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ABSTRACT

Mhaisen, Naram, Sultan, Masters: June: 2020, Master in Computing

Title: Novel Techniques for Blockchain-enabled IoT Systems Leveraging Reinforcement

Learning.

Supervisor of Thesis: Mohsen, Mokhtar, Guizani.

In the last decade, blockchain and Smart Contracts (SCs) have attracted unprece-

dented attention in academia and industry due to their technical innovation of providing

an immutable distributed ledger with secure cryptographic consensus rules. However, to

leverage the benefits of SCs in different domains, its adaptation should take into consid-

eration the characteristics and requirements of specific applications and systems. In this

thesis, we investigate the use of SCs in the Internet of Things (IoT) applications. Specifi-

cally, we identify and propose solutions to two potential issues that might arise from such

integration. First, we demonstrate that because IoT monitoring requires replicated data

sources that continuously submit data as transactions to the blockchain, naive integration

with SCs is prohibitively expensive. Instead, the data submission should be optimized to

minimize the cost while still meeting the use-case requirement of audibility and security.

We propose a Reinforcement Learning (RL)-based approach to achieve such a tradeoff

and show its superior performance compared to currently followed methods. On the

other hand, we also demonstrate that using SCs for task-allocation in applications like

service provisioning can lead to inefficient allocation decisions due to the static nature

of SCs rules that aim to manage dynamic blockchain participants. We show that lever-

aging the ever-expanding blockchain data for online learning by means of RL provides
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viable and adaptive task allocation that also outperforms currently deployed techniques

in terms of cost-efficiency. Overall, the problem formulations presented here, as well

as their proposed solutions, contribute to the establishment of secure and intelligent

decentralized IoT applications.
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CHAPTER 1: INTRODUCTION

Motivation

Recently, SmartContracts(SCs) havewitnessed a surge in popularity in both academia

as well as in industrial applications. Specifically, SCs/IoT integration is being in-

creasingly utilized by several critical domains. For instance, in health applications,

SC-enabled vital signs monitoring can enhance caregivers’ informing/intervention mea-

sures [1] and interoperability between medical centers [2]. In energy applications, SCs

are used to observe energy consumption behavior and detect manipulation or misuse in

smart meters [3] and electric vehicles [4]. Also, surveillance systems use blockchain

to record events and notify concerned parties [5]. The food industry heavily utilizes

blockchain to track the origin and conditions of different goods [6], [7]. The same track-

ing application is used by shipping and logistics companies for insurance and related

liabilities [8]. In general, the secure SC-based monitoring process is critical and widely

applicable in multiple domains. However, less work was conducted on the study of SCs

operation cost, which motivates this study. Such cost can be prohibitive when applied in

a smart-city scale. Besides, it does not suit different users’ requirements as they differ

per use case.

Operating the IoT nodes for SC-based monitoring can be expensive and ineffi-

cient due to two main reasons. First, monitoring is a continuous process. In public

blockchains, each measurement submission by a sensor incurs a cost known as a trans-

action cost. This means that transaction costs need to be continuously paid by the IoT

device accounts throughout the required monitoring period (e.g., during the shipment

period of an asset) [9]. Second, it is common in IoT/SC applications that multiple
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independent IoT devices are used for the same purpose, which amplifies the cost issue

even more. Such an array of redundant data sources is referred to as “decentralized

oracles" and is essential for reliability reasons [10].

To minimize this cost, IoT interaction with the blockchain should be well controlled.

Specifically, the transactions’ submission rate should be tuned so that a transaction is

submitted only when necessary. Learning-assisted decision-making techniques help us

address the dilemma of whether we should create a transaction in the blockchain for

any value to be monitored, which is costly and not scalable, or create a transaction

occasionally, which may not be acceptable from traceability and event tracking point of

view. It is also essential to consider such a tradeoff in the context of the use case. For

example, in the case of patient monitoring, the cost might be irrelevant during emergency

cases. However, in other domains such as logistic shipping, it might be desirable to

hold-off the monitoring for some period to save cost.

Optimizing the transaction rate from IoT devices (also referred to as Oracles in

the context of blockchain) to SCs while being cost-efficient is challenging since this

rate should be set intelligently based on multiple factors such as the current blockchain

network usage cost and oracle system status. This information is available in real-time

only, they are continually changing, and future values can not be known in advance.

Further, use case requirements should be considered as well. To tackle this random

environment, we adopt a Reinforcement Learning (RL) approach. RL is an artificial

intelligence technique that studies the issue of complex decision making in a random

environment, aiming to achieve maximum reward (or equivalently, minimum cost) over

the long run [11].

On the other hand, even after the data is successfully and efficiently placed on-chain,
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there still exist multiple operational issues pertaining to SCs. A critical one is the

management of service provisioning contracts, which assign users to service providers

according to some criteria.

