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ABSTRACT 

Al-Nuaimi Munera H, Master Degree: June: 2020, Master of Science in Engineering 

Management 

Title: Eco-Efficiency Assessment Of Electric Vehicles In The European Union 

Countries: The Case Of Mix-Sources Of Energy   

Supervisor: Dr. Galal M Abdella. 

 

European Union (EU) member states have considered the environmental impacts of 

transportation and have prompted Electric Vehicle (EV) usage as one of the 

technological advancements that could reduce emissions and energy and water 

consumption. However, this depends on how EVs react to eco-friendly behaviors 

during their life cycle. The research utilizes a combined life cycle assessment (LCA) 

and a principal component analysis (PCA) technique to assess the eco-efficiency 

performance of EVs in EU member states. Considering the energy mix for electricity 

generation, three environmental indicators (GHG emission, water consumption, and 

energy consumption) and one economical (contribution to GDP) indicator were used to 

compute the eco-efficiency scores for 28 EU member states. First, the values for each 

environmental and economic indicators were obtained. The eco-efficiency scores for 

each corresponding EU member states were then calculated and compared. From the 

results of the eco-efficiency analysis, Belgium was found to have the highest eco-

efficiency score, while Estonia was tagged to be the least eco-efficient country. 
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CHAPTER 1: INTRODUCTION 

This chapter will introduce an overview of the electric vehicles impacts on the 

environment.  It will start with the effects of transportation, and then it will list different 

factors that influence electric vehicle adoption. Also, this chapter will shed light on the 

experience of EU countries when adopting electric vehicles. Finally, the thesis aims 

and objectives will be stated. 

1.1 Overview   

Unsustainable growth patterns have brunt several developing nations around the globe 

with increased environmental footprints, advocating the integration of sustainable 

development with the existing growth pattern (Bennbea et al., 2018). When analyzing 

various sectors from a global perspective, the transportation sector has tremendous 

strains on the environment, besides the construction and manufacturing sector. 

Prolonged effects of global climate changes, energy security, greenhouse gas (GHG) 

emissions and, quality of air are among the few environmental distortions that the 

transportation sector has brought up. The European Environment Agency report shows 

that transportation contributed by 15% of total PM2.5 and 44 % of transportation 

emission come from passenger cars while 18% emitted by heavy-duty vehicles and 

buses (EEA, 2020). According to the International Transport Forum (ITF), 

transportation accounted for 30% of CO2 emissions in OECD countries and 16% of 

CO2 emissions in non-OECD countries (ITF, 2019). In addition to that, the energy 

consumed by the transportation sector increased by 19 Mtoe (IEA, 2018). 

1.2 Electric Vehicles  

Extending the concern on environmental protection and energy-saving, Electric 

Vehicles (EV) emerge as a potential technology in reducing environmental impacts 

associated with the transportation sector and helps in possible energy conservation. 
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Several studies in the past have shown that EVs can contribute significantly to the 

reduction of global warming potential (GWP) from 10% to 24% compared to 

diesel/gasoline vehicles. However, there are several elements that might affect the 

potential benefits of EV usage on the environment. Many studies have been conducted 

to show the effect of electricity generation mix and driving patterns of EVs on the 

environment. Samaras and Meisterling studied the GHG emissions of plug-in hybrid 

electric vehicles (PHEV) using different electricity generation mixes and patterns of 

driving in the US. Additionally, the source of electricity generation matters in reducing 

the environmental impact of EV. A study in the Texas power grid, whose electricity is 

generated using coal and natural gas, showed that the harmful emissions produced by 

EVs charged in these power grids were higher than the emissions produced while 

operating the conventional internal combustion engines (ICE). 

Several European countries have started adopting EVs in different levels. 

According to (IEA 2018), countries in the Nordic region like Denmark, Finland, 

Iceland, Norway, and Sweden have shown significantly higher ratios of EV per capita, 

and the estimated value for the usage of EV by 2030 is about 4 million. In addition, 

there is an emerging trend in the US to use EVs in the expressways (Onat et al., 2015a, 

2016c). Nevertheless, several studies have been conducted during the past to show 

different factors that affect the adoption process of EVs. The results reveal the existence 

of social, political, operational, financial, and technical barriers for the adoption of EV. 

The resistance that prevails when accepting any sort of innovation can also be seen in 

the case of EV adoption. Social networks contribute significantly to the adoption 

process. A study conducted in Amsterdam city reveals customer's choice in adopting 

EV over other alternative modes of transportation. The Netherlands is the only 

European country that has shown a progressive increase in the adoption of EV over 
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time (Iea et al. 2014). 

