as rail fasteners – clips – 

using a single-view line-scan cameras. Unlike the system in [23] that detects rail track 

fasteners only, this system provides the possibility to also detect different material of 

the rail tracks such as wood and concrete, and classify them into material categories.  

Rail track inspection is done through a customized software tool that provides the 

possibility of viewing and annotating data into separate boxes to avoid intra class 

variations in the neural network. The system allows the user to segment selected data as 

separate frames, control detection thresholds as well as select from various defined 

defect factors, which allows the user to inspect the rail tracks or track clips based on 

selected data segment. The system is shown in Figure 11.  
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Figure 11. System’s GUI tool [24].Figure 11 

 

A fully deep convolutional neural network is trained on 10 classes as well as 

the rail fastener classifier feature and a 32-bit SVM output channel. The system’s 

architecture shown in Figure 12 is divided as follows: 

 Rail track material detection is done in 4 layers: conv1, conv2, conv3 and 

conv4_t. In this part, 10 score maps are generated that refer to the 10 material 

classes as shown in Figure 13 wood, and results accuracy are 95.02%. 

 Rail track fastener detection (object detection) is done in 5 layers: conv1, conv2, 

conv3, conv4_f and conv5_f . In this layer, a fastener is searched for in a 

predefined Region of Interest (ROI) and then classified as missing or found. If 

found the image is further analyzed into defected, or good, which are assigned 

tags as illustrated in Figure 14. Layer conv4_f is trained to learn a model about 

the different fasteners, and layer conv5_f inherits this knowledge to distinguish 

between the different fastener parts. 
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Figure 12. System’s network architecture [24]. 

 

 
Figure 13. Material categories. (a) Ballast. (b) Wood. (c) Rough concrete. (d)Medium 

concrete. (e) Smooth concrete. (f) Crumbling concrete. (g) Chipped concrete. (h) 

Lubricator. (i) Rail. (j) Fastener [24]. 
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Figure 14. Object’s detection and classification [24]. 

 

The success and sustainability of transport systems demand continuous 

inspection and immediate maintenance. A basic inspection system requires the ability to 

detect cracks, locate them on the rail tracks and call for maintenance. The discussed 

systems offer solutions that vary in the method of cracks inceptions. Some systems use 

ultrasonic sensors or IR sensors that detects any abnormal condition change on the 

tracks, and other systems apply machine vision based algorithms that can detect 

abnormal conditions on data that resembles the rail tracks through cameras as well as 

deep learning.  

With both systems, a continuous connection with a control room is required to 

locate the position of cracks on rails, as well as to issue an immediate maintenance call. 

Moreover, software-based solutions consume time to extract and analyze the images 

from recorded videos, and robotic-based solutions are limited in their ability in only 

detecting cracks using sensors without generating results or images, as well as having 

small low power systems that cannot be deployed on large rail tracks as in [1],[10] and 

[12]. Table 1 summarizes the rail track inspection techniques that were discussed in this 

research. 



  

21 

 

Table 1. Summary of Rail Track Detection Techniques 

Inspection Method Related literature 

Contact-based methods  Mahfuz et al. [1]: Robotic-based system 

that uses ultrasonic sensor and GSM 

modem. 

 Shekhar et al. [10]: Robotic-based system 

that uses IR sensor, GPS, GSM and Zigbee 

protocol. 

 Kasthuri et al. [11]: Robotic-based system 

that uses IR sensor and a 5W solar panel to 

power up the system. 

 Chittal et al. [12]: Robotic-based system 

that detects both internal and external 

defects using IR, Ultrasonic, and density 

sensor and communicates with the base 

station wirelessly through ZigBee and 

GPS.  

 Jiang et al. [8]: Robotic-based system that 

uses Ultrasonic sensor, WPT to decompose 

frequencies into feature sets, KPCA to 

reduce redundancy, and SVM to classify 

defects. This method has achieved an 

accuracy of 98.73%. 

Non-contact-based methods  Karakose et al. [17]: Uses Canny Edge 

detection, feature extraction methods and 

morphological operation to detect pitch 

fault, contraction and expansion faults. 

 Kumar et al. [9]: Uses BIBRE technique 

for rail section extraction and Otsu 

algorithm for image preprocessing.  Rail 

faults are detected using Gabor channels, 

Canny edge detection and Hough change 

calculations. 