Lately, Multiple domains started to leverage the autonomy, resilience, and trans-

parency features of blockchain and SCs in their service provisioning. These include

peer-to-peer (P2P) energy trading of household renewable energy or electric vehicles

[12], with some projects already deployed in industry [13]. SCs were used to enhance

P2P energy trading as there will be no need for a central authority (utility) to act as a

mediator in the energy transfer. Cloud and edge resource allocation market also heavily

utilize SCs to facilitate the resource auction mechanism and record requests and services

for non-repudiation attack protection [14]. In the domain of the Internet of Things, SCs

are being utilized for the provenance of data sources, as well as machine-to-machine

(M2M) payments to enable the direct transaction between sensing/actuating nodes with-

out relying on a centralized server [15]. In general, SCs provide appealing features for

the service provisioning in any industry due to its secure and autonomous execution [16]

and have been shown to support large deployments of devices (e.g., IoT) for automated

service provisioning [17].

A crucial issue in service provisioning is the criteria of assigning users or tasks to

service providers in such a way that maximizes global welfare (utility). Such allocation

problems should considermultiple factors, including the service cost that users endure as

well as the operation cost of service providers. In general, the service allocation should

jointly optimize the service cost and operation cost. Obviously, service provisioning

systems aim to assign users to the service provider with minimum fees to save service

cost for the users. However, service providers have limited capacities, and overloading
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them might lead to high operation costs over time. For example, if the service provider

is an IoT node delivering remote information as a service, then energy consumption is

a significant concern. Similar arguments can be made if the service provider is a smart

battery/EV trading energy since more trading operations can cause a tear to the battery.

In cellular systems providing spectrum access services, servicing more users will either

force the station to rent extra spectra or degrade the service quality. In general, the

operation cost of service providers, as deduced by their load, should also be considered

by any service provisioning system.

The joint optimization that service provisioning and task allocation systems generally

seek is especially challenging in blockchain environments due to multiple factors. First,

the blockchain is a dynamic system where service providers of different capacities

join and leave flexibly. Second, SCs, when deployed, are immutable and cannot be

changed or require complex update process [18]. Hence, static task allocation logic

implemented as SC cannot keep upwith the dynamic nature of participants. In summary,

the heterogeneity and flexibility of participants in blockchain systems impose a challenge

to traditional optimization methods and calls for adaptive, real-time methods that are

still required to allocate tasks optimally.

Most of the literature research on smart contracts for the job and task allocation

implemented static rules. However, this approach misses the opportunity of leveraging

the ever-expanding data of blockchain [19]. We envision SCs as smart agents that interact

with their participants and make an online data-driven decision on task allocation using

previous data recorded on-chain.

Overall, the wide-applicability of SCs and IoT in multiple domains while still suf-

fering from the aforementioned integration issues motivates us to study these problems
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with the aim of optimizing the SC/IoT paradigm toward optimal efficiency.

Thesis Objectives and Contribution

The objectives of this thesis are two folds. First, we aim to design efficient and

scalable methods for IoT and SCs integration trough optimizing the submission rate of

IoT nodes’ transactions. This objective is tailored towards the problem of the expensive

and continuous transaction illustrated earlier in themotivations sections. Second, we aim

to design SCswith intelligent behavior for the service provisioning broad use cases. This

objective tackles the problem of inefficient static service provisioning criteria illustrated

earlier. In summary, the thesis addresses the issue of importing data to the blockchain,

and using the data intelligently by SCs for service provisioning. Contributions are

summarised as follows:

1. Optimizing IoT nodes’ transaction submission to the blockchain. To that end, we:

• Propose a cost optimization framework for blockchain-enabled monitoring

applications that achieves a near-optimal tradeoff between blockchain secu-

rity features and monetary cost required for leveraging those features.

• Design a Deep Reinforcement Learning (DRL) agent to achieve the tradeoff

in real-time and based on dynamic and flexible user requirements.

• Evaluate the proposed system against multiple currently followed heuristics

with results showing the superior performance of the smart oracle manager.

• Develop a prototype to demonstrate the practical applicability of the pro-

posed framework.

2. Optimizing SCc operation for service provisioning applications . To that end, we:
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• Formulate the service provisioning as a multi-objective Markov Decision

Process (MDP) whose solution achieves the optimal tradeoff between users’

service cost and service providers’ operation cost.

• Utilize a learning-assisted decision-making technique, Deep Reinforcement

Learning (DRL), to model intelligent SCs that can leverage the chained data

and tackle the problem in an online manner.

• Provide a comprehensive performance evaluation and analysis of the pro-

posed method along with locally optimal heuristics as well as other planning

techniques.

Thesis Overview

This chapter motivated the thesis topic and summarised its objectives and contri-

butions. The remainder is organized as follows: In Chapter 2, we introduce the main

concepts, terminologies, and frameworks. We also survey related work and contrast

them to our work. Chapter 3 presents the formulation and proposed solution for the

IoT transaction rate optimization problem and evaluates the performance of different

approaches. We follow the same structure in Chapter 4 but for the issue of task alloca-

tion in SC-managed service provisioning. We then conclude the work, summarize main

results, and state limitations, and potential improvements in Chapter 5.
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CHAPTER 2: BACKGROUND AND RELATED WORK

Background

Markov Decision Processes and Reinforcement Learning

Reinforcement Learning (RL) is an artificial intelligence technique that studies the

issue of complex decision making in a random environment, aiming to achieve maxi-

mum reward (or equivalently, minimum cost) over the long run [11]. Specifically, RL

techniques aim to design agents that can learn optimal behavior in multi-stage deci-

sion problems through interaction with the environment (see figure 2.1). The problem

of multi-stage decision making is mathematically formalized as a Markov Decision

Processes (MDP).