According to (Jaffe and Stains, 1994; Stoneman et al., 1994; Argote and Epple, 

1990; Diamond, 2009) social factors such as lack of proper knowledge by potential 

adopters, low endurance of risk by consumers and the ability of EVs to fit in consumers' 

daily lives are some of the contributing factors that slow down the adoption process of 

EV. (Graham-Rowe et al., 2012; Peters and Dutschke, 2014; Hidrue et al. 2011) 

identified certain customer traits that could have a positive impact on the adoption of 

EV. Accessibility to charging infrastructures stay as a significant determinant for 

several customers to acknowledge the adoption of EV, thus creating tensions among 

users (Ghamami et al., 2014; Yeh, 2007; Struben and Sterman, 2008; Egbue and Long, 

2012; Carley et al., 2013; Jensen et al., 2013; Krupa et al., 2014). The duration of 

charging the EVs and the driving range anxiety were also factors that escalated tensions 

among users (Egbue and Long, 2012). Government policies such as a decrease in the 

fuel prices and incentives for promoting a clean environment by opting eco-friendly 

modes of transportation can significantly influence the EV adoption process (Lane and 

Potter, 2007; Sovacool and Hirsh, 2009). The government of the Netherland has 

supported the adoption by banning oil-fueled cars (Oz, 2017). Still, economic issues 

such as fuel price influence the adoption of alternative fuel vehicles (Soltani-Sobh et 

al., 2017; Eppstein et al., 2011).  The cost of EVs influences customer acceptance of 

EV (Rasouli and Timmermans, 2016; Jaffe and Stavins, 1994; Stoneman et al., 1994; 

Argote and Epple, 1990, Diamond, 2009). Thus, a need for proper sustainability 

assessment to evaluate the potential environmental savings of using EVs is felt 

necessary.  
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1.3 Electric Vehicles in the EU 

Promoting sustainable urban mobility is a cornerstone for all EU member states. 

As a result,  the EU countries promote the purchase and use of EVs in order to reduce 

their reliance on non-renewable resources such as gasoline and other fossil fuels. The 

support of EV in Europe was demonstrated through the deployment of charging 

infrastructures, conducting battery-related research, increasing customer awareness, 

and encouraging electricity utilization from renewable resources. For instance, in the 

Netherlands, there are nearly more than 32,000 charging slots spread across the state. 

Additionally, policies and incentives in EU member states were placed to encourage 

EV adoption. This can be seen in Germany and Austria, where the owners of EVs are 

relieved from paying taxes. Also, in France and Sweden, the car owner can exchange 

his diesel car for an EV, where he receives a sum total of up to €11, 000.  For the above 

reasons, the adoption of EVs in EU countries is increasing over the years. In 2018, there 

were 1.2 million EVs on the roads of Europe, which is around 24% of the global fleet 

(IEA, 2019). Figure 1 shows these statistics in detail.  

 

 

 



  

5 

 

Figure 1. EV statistics for the years from 2013-2018 (source: global EV outlook, 

2018). 

 

1.4 Research Aims and Objectives 

The main objective of this research is to are the following: 

1. Analyzing and quantifying the impacts of EVs on water consumption, 

GHG emissions, and energy consumption. 

2. Evaluating eco-efficiency of Electric Vehicles (EVs) across each EU 

member states in order to evaluate the sustainability performance in the 

operational phase of a BEV's life cycle. The eco-efficiency of each 

country was computed using three environmental indicators, namely 

water consumption, GHG emissions, and energy consumption, to 

represent the environmental impacts and one economic indicator, the 

GD per country. 

1.5 Research Scope  

In this study, the average electricity generation using energy mix was 

considered for EU countries, and a life cycle assessment (LCA) of BEVs have applied 

accordingly. This study focuses on the operational phase of BEV due to its enormous 

contribution to the energy, water and carbon footprints in contrast to other phases: the 

manufacturing and end-of-life (Onat et al., 2016b; Onat et al., 2014b). Accordingly, 

this study does not give due consideration to the impacts related to the manufacturing 

and end-of-life phases. The LCA used here considers per vehicle-miles traveled 

(VMT) as a functional unit. The impacts of the operational phase are divided into two 

stages: well to tank (WTT) and tank-to-wheel (TTW), and they are upstream and have 

direct effects on the energy usage in BEVs respectively.  In the TTW stage, there is 
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zero carbon emission and zero consumption of water. Despite this, both the stages 

WTT and TTW are consuming energy for different purposes. For WTT, the energy 

consumed is used for electricity generation while, for TTW, the consumption accounts 

for the vehicle's travel. The calculations of BEV's impact on the environment is 

expressed as:  

Fc,i =  FC x (WTTc,t +  TTWc,t)                                            (1) 

where 𝐹𝑐,𝑖 is the footprint for category impact 𝑐 in each country 𝑖. FC stands for 

per mile consumption of fuel in kWh. The WTT and TTW are well to tank and tank to 

wheel operation, respectively, and they represent impacts of operation stages for 

category impact c in the country i. Figure. 2 illustrates the boundaries of the LCA 

analysis. 

 

 

 

Figure 2. The scope and boundaries of life cycle assessment analysis. 

 

1.6 Research Methodology 

The research attempts to analyze the eco-efficiency of EVs in 28 EU member 

states using eight sequential steps, as shown in Figure 3.  Initially, the four sustainability 
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indicators were identified: three environmental and one economic. These indicators 

were selected to define better the sustainability performance of EV in EU countries. 

Then, the data of these selected indicators were collected and normalized to a common 

scale. The normalized data were then analyzed to identify any correlation among the 

indicators, after which different Principal Compound Analysis (PCA) weights were 

assigned accordingly. Then, the eco-efficiency of EV for each of the corresponding EU 

member states was calculated. Finally, the eco-efficiency results were modeled using 

ordinal regression, and subsequently, all required documentation was produced. 