 Sambo et al. [16]: Uses adaptive histogram 

equalization, adaptive threshold, Median 

filtering, segmentation thresholding, and 

morphological operations are applied to 

detect RCF defects. A crack growth 

detecting algorithm based on LEFM is 

designed using the COMSOL simulation 

software. The system has a high accuracy; 

however, it is complex and expensive. 

 James et al. [18]: Uses two deep learning 

networks to perform semantic 

segmentation that are trained using the 

Adam algorithm and the Binary cross 
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Inspection Method Related literature 

entropy as the loss function, and applies 

binary classification that is trained on 75% 

of the segmented images. The system was 

tested with ResNet and DenseNet neural 

networks and has achieved an accuracy 

rate of 88.8% and 90.3% respectively. 

 Tastimur et al. [19]: Determines defected 

rail surfaces and identifies missing or 

defected rail components using Average 

filtering, binarization, Canny edge 

extraction algorithm, and applies a search 

to obtain a 0 and 90 degree straight lines to 

find rail tracks in the image. Implemented 

using the Emgu CV library in Visual 

Studio. 

 Fu et al. [20]: Uses Weighted Median 

filter, Histogram Equalization, and 

threshold segmentation for crack region 

extraction. Also uses Pixel Integral 

Projection to obtain the parameter 

information of rail track cracks. 

 Tastimur et al. [21], [22]: Uses Hough 

transform, Canny edge detection, and 

morphological methods to detect faults in 

head-checks, scours, fractures and 

undulation faults. Achieved an average 

accuracy rate of 85.3%. 

 Singh et al. [23]: Video analysis based 

system that detects rail track clips. Applies 

Gaussian Smoothing filter, Edge Detection 

algorithm and Short Line Removal 

algorithm. The system is 95.3% accurate in 

recognizing clips, and can detect old clips 

with 86.5% accuracy, new clips with 

95.3% accuracy, missing clips from a track 

with 84.7 % accuracy. 

 Gibert et al. [24]: Deep multitask learning 

based system that detects cracks, rail 

fasteners and rail track material . Uses a fully 

deep convolutional neural network that is 

trained on 10 classes, on the rail fastener 

classifier feature and a 32-bit SVM output 

channel. The system achieved a 95.02% 

accuracy. 
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CHAPTER 3: METHODOLOGY 

3.1. Computation Procedure for Binary Classification 

 Local image processing is based on classifying captured images to normal or 

abnormal using a 2DCNN (Convolutional Neural Network) [13] [25] during the robots’ 

inspection. Once an image is classified as abnormal, its location is recorded and sent 

along with the image to the cloud to be post-processed later by locating the defect in 

the image.  In this section the details of the local image processing module are 

presented. 

3.1.1. Preprocessing 

The binary classification system was trained and tested on Type-I dataset 

[7][15] which consist of normal and defected rail-tracks grayscale images. Type-I 

dataset has 67 images captured from express rails. Most of the images in the dataset 

consist of different types of challenging defects; however, the availability of normal 

railway track images is very scarce. This small number of available images makes 

training and evaluating the neural network very challenging.  

To solve this problem, the dataset was inflamed by cropping the original images 

of size 1000 x 160 to multiple images of size 160 x 160 as shown in Figure 15. Every 

image results in seven images of size 160 x 160. The seventh and last cropped part of 

the original image is of size 160 x 40. This image is always discarded to keep the size 

of all images consistent while training the neural network.  
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Figure 15. Data inflammation by cropping a single image into multiple images of size 

160 x160. 

 

When training the neural network, defects are detected in the image based on 

the pixel intensity; darker pixels are defects in the normal gray rail track image. As 

shown in Figure 15, the cropped images have a dark portion at both ends of the rail 

track segment that is misleading to the neural network. Therefore, the images are further 

cropped to remove the dark ends resulting in images of size 160 x 120 as shown in 

Figure 16.  
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Figure 16. Croppping images and resizing to 160 x 120. 