A Markov Decision Process (MDP) is defined as tuple 〈S,A, T ,R, γ〉. At every

time step t, the agent receives a representation of the environment state s ∈ S. The agent

then executes and action a ∈ A using a policy π(a|s), receives a reward rt ∈ R, and

transition to the next state s′ with probability P (s′|s, a) = T (s, a, s′). The total feature

discounted sum of rewards until some horizonH is denoted asRt =
∑H

t′=t γ
t′−trt, with

the discount factor γ ∈ [0, 1). The state-action value function of a specific policy π is

defined as Qπ(s, a) = Ea∼π,s′∼T [Rt|st = s, at = a]. It summarises the sum of rewards

Figure 2.1: Reinforcement learning problem setup
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resulting from taking the action a in state s, and thereafter following policy π. The state

value function V π(s) = Ea∼π[Qπ(s, a)] assesses the quality of a state when following

the policy π. The advantage function is then defined as Aπ(s, a) = Qπ(s, a) − V π(s),

which reflects the advantage of taking a in s.

The optimal policy maximizes the Q-function Qπ∗(s, a) = maxπQ(s, a) (hereafter

referred to as Q∗). The goal of a model-free reinforcement learning agent is to find

such optimal policy online through direct interaction with the environment and without

explicit or pre-encoded information about the environment, such as the transition prob-

ability T . One way to find this function is through firstly finding Q∗ and then acting

greedily with respect to it π∗(a|s) = argmaxaQ
∗(s, a) [11].

Blockchain and Smart Contracts

Blockchain has recently emerged as one of the most secure distributed system archi-

tectures. It is based on P2P networkingwhere all participant nodes exchange transactions

and reach consensus on the general state of an asset. Each one of the blockchain’s nodes

preserves an append-only, cryptographically-linked list of all events of interests and

transactions that occurred in the network. This record is also referred to as the dis-

tributed ledger. The peer-enforced consensus rules and absence of a centralized third

party make data manipulation extremely hard [20]–[22].

The first application of blockchain was Bitcoin [23], which is a fully distributed

P2P payment system. Transactions in Bitcoin’s blockchain are in the form of currency

transfers only, meaning that the distributed ledger consists of blocks of Bitcoins transfers.

However, the ability of the underlying technology of Bitcoin (blockchain) tomaintain the

security of each participant’s assets in a fully distributed, P2P, and open network without
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any trusted centralized utility is what brought massive attention to this technology [24].

Blockchain platforms have evolved since then to form what is known as general-

purpose blockchains, or programmable blockchains. General-purpose blockchains en-

able any programmed logic to be deployed on the distributed network. Therefore trans-

actions can be calls to functions defined in that program as opposed to only currency

transfers [25]. Depending on the platform, these programs are called Smart Contracts

[26] or Chaincode [27]. Smart contracts can be defined as a set of instructions that are

executed automatically once predefined conditions are met. The execution is guaranteed

by blockchain architecture even when one or more nodes fail (crash failure) or exhibit

malicious behavior (Byzantine failure), which is why smart contracts are considered as

more secure and self-enforcing as opposed to conventional control programs [28].

Smart Contracts for IoT applications

Smart Contracts (SCs) are general-purpose software applications that are deployed

on the blockchain distributed network. They reflect real-world contractual agreements

in a cyber form that offers multiple appealing security features [18]. As a form of

distributed applications, SCs provide high availability against potential node failures.

Further, their code implementation is immutable since it is stored on every node in the

network. Lastly, since blockchain is an always-on network whose data is modified only

through cryptographic consensus, the execution of an SC is automatic, and its output is

cryptographically verifiable by every node in the network [29]. Due to these security

capabilities, which make agreements self-enforceable, SCs are used to manage, track,

and monitor ownership and status of critical digital and physical assets [30]–[32].

IoT/SCs integration is a promising recent paradigm whereby SCs can implement
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autonomous agreements related to physical assets or real-world phenomena, which are

perceived by IoT perception layer devices [33], [34]. This enables a wide range of

applications where IoT perception data can be tracked or monitored to enforce specific

rules encoded in the SC. For instance, a supply-chain SC might specify the temperature

condition of some goods in a process. If the temperature goes higher than a specified

threshold, the goods are deemed unusable, and the shipper pays a penalty. Otherwise,

the shipping fees are credited to the manufacturer from the customer’s account. Such SC

implementation can be generalized to provide neutral, verifiable, self-enforcing rules in

different application areas without the need for a centralized third party [35].