 

 

 

Figure 3. The methodology for the eco-efficiency assessment. 

  

1.7 Research Questions 

The research attempts to study the sustainability performances of EVs in 28 EU 

member states for electricity generation by different energy sources. The study uses 

eco-efficiency assessment measures combining both environmental impacts and 

economic benefits. The research thus attempts to address the following research 
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questions namely; 

1) How does each of the corresponding EU countries perform in terms of eco-

efficiency of the EV using mix-sources of energy?  

2) What are the potential environmental savings that can be achieved by EVs in 

each of the corresponding EU countries? 
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CHAPTER 2: LITERATURE REVIEW 

This chapter is dedicated to highlighting the literature that studied electric 

vehicles. The following sections will report the sustainability assessment of electric 

vehicles, eco-efficiency assessment, and ordinal regression. 

2.1 Sustainability Evaluation of Electric Vehicles 

 Previous research on EVs focused primarily on the environmental impacts 

associated with its usage. Thus, measures like CO2 gas emissions, GWP and energy 

consumption behaviors were studied extensively and frequently used for assessments 

(Hawkins et al., 2012; Nordelöf et al., 2014; Onat, 2015a; Onat et al., 2015, 2018; Troy 

et al. 2012; Brinkman et al. 2005). The LCA introduced in 1991 studies and evaluated 

the sustainability of different products and systems by assessing the environmental 

impacts from the extraction phase to the end-of-life or recycling phase. Over the years, 

the LCA approach has gained publicity in the academic and industrial sectors due to its 

ability to customize components throughout the product life cycle in order to tackle 

different issues (Curran, 1996; Egilmez and Park, 2014). Reviews show that LCA is 

widely used for assessing environmental impacts (Egilmez et al., 2016) and for studying 

alternative vehicle technologies (Onat 2015a; 2015b; Onat et al. .2016b). (Samaras and 

Meisterling, 2008) employed LCA to evaluate the impacts of plugged-in hybrid electric 

vehicles (PHEVs) on the environment by measuring carbon emissions. In addition, 

(Faria 2012) applied LCA to assess the impacts of EVs versus gasoline vehicles on the 

economy and environment. (Onat et al., 2014) compared GHG emissions versus energy 

usage of different vehicles in the USA: conventional, HEVs, BEVs, and PHEVs using 

19 indicators in three different charging scenarios. Studies by (Liu et al., 2014 in China; 

Ma et al., 2012 in the UK;   Nanaki and Koroneos, 2013 in Greece; Yagcitekin et al., 

2014 in Turkey) have also assessed the environmental impacts of conventional and 
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alternative powertrain vehicles using LC approach. Studies conducted by (Onat et al., 

2016) combined input-output LCA and multi-criteria optimization for calculating 

optimal vehicle distribution in the USA. In addition, (Ercan et al., 2016) developed a 

dynamic LCA to evaluate the possible reduction in GHG emissions when adopting 

public transportation. In literature, there were considerable improvements in terms of 

sustainability assessment, and the Life Cycle Sustainability Assessment (LCSA) 

approach was developed to overcome the limitation of LCA to assess new dimensions 

of sustainability, namely the economic and social aspects. This new framework 

embraces the standard LCA, life cycle costing (LCC), and Social LCA (SLCA) 

methodologies (Gloria et al., 2017). (Kloepffer, 2008) developed the LCSA framework 

with the help of (Finkbeiner et al., 2010). 

2.2 Eco-Efficiency Assessment and Analysis 

 The concept of eco-efficiency has been used by (Egilmez et al., 2013/2014; 

(Tatari and Kucukvar, 2012; Iribarren et al., 2011) and by several numerous studies to 

analyze the life cycle inventory. Eco-efficiency is a widely used measure in the 

literature to assess sustainability since it takes into account economic dimensions versus 

environmental dimensions when assessing sustainability. Nevertheless, the 

computation of eco-efficiency becomes complex, especially when addressing several 

indicators with completely different measuring units. Linear programming is used to 

reduce such complexities. Techniques such as Principal Component Analysis (PCA) 

AND Data Envelopment Analysis (DEA) are some of the widely used techniques for 

such purpose. The DEA is applied to evaluate the impacts of several indicators on the 

environment, but this approach is not suitable if there is a correlation between these 

indicators. On the other hand, the PCA can assess the correlated sustainability 

indicators.   
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In literature, PCA is widely used to create composite indicators to make 

computation simpler. (Salvati and Carlucci, 2014) utilized the PCA technique to define 

a composite sustainability index by investigating 99 indicators. (Reisi et al., 2014) 

applied the PCA to create a composite sustainability index using nine indicators from 

the social, environmental, and economic dimensions of sustainability. (Bolcárová and 

Kološta, 2015) used PCA to rank 27 European countries by using an aggregated 

sustainability index with respect to the social, environmental, and economic dimensions 

of sustainability. (Mascarenhas et al., 2015) evaluated the sustainability performance 

of 10 Indian rural energy systems using the PCA technique. (Jiang et al., 2018) used 

PCA to create an aggregated sustainability assessment model combining social, 

environmental, and economic dimensions. Also, an analysis of eco-efficiency was 

conducted by the leading chemical company BASF, using the LCA for assessing the 

impacts of chemicals, processes, and products on the economy and 

environment(Lozano and Lozano, 2018; Saling et al., 2002). Moreover, the study 

conducted by  (Park et al., 2015) utilized an economic input-output life-cycle 

assessment (EIO-LCA) and PCA technique for computing the eco-efficiency of 273 

industries in the United States. 