 

Finally, the brightness in the images was hiding some defects; therefore, image 

thresholding was necessary to adjust the brightness. After performing many 

experiments, the best threshold value found was 85%. Figure 17 shows the effect of 

image thresholding. Each cropped image is then rotated in 180 degree and mirrored as 

shown in Figure 18. This step resulted in a larger number of images to better train the 

neural network. 
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Figure 17. Image thresholding to adjust brightness. 

 

 

Figure 18. Data inflamation by mirrioning and rotation. 

 

Images are then classified into two classes: normal and abnormal based on 

visual inspection. After this step, each classified folder is ready to be fed to the neural 
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network. Table 2 shows the number of images in each class. Figure 19 and Figure 20 

show some images from each class of Type-I dataset. 

 

Table 2. Number of classes and images in Type-I dataset 

Dataset Class No. of Images 

Type-I Normal 46 

Abnormal 203 

 

 

Figure 19. Type I normal samples. 

 

 

Figure 20. Type I abnormal samples. 

 

 

 

 

 



  

28 

 

3.2. Machine Learning Platform Setup 

The binary classification system is implemented on MATLAB R2019. The 

designed 2DCNN consists of 24 layers as shown in Figure 21. The network has 5 

convolution layers of size 5 x 5 each, in which learnables are increased at every layer. 

A batch normalization layer is introduced after every convolutional layer to standardize 

the inputs, the rectified linear unit (ReLU) was chosen as the nonlinear activation 

function, and the max pooling units of size 5 x 5 and a stride of 2 as the pooling layer.  

 

 

Figure 21. The neural network's architecture. 

 

The input image of size 160 x 120 has a total of 19200 pixels. The first 

convolution layer conv_1_1 has 8 feature maps of size 5 x 5. The number of feature 
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maps is increased in each convolution layer. The second convolution layer conv_2_1 

has 25 feature maps, the third convolution layer conv_1_2 has 50 feature maps, the 

fourth convolution layer conv_2_3 has 75 feature maps, and the fifth convolution layer 

conv_3 has 100 feature maps. Filters in all convolution layers are of size 5x5. Figure 

22 shows the learned features at the first layer which is based on pixel intensity, Figure 

23 shows new recognized patterns, and Figure 24 and Figure 25 shows more detailed 

patterns. The final learned features by the high-level combinations of the features 

learned by the earlier layers is shown in Figure 26. Finally, the fully connected classifier 

layer classifies images into normal or abnormal as shown in Figure 27. Table 3 shows 

the activation details of the convolution and pooling layers of the network. 

 

 

Figure 22. Learend features at the first convolutional layer. 

 

 

Figure 23. Learend features at the second convolutional layer. 
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Figure 24. Learend features at the third convolutional layer. 

 

 

Figure 25. Learend features at the fourth convolutional layer. 
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Figure 26. Learend features at the fifth convolutional layer. 

 

 

Figure 27. Learend features for classfication at the fullty connected layer. 
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Table 3. Convolution and maxpool layers’ details 

Layer Activation Shape Activation Size 

Image Input 160 x 120 x 1 19,200 

conv 1 1 160 x 120 x 8 153,600 

maxpool 1 1 80 x 60 x 8 38,400 

conv 2 1 80 x 60 x 25 120,000 

maxpool 1 2 40 x 30 x 25 30,000 

conv 1 2 40 x 30 x 50 60,000 

maxpool 1 2 20 x 15 x 50 15,000 

conv 2 2 20 x 15 x 75 22,500 

maxpool 2 2 10 x 8 x 75 6,000 

conv 3 10 x 8 x 100 8000 

maxpool 3 10 x 8 x 100 8000 

 

The neural network is trained with 60% of the data chosen randomly of the 

dataset, and validated with the other 40%. The neural network is trained with a learning 

rate of 0.02 in 128 epochs. The training has consumed 7 iterations. The mini batch loss 

has decreased over every iteration, and the mini batch accuracy has reached 100% on 

the fourth iteration. Training has consumed 12 minutes 17 seconds on a single CPU. 

3.2.1. Evaluation Metrics 

In this section, the evaluation metrics used for binary classification is defined. 