There are two main security features that motivate the use of SCs for monitoring:

Auditability and automated execution of business logic. Auditability, also known as

traceability, refers to the fact that the history of a signal recording can be viewed and

verified by any interested stakeholder. By design, the history of records on the blockchain

is tamper-proof. Hence, blockchains are being widely used for data provenance (e.g.,

to validate the origin of different kinds of goods such as physical-assets, food, and

medication) [15], [36]. Automated execution of business logic is also ensured by

design. When an SC triggers a procedure, the execution of the business logic code in

that method is self-enforceable since the blockchain’s consensus requires all nodes to

reach a consistent state of the SC. This ensures immediate and inevitable business logic

execution, enabling use cases between parties that did not trust each other before [37],

[38]. Hence, SC-enabled monitoring provides appealing features for stakeholders.

In order to preserve the security of the blockchain network, SCs are generally

executed in isolated, self-contained environments (e.g., EVM in Ethereum SC platform

and Docker container in IBM Hyperledger Fabric SC platform). Thus, SCs cannot
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directly access external data (e.g., through APIs) [39]. However, In an IoT-enabled

scenario, it is essential to communicate with the real world in order to capture events of

interest and relay them to an SC, which then enforces the set of agreed-upon rules. To

address this issue, trusted data feeds place external data of interest on the blockchain,

and then SCs utilize this data. These data feeds are also known as “oracles". IoT sensing

devices/systems can act as oracles for any SC that requires information about data in the

real world [37].

Decentralized oracles are a necessity due to the fact that the execution of SCs is

irreversible by design. Hence, their triggering should be done with certainty. In the

supply chain example, it can be noted that the temperature sensor’s input plays an

essential role in this contract. Thus, its input should be of high reliability. Otherwise,

legal issues and waste of resources will occur, defeating the original promise of SCs,

which aims to automate and accelerate procedures in the first place. In general, such

certainty cannot always be guaranteed in IoT perception devices. Many sensors undergo

noise or abnormal conditions that lead to fluctuating readings. Further, the IoT sensing

layer is always susceptible to false data injection attacks [40], [41]. Triggering a smart

contract based directly on a single source of input would be inaccurate, inefficient,

and carries high risk. This challenge can be described as the “Trusted Data Feed”

or “Oracle problem” [42] and is generally addressed by incorporating multiple input

sources (sensing devices) and reliably aggregating their input (e.g., majority voting)

[39]. Hence, the transactions’ cost can be prohibitive for multiple applications.
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Related Work

Smart Contracts/IoT Integration and Optimization

The cost-efficiency issue that arises when integrating IoT devices with public

blockchains has recently been identified in the literature [35]. Authors in [5] pro-

pose the use of “smart oracle" which gathers trust information about real-world physical

resources (including IoT devices) and provide the smart contract with this information.

The SC can then utilize only the most trusted entities. This approach can reduce cost

by assuming the trust of the single entity as an intermediary system and hence avoiding

sensors redundancy. However, it does not directly address the unreliability issues that

might still arise from depending on a single IoT data source. Similarly, Authors in [43]

proposed a general data carrier architecture (oracle) that is scalable for the IoT envi-

ronment. The proposed system is designed to minimize contract deployment costs and

monitor contract events. The cost-effectiveness and security of data sources were ad-

dressed through pushing the data fetching and computation to the client-side (i.e., client

managed IoT central sensing device), which is not always a viable option, especially for

some use cases like remote asset tracking.

Relaying systems such as Provable [44] and Town Crier [45] supply SCs with

data from the web accompanied with an “authenticity proof". Authenticity proofs are

cryptographic proofs based on Transport Layer Security (TLS). They can be used to

show that the data received was, in fact, the same data that the server, or any other third

party, gave back to Provable at a specific time (data integrity) [46]. Receiving SCs

can verify this proof prior to using the data it accompanied. This approach proves the

origin of the data while avoiding additional costs due to sensors’ redundancy. However,
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intermediary costs are paid for the operators of these systems for fetching the data and

proving its origin.

Chainlink [47] is a decentralized oracle solution that provides proof of authenticity

of the relayed data and tackles the issue of the reliability of data sources themselves.

This is done through aggregating the data from multiple independent sources. A similar

decentralized oracle system that depends on voting from different participants about

the validity of a piece of data is proposed in [48], where authors formulate a game

theory-based voting mechanism and illustrate the existence of a Nash equilibrium in

which the best action of all participants is to vote honestly. This game-theoretic line of

work is extended by [49]; the principle remains as designing a game based on multiple

independent oracles. The system is analyzed to show the existence of an honest Nash

equilibrium and has properties like the simple interface and larger expected payoffs.

Those decentralized oracles solutions favor security to cost efficiency since redundant

data sources continuously monitor and submit readings to the blockchain.

The importance of optimized interaction with blockchain from IoT is highlighted in

Danzi et al. [50]. The authors proposed a data aggregation technique that regulates IoT

clients’ transactions to the Ethereum blockchain, which is done through data aggregation

and periodic transmission. The focus was on optimizing the energy and computational

resources of IoT clients rather than the cost of monitoring use cases.