 Recent studies have applied LCA combined with eco-efficiency to evaluate the 

eco-efficiency of the products, systems, or sectors. The combination of eco-efficiency 

concept with life cycle assessment framework (EEA-LCA) in this study showed 

significant improvements in assessing sustainability (Guinée, 2002; Rogers and Seager, 

2009; Hellweg and Milài Canals,  2014; Egilmez and Park, 2014) and supports making 

eco-efficient decisions (Egilmez et al., 2016).  

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chemical-product
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2.3 Ordinal Regression 

Regression models are very popular in statistics. The application of regression 

methods in sustainability is a recent trend under the sustainability context (Kucukvar et 

al., 2019; Abdella et al., 2020). Several regression models have shown an excellent 

performance under different of industrial and service sectors, including manufacturing, 

healthcare, and transportation (AbdurRouf et al., 2018, Abdella, et al., 2016a, 2019a-b) 

The Ordinal regression analysis is used as a technique to study the relationship between 

explanatory and dependent variables with minimal assumptions (Dionysios et al., 

2019). Ordinal regression finds applications in fields such as education, medicine, 

marketing, and tourism. (Keltgen, 2019; Ngozi, 2016; Drosos, 2015; Ombui, 2011; 

Chau-Kuang, 2004; Thomas, 2002) employed ordinal regression to analyze 

questionnaires. (Tosteson, 1994) applied ordinal regression to assess the liver function 

data for diagnostic tests. (Polyzos, 2011) also used ordinal regression to explore the 

current trends in the location of firms around the areas of touristic attraction in Greece. 

(Spais, 2006) examined the relationship of consumers in food-marketing using ordinal 

regression. In addition to that, an ordinal regression analysis was used to rank EU 

countries based on their sovereignty in work (Fernández-Navarro, 2013). 

Recent studies have used ordinal regression to evaluate sustainable 

development. (Dionysios, et al., 2007; Dionysios et al., 2019) used ordinal regression 

to analyze the impacts of forest land usage on its resources in Greece.  (Pérez-Ortiz, 

2014) utilized ordinal regression to sort EU countries based on their progress towards 

sustainable development. However, no research has yet been done to study the eco-

efficiency of EVs in EU states. In this paper, an ordinal regression model has been 

constructed for assessing the eco-efficiency scores of EU countries.  
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CHAPTER 3:  ASSESSMENT METHODOLOGY 

This chapter is dedicated to detail all the steps performed in this research work 

to assess and analyze the electric vehicles' eco-efficiency in the European United 

countries. The following sections will report and detail all the six steps of the proposed 

methodology (see Figure 3).   

3.1 Step 1: Identifying Sustainability Indicators 

Initially, three environmental indicators: GHG emissions, water consumption, 

energy consumption, and one economic indicator: Contribution to GDP were selected 

to evaluate the eco-efficiency of EVs. Table 1 shows the selected set of indicators for 

the assessment process.  

 

Table 1. Main Categories of Sustainability Indicators 

 

The GHG emissions, water consumption, and upstream energy consumption 

were calculated for assessing the EV impacts during the operational phase for EU 

countries that use electricity generated from mixed sources of energy.  

3.2 Step 2: Data Gathering and Formatting   

The data related to the production of electricity from the energy mix for EU 

countries were collected from the recent World Energy Statistics, Electricity 

Information, and Eurostat database. For studying the impacts associated with the EVs, 

EVs from the brand "Nissan" were considered. The vehicles were selected based on 

their kilo-watt hour energy consumption (30 kWh per 100 miles).  The water 

Main Categories Metrics 

Environmental Indicators GHG Emissions (g CO2-eq /kWh) 

Water Consumption (L/kWh) 

Energy Consumption (kWh/kWh) 

Economic Indicator Contribution to GDP (US Dollar) 
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consumption per source data was taken from the work done by (Onat et al., 2018).  

Table 2 shows the impacts of EVs on the selected set of environmental indicators used 

in the study. 