3.2.1.1. Sensitivity 

Sensitivity, which is also known as Recall or True Positive Rate, is the measure 

of actual positive cases predicted positive over all cases. This implies that there are 

some actual positive cases predicted incorrectly negative, which is known as False 

Negative. Therefore, Sensitivity measures the proportion of actual True Positives 

recalled by the classifier. Sensitivity is calculated by the formula:  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
  

 

 For rail track binary classification, True Positives are those images which are 



  

33 

 

classified correctly as abnormal, while the False Negatives are the images that were 

misclassified as not abnormal. 

3.2.1.2. Specificity  

 Specificity, which is also known as True Negative Rate, is the measure of actual 

negative cases predicted negative over all cases. This implies that there are some 

actual negative cases predicted incorrectly positive, which is known as False 

Positive. Therefore, Specificity measures the proportion of actual True Negatives 

predicted correctly by the classifier. Specificity is calculated by the formula:  

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
  

 

 For rail track binary classification, True Negatives are those images which are 

classified correctly as normal, while the False Positives are the images that were 

misclassified as not normal. 

3.2.1.3. Accuracy 

 Accuracy is the ratio of correct predictions by the classifier to the total number 

of predictions made. Accuracy is calculated by the formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 

 

3.2.1.4. Precision  

 Precision is the number of correct positives out of all positives predicted by the 

classifier. Precision is calculated by the formula: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑙𝑎𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

3.2.1.5. Prevalence 

 Prevalence is the rate of all positive occurrences in the sample used. Prevalence 

is calculated by the formula: 

 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 

 

3.3.Ad-hoc Cloud setup  

 Once the robot is deployed on the rail track, local inspection starts by capturing 

images from the cameras installed on the robot. Captured images are then classified 

into normal or abnormal through the binary classification system described in section 

3.2. Once an abnormal image is detected, the image of the defect along with its location 

is stored in the cloud. On the other side, the maintenance team at the control room can 

view the image of the defects from the cloud, and can view the graphical location of 

the defect on the rail track. Based on the severity of the defect, the maintenance team 

can decide the required action. In this section the details of the ad-hoc cloud setup are 

described. 

3.3.1. Experimental Setup 

 Cloud setup in this experiment is done over the Dropbox cloud. A Dropbox 

application is created over the cloud which is linked to MATLAB over the Dropbox 

API. Once a rail track defect is detected, the image and its location is sent to the 

DropBox application via the WEBWRITE function in MATLAB. The cloud 

connection is established via an API call done through a generated access token private 

to the application. At the control room, the DropBox folder is linked to the cloud using 
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the same application’s account.  

 To setup the experiment, 203 predefined defects from Type I dataset [7][15] are 

mapped to an experimental rail track plan using predefined coordinates. Figure 28 and 

Figure 29 show the rail track before and after mapping all possible defects. The image 

of each defect is named with its predefined coordinates.  

 

 

Figure 28. Rail track before mapping defects. 

 

 

Figure 29. Rail track with predefind mapped defects.  
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3.3.2. Evaluation Metrics 

The evaluation metrics used to evaluate the cloud connection and storage are 

the size of the cloud as provided by Dropbox, the ease of accessing the cloud from 

multiple devices at different locations, and the speed at which the data sent to and 

received in the cloud.  
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CHAPTER 4: RESULTS AND DISCUSSION 

This section provides the results from the experiments on rail track binary 

classification and the ad-hoc cloud testing in Sections 4.1 and 4.2 respectively. 

4.1 Rail track binary classification 

The rail track binary classification system was tested on the Type I dataset. 

Training the model has consumed 12 minutes 17 second on a single CPU. The best test 

accuracy rate provided by the system is 97%. On average, the system consumes 0.166 

milliseconds to classify one image. Figure 30 shows the training progress of the model. 

 

 

Figure 30. Training progress of the binary classification model. 

 

The system has achieved a False Positive rate of 1%, False Negative rate of 2%, 

True Positive rate of 80.8%, and True Negative rate of 16.2%. For rail track binary 

classification, True Negatives are those images which are classified correctly as normal, 

while the False Positives are the images that were misclassified as not normal. 

Therefore, the system has achieved a significate low False Positive rate of 1%. 

Figure 31 shows the result for some test data classified correctly with a 
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significantly high accuracy rate. Table 4 shows the details of the evaluation results.  

 

 

Figure 31. Sample result of the binary classification. 