A comprehensive taxonomy of different methods of importing external data to SCs

is provided in [10]. It is illustrated that for applications that question the reliability of the

data sources, such as SCs that use the IoT perception layer, on-chain voting of aggregated

independent data sources represents the better option, albeit the efficiency and viability

of this option are not always guaranteed.Table 2.1 summarises key differences among the
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Table 2.1: SC/IoT Integration Approaches

Ref. Purpose Cost efficiency Txn. submis-
sion

Data reliability

[5] Collect trust
metrics for IoT
nodes

Yes Cont. Risk of failure
of smart oracle

[43] Elastically
connect multi-
ple IoT nodes
to the SC

Yes Cont. Requires client
management

[44], [45] Relay data
from multiple
IoT nodes

No Cont. Provided by
authenticity
proofs

[47], [48], [49] Collect data
from multiple
nodes & vote

No Cont. Provided by
decentral-
ization of
oracles

[50] Aggregate and
submit data

Yes At specific rate Risk of failure
of data source

This work Aggregate and
submit data

Yes Real-time
adaptive rate

Provided by
decentral-
ization of
oracles

different schemes. Cost efficiency is considered present if there is a single data source,

or the transaction submission is not continuous. As illustrated earlier, data reliability is

best achieved by decentralized oracles.

Reinforcement Learning for Blockchain Optimization

Research that integrates AI and learning-assisted decision-making techniques to

enhance and optimize different aspects of blockchain-based applications is still limited

[19]. Liu et al. [51] utilized reinforcement learning techniques to optimize block

interval, block size, block producer, and consensus algorithm to maximize system

throughput. Xiong et al. [52] used RL to better integrate IoT devices in the blockchain
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network and control their transactions so as the probability of these transactions being

successful (mined and added to the chain of blocks) is maximized given the size of the

current pending transaction pool of the blockchain. Qiu et al. [53], focused on the

issue of computational efficiency and proposed an adaptive offloading mechanism that

allocates mining and data processing tasks to edge/cloud to achieve a computational

tradeoff for blockchain’s end devices. These studies achieved positive results for their

targeted objectives. However, they did not explicitly model users’ requirements and

their implications on the monitoring application design and transaction submission rate

by the IoT devices.

Reinforcement Learning for Service Provisioning Optimization

RL has been showing impressive results for optimization in dynamic domains. For

example, [54] proves the ability of a single RL agent to adapt to different circumstances

of wireless networks while still optimally allocating resources (transmission power) to

different nodes in the network. Authors in [55] jointly optimize resource allocation and

user association in Heterogeneous cellular networks for offloading mobile traffic and

showed that it could achieve an optimal tradeoff between the network utility and users

Quality of Service. Task allocation in heterogeneous cloud clusters is studied in [56].

A set of jobs are sequentially allocated to a set of heterogeneous machines in a way that

minimizes job completion time. While these studies give insights about the potential

of RL in dynamic environments for multi-objective optimization, they do not directly

model our case of interest. We investigate the joint optimization of the service cost

and operation cost of the heterogeneous service providers in a continuously changing

environment, such as SCs in blockchain networks with non-fixed participants.
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Most of the literature research on smart contracts for the job and task allocation

implemented static rules. However, this approach misses the opportunity of leveraging

the ever-expanding data of blockchain [19]. We aim to model SCs as smart agents

that interact with their participants and make an online data-driven decision on task

allocation using previous data recorded on-chain. To the best of our knowledge, such

an ambitious framework has only been investigated in [57]. Authors address the current

lack of intelligence in SCs systems and motivate the design of "rational" contracts that

canmake decisions based on the available data on-chain aswell as their recent experience

(i.e., transaction results), to maximize a given utility. This work is concerned with the

design of such autonomous SCs in the context of service provisioning. Specifically, we

aim to design SCs that can smartly allocate tasks (i.e., users) to certain service providers

in a way that maximizes the overall social welfare.
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CHAPTER 3: IOT TRANSACTION OPTIMIZATION: AN RL APPROACH

System Model

An SC-enabled IoT monitoring framework is shown in Fig. 3.1. In this figure, the

signal of interest might originate from any application, and it is monitored by multiple

independent IoT sensing devices (decentralized oracles). The decentralized oracles

periodically check if a status update is required through reading a flag from the SC state.

Note that the reading from the blockchain incurs no cost since each node stores a copy of

the distributed ledger. If the flag is set, the oracles submit readings to the SC and pay the

transaction fees. These fees are refunded to the oracles’ accounts from the stakeholders’

accounts. The refund is encoded in the SC. Stakeholders represent any entity that is

interested in the status and history of records. Since the SC state is public and freely

accessible, stakeholders can trace and verify the traced history. The agent is a software

program that intelligently sets the flag when a status update is required. Stakeholders

have access to this program and should agree on its strategy of setting the state update

request frequency as they will eventually be responsible for the transaction fees. In the

following subsections, we explain the role of each entity shown in the figure in detail.