 

 

Table 2. EV Impacts on Water Consumption, GHG Emissions, and Energy 

Consumption 

No Country Name Water 

Consumption 

(L/kWh) 

GHG 

Emissions (g 

CO2-eq 

/kWh) 

Energy 

Consumption 

(KWh) 

1 Austria 
 

1.94 1.14 1.03 

2 Belgium  1.08 1.22 1.36 

3 Bulgaria  1.19 1.55 1.42 

4 Croatia  1.74 1.34 1.15 

5 Cyprus  1.03 1.76 2.00 

6 Czech Republic  1.14 1.66 1.63 

7 Denmark  1.04 1.43 1.59 

8 Estonia 
 

1.09 1.98 1.87 

9 Finland 
 

1.40 1.24 1.45 

10 France 
 

1.22 1.06 1.11 

11 Germany 
 

1.12 1.61 1.58 

12 Greece 
 

1.14 1.64 1.5 

13 Hungary 
 

1.08 1.36 1.46 
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No 

 

Country Name 

 

Water 

Consumption 

(L/kWh) 

 

GHG 

Emissions (g 

CO2-eq /kWh) 

 

Energy 

Consumption 

(KWh) 

14 Ireland 
 

1.07 1.62 1.54 

15 Italy  1.22 1.49 1.49 

16 Latvia  1.92 1.27 1.33 

17 Lithuania  1.38 1.19 1.24 

18 Luxembourg  2.00 1.07 1.01 

19 Malta  1.00 1.35 1.31 

20 Netherlands  1.04 1.74 1.72 

21 Portugal  1.21 1.41 1.31 

22 Poland  1.11 2.00 1.81 

23 Romania  1.40 1.41 1.24 

24 Slovakia  1.35 1.20 1.27 

25 Slovenia  1.46 1.39 1.28 

26 Spain  1.15 1.34 1.26 

27 Sweden  1.66 1.00 1.00 

28 UK  1.08 1.42 1.56 

  

 

3.3 Step 3: Normalization of Data 

The LCA results were structured into a matrix made up of 28 rows representing EU 

member states and four columns demonstrating three environmental and one economic 

indicator. The matrix structure held data with different measuring units and was used 
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for conducting subsequent calculations. A transformation technique called 

"normalization" was applied in order to produce comparable and meaningful data. The 

data were normalized using the min-max technique (Eqn. 2) for values of a = one and 

b = 2 for an interval ranging from 1-2. 

𝑋c
′ = 𝑎 +

(𝑋c − 𝑋min)(b − a)

𝑋max − 𝑋min
                                         (2)  

              Xc
′ stands for the normalized data of each country c and Xc is the raw data of 

each country c. The Xmin and Xmax represent the minimum and maximum value of data 

between all the countries. Table 3. compares the results of the three selected set of 

environmental indicators. The water consumption value holds the lowest average, while 

averages of energy consumption and GHG emissions were recorded to be high.  

 

Table 3.  Descriptive Statistics for the Selected Environmental Indicators 

Variable N Min Max Mean ( ) SD (σ) 

Water Consumption 28 1.000 2.000 1.294 0.297 

GHG Emissions 28 1.000 2.000 1.425 0.258 

Energy 

Consumption 
28 1.000 2.000 1.411 0.255 

 

3.4 Step 4: Correlation Analysis 

The correlation/scatter analysis shows the behavior and the degree of correlation 

between the selected three environmental indicators (Figure 4). 
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Figure 4. The Correlation matrix for EV impact on GHG emissions, water, and energy 

consumption. 

 

It can be observed from Table 4 that the indicators, GHG emissions and water 

consumption are dependent on each other and negatively correlated with a value of -

0.589. This translates the fact that, if the impact on water consumption increases, then 

the GHG emissions decreases. Similarly, if the water consumption value decreases, 

then the GHG emissions will increase. The indicators of energy and water consumption 

are highly dependent on each other and are negatively correlated with a value of -0.693. 

This means that if the impact on energy consumption increases, then the impact on 

water consumption decreases and vice versa. The degree of correlation between these 

two variables is more than the correlation value between GHG emissions and water 

consumption by a value of 0.104. Moreover, the behavior observed in energy 

consumption and water consumption relationships is more condensed compared to the 

GHG emissions and water consumption relationships, as shown in Figure 4. This means 

that GHG emissions hold a negligible impact on water consumption behavior when 
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compared to the impact of energy consumption on water consumption. It can be noticed 

from the corresponding graph that GHG emissions and energy consumption depend on 

each other and hold a strong correlation with a correlation value of 0.890. This can be 

identified from the behavior of GHG emissions and the energy consumption exhibited 

in the graphs as they are clustered and move in the same direction (positive correlation) 

on the correlation line. This indicates the fact that if energy consumption increases, the 

GHG emissions increases, and vice versa. 

 

 

Figure 5. Correlation Graphs of EV Impact on GHG Emissions, water consumption, 

and energy consumption. 
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Figure 6. highlights the correlation relationship between the environmental indicators 

for analyzing the impacts of EV using a heat map image. 

Country name 
Water Consumption 

(L/km) 

GHG Emissions 

(g/km) 

Energy Consumption 

(Kwh/km) 

Austria 1.94 1.14 1.03 

Belgium 1.08 1.22 1.36 

Bulgaria 1.19 1.55 1.42 

Cyprus 1.03 1.76 2.00 

Czech Republic 1.14 1.66 1.63 

Denmark 1.04 1.43 1.59 

Estonia 1.09 1.98 1.87 

Finland 1.40 1.24 1.45 

France 1.22 1.06 1.11 

Germany 1.12 1.61 1.58 

Greece 1.14 1.64 1.50 

Hungary 1.08 1.36 1.46 

Croatia 1.74 1.34 1.15 

Ireland 1.07 1.62 1.54 

Italy 1.22 1.49 1.49 

Latvia 1.92 1.27 1.33 

Lithuania 1.38 1.19 1.24 

Luxembourg 2.00 1.07 1.01 

Malta 1.00 1.35 1.31 

Netherlands 1.04 1.74 1.72 
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Poland 1.11 2.00 1.81 

Portugal 1.21 1.41 1.31 

Romania 1.40 1.41 1.24 

Slovakia 1.35 1.20 1.27 

Slovenia 1.46 1.39 1.28 

Spain 1.15 1.34 1.26 

Sweden 1.66 1.00 1.00 

United Kingdom 1.08 1.42 1.56 

 

Figure 6. Heat map of normalized sustainability indicators data. 