 

Table 4. Evaluation results 

Evaluation Metric % 

Accuracy 97.0 

Sensitivity 97.6 

Specificity 94.1 

Precision 98.8 

Prevalence 81.8 

 

 

4.2 Ad-hoc Cloud 

The Dropbox cloud provides a storage space up to 2 TB and an ease of access 

from multiple devices be it a control room or a portable mobile device. In this 

experiment, data is uploaded to the cloud in an average time of 1.75 seconds, and a 

notification is received at the control room in an average time of 4 seconds. When an 

image is sent to the cloud, a notification is received at the control room indicating that 

new data is added to the cloud as shown in Figure 32; hence, the images and locations 
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of the rail track defects are automatically stored in the cloud. 

 

 

Figure 32. Dropbx notification on receiving a new data. 

 

The cloud connection over Dropbox was established via an API call through 

MATLAB R2019. Once a defect is detected by the binary classifier, the defected image 

is stored in the cloud during an average time of 1.75 seconds. The notification shown 

in Figure 32 received in an average time of 4 seconds shows how the image of the 

defect is stored in the cloud with the defect’s location as the image’s title.  

Figure 33 and Figure 34 shows the data stored in the cloud from the a PC at the 

control room as well as from a mobile device. Once a defect is received at the control 

room, the location of the defect is extracted from the image’s title through a MATLAB 

application that extracts the defect’s coordinates and maps its location graphically to 

the rail track plan.  
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Figure 33. Dropbox content from a PC. 

 

 

Figure 34. Dropbox content from a mobile device. 
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Figure 35 shows the MATLAB application that extracts the location of the 

defect from the images, and Figure 36 shows the defects mapped graphically to the rail 

track plan. 

 

 

Figure 35. MATLAB GUI application at the control station. 
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Figure 36. GUI output of defected locations of the rail track mapped to the rail track 

plan. 

 

At the control room, the maintenance team can look at the defect at each location 

through the MATLAB application to decide which defect needs immediate 

maintenance.  shows the locations of the selected defetcs mapped at the track, and 

shows the defects at the selected location. 
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Figure 37. GUI option of viewing the defect at the selected location. 

 

 

Figure 38. Defect at the selected location in Figure 37. 
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Figure 39. GUI option of viewing the defect at the selected location. 

 

 

Figure 40. Defect at selected location in Figure 39. 
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CHAPTER 5: CONCLUSION 

Rail tracks early inspection and immediate maintenance are the main major 

factors to ensure track’s safety. Rail track defects are internal or surface defects, and 

most commonly results from high-speed friction and climate condition. Available 

inspection solutions are either contact-based that can be deployed on tracks and 

controlled from control rooms, or non-contact based solutions which are known as 

machine vision based solutions that can identify and locate cracks by analyzing images 

of the rail track.  

This work has introduced a novel automated system for rail track inspection that 

integrates robotic platforms with visual inspection to detect and locate surface defects. 

The novelty of this work comes from providing a computer vision solution that provides 

local detection while inspection using 2DCNN. While the robot is inspecting, the 

captured images are sent to the neural network for classification and detection.  

Once any surface defect is detected, it will be communicated directly to the 

cloud with the corresponding location for further inspection later. The proposed system 

has achieved an accuracy rate of 97%. In the future, more sensors will be added to 

detect internal defects, and the neural network will be trained on GPUs to speed up the 

training time and enhance the accuracy rate.  

Rail transportation is new to Qatar; therefore; this research aids in providing a 

reliable cost-effective system that suits the climate of Qatar. The proposed system is 

cost-effective because it provides local processing that not only saves time but also does 

not congest the cloud with unnecessary data. The cloud will contain the images and 

locations of the defected areas only in the rail track; therefore, the dedicated operator 

would have very few locations to inspect as opposed to the full track. Moreover, more 

sensors will be added in the future to detect internal defects especially those that are 
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caused by heat and humidity. Therefore, this research has provided a reliable cost-

effective system with high accuracy rate that suits the climate of Qatar. 

5.1 Related Publication 

[1] N. AlNaimi and U. Qidwai, “IoT Based on-the-fly Visual Defect Detection in 

Railway Tracks” in IEEE International Conference on Informatics, IoT, and Enabling 

Technologies. (Accepted January 2020) 
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