Blockchain Network

Data subm.
decision Data

State

Decent. Oracle 
System

IoT Monitor.
Sys. n

IoT Monitor.
Sys.0

Asset Shipment

Stakeholders

Business Logic

����������

�����������

: Write
: Read

Monitored System

Smart Meter
Supply Chain

Vital Signs

Real-time
Coin Price DQN Agent

: Perceived signal

Figure 3.1: The system model of the proposed SC-based IoT monitoring system
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Algorithm 1 Generic IoT-enabled Monitoring Smart Contract Template
Require: d: Vector of data readings d =< d0, d1, d2...dn > from individual data feeds

(oracles)
1: on_chain_verification← False (Initialization)
2: procedure SetFlag(flag)
3: Verify agent’s identity
4: on_chain_verification← flag
5: end procedure
6: if on_chain_verification is True and d is set then
7: aggregated_d← Aggregate (d)
8: Apply Business Logic (aggregated_d)
9: end if
10: procedure Aggrecate(d)
11: *aggregation logic*
12: on_chain_verification← False
13: return result of execution aggregation logic on d
14: end procedure
15: procedure Apply Business Logic (aggregated_d)
16: if Condition0 on aggregated_d then
17: *business logic here*
18: else
19: *business logic here*
20: end if
21: end procedure

Smart Contract

On a public blockchain network, the interested stakeholders deploy a smart contract

that includes the business logic between them. The business logic can be represented

by automatic funds transfer, alarm firing, or actuation triggering based on the monitored

signal status and the encoded, agreed-upon rules (if / else conditions). A general outline

of the contract is shown in Algorithm 1.

The contract has the flag variable on_chain_verification. When set to True, it

indicates that a state update is required. Each oracle submits di, which is a full state
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capture of the signal as recorded by oracle i. For example, consider the application

of shipment monitoring, oracle 0 submits d0 ={temperature: 25, humidity: 50, GPS

cord.: 25, 50}. Then, An aggregation logic is triggered on d, where d = {di}, i =

{0, 1, 2...n}. The aggregation logic can be majority voting among oracles, averaging, or

any other outlier detection algorithm. The result of the aggregation is a single variable

aggregated_d that represents the current state of the monitored signal. aggregated_d

is recorded for verifiable auditability and checked against the agreed-upon rules to

automatically execute business logic. The shown contract has one condition (term)

that can include any business logic statements to be triggered. For instance, an SC

might initiate specific actuators or inform stakeholders about some state updates of

interest. The flag automatically resets to False at the end of the aggregation function.

The process repeats periodically every time step of the monitoring process; if on the

following time step, the agent decided that a state update is required, the agent will set

the flag again. Otherwise, it stays false until the time for another update is required. The

agent is the only entity allowed to modify this variable.

Agent

The agent is an intelligent software program that decides on whether or not to set

the on_chain_verification to True, at every time step, based on the current system state.

Specifically, the flag is set based on current data submission monetary cost, the time-

steps passed since the last update, and the use case monitoring requirements. This agent

should balance the security requirements of the user with the cost. Meaning that the

state should be recorded sufficiently frequently to meet the required auditability level

and avoid any latency in business logic execution in case a condition in the SC is met.
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However, such state updates should not be done continuously in order to avoid enduring

a high cost. The agent communicates its decisions to the oracles through the SC to

ensure the logging and enforceability of the agent’s decisions.

Decentralized Oracles

The IoT sensing devices are used to monitor a signal of interest. The signal can

originate from any monitored system. For example, the temperature/humidity/location

of remote physical assets being shipped, items (such as medications) as they progress

through a supply chain, vital signs for patients, or power consumption in smart grid

applications.

There might exist up to n independent monitoring system to address the data source

reliability issue. Each node on the decentralized oracle system has the ability to submit a

state update to the chain. There are multiple ways of implementing such a requirement.

For example, oracles submit their reading individually to the contract, which groups

them based on timestamps or block times in order to prepare the vector d.

Problem Formulation

At each time step of the monitoring process, the agent should make a decision on

whether or not to request a state update. The decision is based on the current cost of

such update as deduced by the current price of the blockchain’s coin, and the number

of time steps since the last update. The agent ultimately aims to meet pre-defined user

requirements. This can be thought of as a sequential decision-making problem with

interaction under uncertainty.

The MDP framework is an abstraction of the problem of goal-directed learning.
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Formally, the MDP can be represented as a five-tuple (S,A,P(·, ·),R(·, ·), γ). Where

S is the system states,A is a finite set of actions,P(·, ·) is the state transition probability,

R(·, ·) is the immediate reward, and γ is a discount factor. In the following sections, we

define each of these elements in the context of our monitoring applications.

State and Action Spaces

The state space S consists of all possible states at each time step. We set st =<

pt, Tt > for all st ∈ S where pt ∈ R (in $) is the current price of the chain’s coin

(cryptocurrency), Tt ∈ N is the number of time steps ago, starting at time step t, a

state update was requested by the agent. Public blockchains have their own coin, which

represents the monetary value exchanged by the nodes. Coins have a corresponding fi-

nancial pricing index (similar to stocks). Based on this price, and the specific blockchain

computation billing mechanism (e.g., “Gas"-based billing in Ethereum blockchain), the

state update transaction cost can be calculated. Hence, pt is required in the state for

decision making. Tt is also required in a state point since it gives the agent insight about

the frequency of state update transactions.

Since coin prices mostly follow hourly intervals, the time step, t, is set to one hour.

Such a short time interval resolution ensures that the agent can closely follow the coin

price and make decisions on an hourly basis. Taking higher values carries the risk of

missing some considerable changes in the coin price (especially that it is unstable in

most blockchains). While lower intervals are theoretically possible to follow. However,

according to our experimentation, a one-hour decision interval is sufficient for most

blockchains.