 

3.5 Step 5: PCA-based Weighting for Sustainability indicators 

The PCA approach was used to combine the three environmental indicators to 

form a composite environmental value.  Table 4 (a) shows the eigenvalues and the 

variance of PCA components as a percentage.  The calculation of PCA value required 

components that have eigenvalues greater than or equal to 1. However, other remaining 

components were removed due to the lack of a significant impact on the outcomes of 

the study. Table 4 (b) shows the eigenvectors of three components that are used with 

the eigenvalues to compute the PCA value. The PCA value for each country was 

computed using Equation (3).  

 

𝑃𝐶𝐴 𝑣𝑎𝑙𝑢𝑒 =  𝐶1𝑍1 + 𝐶2𝑍2 + 𝐶3𝑍3                                                                (3)  
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Table 4. a) The Eigenvalues and Percentage of Variance (POV) of three components b) 

Eigenvectors of three components c) correlation of environmental indicators and the 

first component 
 

  F1 F2 F3  

 

Eigen Value 2.455 0.447 0.098  

 Variability (%) 81.849 14.886 3.265  

 Cumulative (%) 81.849 96.735 100.000  

 

Water Consumption -0.529 0.833 0.163  

GHG Emissions 0.588 0.498 -0.637  

Energy Consumption 0.612 0.241 0.753  

 
 

Water Consumption -0.829 0.556 0.051  

  GHG Emissions 0.922 0.333 -0.199  

  Energy Consumption 0.958 0.161 0.236  

 

 

The correlation of environmental indicators and the first component is shown in 

Table 4 (c). There occurs a strong positive correlation between GHG emissions, energy 

consumption values, and the PCA value. This means that, when increasing the value 

of GHG emissions or energy consumption, the value of PCA also increases. On the 

other hand, it can be noticed that the negative correlation between water consumption 

value and the PCA value is strong. This translates the fact that, when increasing the 

value of water consumption, the value of PCA decreases.  

The variables factor map (Figure 7) displays the vector representation of the three 

environmental indicators. It displays the POV of the first and second components in 

PCA. The GHG emissions and energy consumption holds a negative correlation with 

water consumption and is represented by their opposite directions. 
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Figure 7. The variables factor map (PCA). 

 

In this paper, the first component was used to calculate the Composite 

Environmental Index (CEI) value since it has an eigenvalue that is greater than one by 

using Equation (4): 

𝐶𝐸𝐼 =  −0.529𝐼1 + 0.588𝐼2   + 0.612𝐼3                                                               (4)  

Where 𝐼i  is a corresponding environmental indicator, as shown in Table 4(b). 

 

3.6 Step 6: Eco-Efficiency Calculations and Analysis 

The eco-efficiency method combines both environmental and economic 

dimensions for better assessment of the sustainability of EVs. Raw eco-efficiency 

scores were calculated as the ratio of the country's contribution to GDP (by considering 

electricity prices) over the composite environmental index (CEI) as presented in 

Equation (5). The normalized eco-efficiency scores of EU countries ranged from an 

interval value of zero to one (Table 5). France has the highest eco-efficiency score since 

it holds a minimum value for the environmental composite index. While Malta has the 
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lowest eco-efficiency score with a high CEI value. Countries with lower CEI values 

hold higher eco-efficiency. 

Eco-efficiency=
Country's Contribution to GDP

Composite Environmental Index (CEI)
                                        (5) 

However, a min-max technique, as applied by  Park et al. (2015), is required to 

re-scale the raw eco-efficiency values so they can be compared between the countries, 

as governed by the Equation (6). 

𝐸𝐹c
′ =

𝐸𝐹c − 𝐸𝐹min

𝐸𝐹max − 𝐸𝐹min
                                                                                                     (6)  

             EFc stands for the raw eco-efficiency score for each country c. The EFmin and 

EFmax represent the minimum and maximum scores of eco-efficiency between all the 

countries. Table 5 presents the eco-efficiency scores that were obtained by dividing the 

electricity prices of EU countries with CEI values. The scores were normalized using 

the min-max technique (Eqn. 2) with a = 0 and b = 1 to put values in zero to one interval. 

 

 

Table 5. Composite Environmental Index and Normalized Eco-Efficiency Scores for 

EU Countries 

No   Country Name Contribution to 

GDP (Electricity 

Price in USD) 

Composite 

Environmental 

Index(CEI) 

Normalized 

Eco-

Efficiency 

Score 

1 Austria 
 

0.22 2.74 0.72 

2 Belgium  0.32 3.17 1.00 

3 Bulgaria  0.11 3.65 0.01 

4 Croatia 0.15 3.12 0.32 

5 Cyprus  0.24 4.59 0.16 

6 Czech 

Republic 

 0.16 4.03 0.82 
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No   Country Name Contribution to 

GDP (Electricity 

Price in USD) 

Composite 

Environmental 

Index(CEI) 

Normalized 

Eco-

Efficiency 

Score 

7 Denmark  0.33 3.70 0.00 

8 Estonia  0.14 4.69 0.36 

9 Finland  0.18 3.33 0.57 

10 France  0.19 2.69 0.82 

11 Germany  0.34 3.91 0.32 

12 Greece  0.20 3.84 0.11 

13 Hungary  0.13 3.46 0.26 

14 Ireland  0.24 3.86 0.46 

15 Italy  0.28 3.66 0.65 

16 Latvia  0.18 3.25 0.38 

17 Lithuania  0.12 3.02 0.15 

18 Luxembourg  0.17 2.63 0.51 

19 Malta  0.14 3.26 0.19 

20 Netherlands  0.17 4.23 0.16 

21 Portugal  0.25 3.35 0.09 

22 Poland  0.16 4.65 0.65 

23 Romania  0.15 3.28 0.23 

24 Slovakia  0.16 3.07 0.35 

25 Slovenia  0.18 3.31 0.35 

26 Spain  0.29 3.21 0.87 

27 Sweden  0.18 2.52 0.58 

28 UK  0.20 3.66 0.37 

 

  

3.7 Step 7: Modeling Eco-Efficiency using Ordinal Regression  

Table 6 below shows coefficients, standard errors, Wald test, and associated p-

values (Sig.) and 95% confidence interval of the coefficients.
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Table 6. Parameter Estimates of Three Environmental Indicators 

 Est. 
Std. 

Error 

Wald 

Test 
df Sig 

95% Conf. 

Interval 

Lower 

Bound 

Thresh

old 

[V6 = 

High] 

3.3

87 
4.975 .463 1 .496 -6.365 

[V6 = 

Low] 

4.5

69 
5.003 .834 1 .361 -5.237 

Locatio

n 

V3=Water 

Consumpti

on 

2.8

61 
2.059 1.932 1 .165 -1.174 

V4=GHG 

Emissions 

-

1.6

65 

3.194 .272 1 .602 -7.925 

V5 = 

Energy 

Consumpti

on 

2.3

45 
3.710 .399 1 .527 -4.927 

 

 

Results from Table 6 show that both the water and energy consumption values 

are statistically significant, while the GHG emission values are not significant. A unit 

increase in the water consumption value can result in an increase of around 2.861 in 

terms of eco-efficiency, given all the other environmental indicators are constant. In 

addition, a unit increase in the energy consumption value can result in an increased eco-

efficiency value of more than 2.345, provided all the other environmental indicators are 

constant. The threshold values are shown in Table 6. They indicate where latent 

variables are cut to make three groups of eco-efficiency scores. 

3.8 Step 8: Documentation 

The documentation process involves collecting, processing, and analyzing 

data that includes electricity prices, water consumption, GHG emissions, and energy 

consumption for electricity generation. Also, it includes the calculation of the impacts 
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of EVs on the environmental and economic dimensions of sustainability. In addition, 

it includes the calculation of eco-efficiency results and the building of statistical 

models. Well-designed documentation translates information that can be easily 

accessed, monitored, communicated, and shared. 
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CHAPTER 4: ECO-EFFICIECY ANALYSIS AND COMPARISON 

This chapter is dedicated to compare and group eco-efficiency of the electric 

vehicle in the European United countries.  

4.1 Eco-Efficiency Performance Comparison  

The impact of EVs on water consumption varies among EU countries, as shown 

in Figure 8a. EVs in countries like Luxembourg, Austria, and Latvia hold a higher water 

consumption value than countries like Cyprus and Malta, whose water consumption 

values are comparatively low (Figure 8a). 

 

 

a) b) 

 

Figure 8. a) Impact of EVs on water consumption (L/kWh) in EU map b) Impact of 

EVs on the energy consumption (kWh/kWh) in EU map. 

 

The data for upstream energy consumption per source of energy was derived 

from the eGRID database. The impact of EVs on energy consumption was 5% for 

Estonia and Cyprus (Figure 8b, Figure 9). While, for countries like Bulgaria, the Czech 

Republic, Denmark, Finland, Germany, Greece, Hungary, Ireland, Italy, and the 

Netherlands, the percentage value amounted to 4%. Also, Belgium, France, Croatia, 

Latvia, Lithuania, and Malta held an impact of 3% on energy consumption. The impact 
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of Austria and Luxembourg was 2%. The rest of the EU member states held an impact 

of 27% on energy consumption. Countries like Cyprus, Estonia, and Poland consumed 

higher shares of energy, while countries like Sweden, Luxembourg, and Austria had 

lower consumption values. 

 

 
 

Figure 9. Impact of electric vehicles on energy consumption. 

 

The GHG emissions data were retrieved from the UK parliamentary Office of 

Science and Technology. Figure 10 represents that EV impact on GHG emission was 

highest in Poland, Estonia, and Cyprus and was lowest in Sweden and France due to 

their cleaner energy sources. 
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a)        b) 

Figure 10. a) Impact of EVs on GHG Emissions (gCO2-eq/kWh) in EU map b) 

Impact of EVs on GHG Emissions. 