The agent’s decision at every time step, at, is the binary value of the flagon_chain_verification.
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Thus, for the action space, at = {0, 1} for all at ∈ A where 1 indicates that state update

is required, and 0 indicates the idle action. Note that when the action is 0, the agent does

not need to submit this decision to the SC since the flag is automatically reset to 0 after

every state update, as was explained in the SC subsection.

Environment Design

The environment of the MDP represents the blockchain network that the agents

interact with. We design the environment so that it receives the agent’s action at,

transitions into a next state st+1, and emits a reward signal rt+1. The environment

should generate episodes of experiences for the agent to learn from. An episode is a

finite sequence of states, actions, and rewards. In our context, the episode can represent

a monitoring process (e.g., an asset shipment process during which the monitoring is

done on hourly-bases until the delivery). During an episode, states are transitioned, and

reward values are emitted according to the details in the following subsections. It is

essential to mention that the agent does not know the environment design. It is supposed

to learn an optimal policy (strategy) by solely interacting and observing rewards for

different decisions taken in different states. A policy π is a mapping between states

st ∈ S and (a distribution of) actions at ∈ A. i.e., π : S → A

State Transitions

Let S and A be the random variables of states and actions, respectively. Possible

sampled state and action are denoted s, a. P (·|St, At) defines the probability distribution

over the next states St+1 conditioned on the current state and action. The state transition

distribution cannot be analytically modeled since St+1 cannot be determined from St
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due to the uncertainty and randomness of the price data. A better alternative is to collect

real-world hourly pricing data and utilize them to transition from pt to pt+1. This will

represent real word transitions and provide the agent with samples st+1 ∼ P (·|St, At)

without the need to assume or directly model the state transition distribution. For Tt,

we check the last performed action, at, if set to 1 (fresh status update), Tt+1 is reset to

0 . Otherwise, we set Tt+1 = Tt + 1 to indicate that an additional time step has passed

without state update.

Reward Function

We formulate a reward function that describes our high-level objective ofminimizing

total cost while meeting the security requirements of the monitoring process. Specif-

ically, the security requirements include maximizing the auditability of the monitored

signal/asset and simultaneously minimizing the delay in executing the business logic.

The reward is a function of the current state st and current action at. The reward rt at

time step t is defined as

rt =

−(N × Ftxn)− Fagg if at = 1

(−α− β ×m)× Tt if at = 0
(3.1)

Where N is the number of independent IoT sensing devices (oracles) submitting a

state update transaction, Ftxn is the fees per state update transaction, Fagg is the cost

of executing the aggregation function on-chain on the array of states received by the

redundant oracles. These values will be used if the agent decides to submit a state update

request (at = 1).

α is a user-defined constant that represents the cost of not logging the state signal

(measurement) at a time step t. Thus, it represents the monetary penalty of losing the

audibility at this time step, β is a constant that represents the cost of the delay of executing
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the business logic due to a potentially missed condition violation, m is the probability

of an encoded condition occurrence in a time step. Thus, the quantity −β ×m is the

expected penalty for execution delays. These parameters can be determined per use

case and will be used if the decision of the agent is not to submit state update on chain

(at = 0).

The multiplication by Tt is to indicate higher penalties with more extended idle

periods. For example, the decision of not requesting a state update when the last request

was ten time steps ago Tt = 10 is worse than the same decision when Tt = 1. α and β

have the unit of ($/timestep). Thus, the unit of the reward is eventually is ($).

RL Agent Design

Objective Formulation

The agent’s goal is to find an optimal policy, π∗, which is the policy that would result

in maximum reward throughout the monitoring episodes. In order to learn an optimal

policy, the agent should first build an accurate approximation of the optimal action-value

function Q∗(s, a), which describes the goodness of taking the action a in a given state

s as a scalar that represents the future expected reward after taking that action and then

following the optimal policy. When the Q∗ function is learned, the optimal policy is

obtained through acting greedily with respect to it [11]. Formally:

π∗(s) = arg max
a

Q∗(s, a) (3.2)

Thus, we wish to approximateQ∗(s, a). The Q-value of a state-action pair is defined

as the expected sum of discounted future rewards. The expectation is taken over a policy.
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Formally:

Qπ(s, a) = Eπ
[ K∑
t=0

γt × rt+1

∣∣∣∣s0 = s, a0 = a,

at ∼ π(·|st), st+1 ∼ P (·|st, at)
]

where Qπ(s, a) is the action value function, K is the episode length, rt is the reward

value at time step t,γ is the discount factor that balances the importance between the

immediate reward and future rewards. For example, when set to 1, future rewards are

as important as the immediate ones, and the policy is foresighted. When set to 0, only

immediate reward is considered. Qπ(s, a) can be written recursively in terms of the next

the next state action pair (s′,a′) through the Bellman expectation equation:

Qπ(s, a) =
∑
s′,r

P (s′, r|s, a)

[
r + γ

∑
a′

Qπ(s′, a′)

]
Q∗ is then defined as the best action-value function across all possible policies.