 

Moving on to interpreting and comparing the eco-efficiency performance, the 

eco-efficiency scores hold a direct relationship with the "contribution to GDP" value 

and a converse relation with the CEI. As shown in Figure 11, Belgium can be tagged 

as the highest eco-efficient EU member state due to its low value of CEI and high value 

on "contribution to GDP." Spain is the second highest eco-efficient EU member state 

since it has a lower value of CEI and holds a greater value for the index "contribution 

to the GDP." The interpretation follows ranking "Denmark" as the third highest eco-

efficient EU member state since it holds a larger value for CEI and the index 

"contribution to GDP." Although Germany has the maximum value for contribution to 

GDP, the large enough value of CEI makes it the fourth highest eco-efficient EU 

member state. Sweden has the minimum CEI value among all the EU countries; hence 

it is less eco-efficient when compared with Belgium, Spain, Denmark, and Germany 

due to its low value for the index "contribution to GDP." On the other hand, Estonia is 
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the least eco-efficient EU country since it holds the highest value for all three 

environmental indicators and, accordingly, the largest value of CEI.  

The results in this paper have to be seen in the light of some limitations related 

to collected data. The primary limitation is limited access to recent data, especially data 

related to impacts of electric vehicles on water consumption, GHG emissions, and 

energy consumption in European Union countries. Accordingly, it might affect 

calculations and get up-to-date scores of eco-efficiencies in the EU. 

 

a)

 b) 

Figure 11. a) Eco-efficiency scores for EU member states on European map b) Eco-

efficiency ranking of EU member states in descending order. 

 

4.2 Eco-Efficiency Performance Grouping  

Further, to categorize EU countries based on their performance, countries have 

been split into three groups (High, Medium, and Low) based on their eco-efficiency 
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scores. Using a box plot (Figure 12), EU countries with eco-efficiency scores ranging 

from 0 to 0.176 fall under the Low eco-efficiency group. The EU countries that fall in 

medium eco-efficiency group have eco-efficiency scores ranging from 0.176 to 0.613. 

Finally, the EU member states with eco-efficiency scores from 0.613 till one falls under 

the High eco-efficiency group. 

 

 

Figure 12. Box plot of eco-efficiency scores. 

 

Figure 13 categorizes member states based on their eco-efficiency performance 

level, and Table 7 represents a list of EU countries in three groups based on High, 

Medium, and Low-performance level. 
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Figure 13. Eco-efficiency groups in the EU map. 

 

Table 7. Eco-efficiency performance categorization of EU member states 

High Eco-

Efficiency 

Medium Eco-

Efficiency 

Low Eco-

Efficiency 

Austria Cyprus Bulgaria 

Belgium Finland Czech Republic 

Denmark France Estonia 

Germany Greece Hungary 

Italy Croatia Lithuania 

Portugal Ireland Netherlands 

Spain Latvia Poland 

 Luxembourg  

 Malta  

 Romania  

 Slovakia  

 Slovenia  

 Sweden  

 United Kingdom  
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CHAPTER 5: CONCLUSION, AND FUTURE WORK 

This chapter is dedicated to report results and recommendations and to show 

possible future work. 

5.1 Conclusions and remarks 

In this paper, the eco-efficiency of EVs using a country's energy mix in 28 EU 

member states were studied. The study focused on three environmental (GHG emission, 

water consumption, and energy consumption) indicators and one economic indicator 

(contribution to GDP) in order to measure the sustainable performance of EVs. A 

methodology combining LCA and PCA was developed and applied to compute the eco-

efficiency of EU countries. Results showed that Belgium is the most eco-efficient while 

Estonia is the least eco-efficient. In addition, the highest percentage of electricity 

generation in countries who fall in the high-efficiency group comes from natural gas, 

nuclear, hydro and wind. Furthermore, the highest percentage of electricity generation 

in countries that fall in the low-efficiency group comes from oil and coal, and those 

countries can improve their eco-efficiency. They increase their reliance on clean 

sources by 20%. Moreover, the countries that fall in medium-efficiency groups have 

quite a balance of different mix of sources, and those countries can improve their eco-

efficiency. They increase their reliance on clean sources by 2%. The findings can help 

in developing sustainable transportation policies and provide guidance to make 

informative decisions accordingly. 

5.2 Recommendations and Future Work 

 The study can further be extended to assess the eco-efficiency globally and 

benchmark the eco-efficiency level. Also, future works can include more sustainability 

indicators from the social, environmental, and economic dimensions of sustainability. 

Thus, it can help policymakers to benchmark the environmental impacts and 
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accordingly support achieving 2030 United Nation's Sustainable Development Goals. 

For future research works, Methods such as variable selection, including stepwise 

regression,  ridge, and LASSO regression can be used to identify the most significant 

indicators to be included in the process of developing eco-efficiency indicators; see 

Jiang et al., (2012), Abdella et al., (2014, 2016b, 2017, 2019c), Kim, et al., (2019), and 

Abdella et al., (2020).   
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