Q∗(s, a) = max
π

Qπ(s, a)

Q∗(s, a) can also be written recursively through Bellman optimality equation:

Q∗(s, a) =
∑
s′,r

P (s′, r|s, a)
[
r + γmax

a′
Q∗(s′, a′)

]
Such recursive formulation is useful since it enables evaluating Q∗ iteratively through

dynamic programming as:

Qk+1(s, a) =
∑
s′,r

P (s′, r|s, a)
[
r + γmax

a′
Qk(s

′, a′)
]

where Qk is an estimate of Q at iteration k. As k →∞, Qk converges to Q∗ [11].

The dynamic programming method requires knowledge of the system’s dynamics

(the state transition distribution P ). However, we only have samples of the states.

Hence, we use Q-learning [58] which is a sample-based approximation of the Bellman

optimality equation:
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Qk+1(s, a) = Qk(s, a) + α×
(
rt + γmax

a
Qk(st+1, a)︸ ︷︷ ︸

TD target

−Qk(st, a)

)
(3.3)

Where the temporal difference target (TD target) term represents an intermediate

estimate of expected future rewards, which enables online learning from samples [59].

Note that Eq. (3.3) does not include P . Eq. (3.3) assumes tabular representation of

each possible state-action pairs. However, this requires us to have a discrete and finite

number of states. In our problem, the state space is continuous (due to the real-time

pricing signal). Thus, function approximation is required. We choose to use Neural

Network (NNs) to provide parametric function approximation of Q∗ since they are

universal function approximators [60] and have been successfully integrated into RL for

continuous state problems [61].

Using parametric function approximation with parameters set θ, Q can be written

as:

Q(s, a; θ) = WL+1σ(WLσ(WL−1...σ(W1x+ b1) + bL−1) + bL)

Where Wl and bl are the weight matrix and bias vector of layer l, respectively, dl is

the depth of layer l. Hence, Wl ∈ Rdl×dl−1 and bl ∈ Rdl . θ is the set of the network

parameters (weights and biases): {Wl, bl}l∈[L+1], whereL is the number of hidden layers,

σ is the non-linear activation function. We use the Leaky ReLU as the non-linearity

function:

σ(x) = max(0, x)− slope×min(0, x)

where slope < 0.

The TD-target with function approximation is then written as

Y = r + γmax
a
Q(s, a; θ) (3.4)
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The loss function is then defined and optimized through Stochastic Gradient Descent

(SGD) methods :

L(θ) = 1/n
n∑
i=1

[Yi −Q(si, ai; θ)]
2

∇θL(θ) =
2

n

∑
i∈[n]

[Yi −Q(si, ai; θ)] · ∇θQ(si, ai; θ) (3.5)

where n is the number of samples to learn from. (3.5) is iteratively executed (every time

step) until convergence, Yi is calculated based on the previous iteration’s weights θ̄.

It has not yet been theoretically proven that (3.5) converges to the weights that

best represent Q∗. However, there are multiple practical implementations that help in

convergence to an estimate, Q∗. Namely, replay buffer, fixed targets, and soft updates.

These are the main components of the Deep Q-Learning algorithm that uses NN as

function approximators (hence the name Deep Q-Networks), which is discussed in the

following section.

Learning the Optimal Policy

DeepQ-Network, or DQN, [62] is a family of algorithms that learn a deep parametric

representation of Q∗. Also, These algorithms are model-free, which means that they

do not require knowledge of the state transition model. Instead, they learn the state-

action values by interaction and then take the best possible action given only the current

state of the system. This learning approach enables the agent to act based on real-time

signals (on per time step basis). However, there are no theoretical guarantees for the

convergence of DQN [63]. Thus, multiple experimental techniques should be followed

to help stabilize the training without divergence of the weights. The detailed steps are

shown in Algorithm 2.

In Algorithm 2, we initialize two copies of parameters (neural networks weights).
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The agent starts the training process by repeatedly generating episodes of experience

(lines 3-6) and collecting experience tuples through interactions (lines 8-10). These

tuples of state action transitions represent the experience data and are stored in the

replay buffer D to be used in the learning process. In order to make sure that the agent

explores the quality of actions in different states, an ε−greedy is followed (line 8); The

action taken at each time step is selected randomly with probability ε, or as the action

corresponding to the highest Q-value (the best action learned so far) with probability

1 − ε. This is done to balance the exploration and exploitation behavior of the agent

balance, where random actions represent the exploration behavior, and the best actions

represent the exploitation behavior. We follow a decaying schedule of ε starting at 1, so

that the agent can collect basic knowledge about the environment, and then it decays over

time, allowing the agent to exploit accumulated knowledge and follow optimal behavior.

The agent then starts improving the estimate of Q∗ values. In line 12, a random

minibatch is sampled from the replay buffer D. The TD target values for each tuple in

the sample batch is then calculated. The TD targets Y (i) for experience tuple i represents

the new estimate ofQ(s(i), a(i)) for the state action pair (s(i), a(i)) and is calculated using

the target network θ̄. This process is known as experience replay, which greatly helps

the stabilization and convergence of the learning process [62]. We then fit θ to Y (i).

This fitting can be done through Stochastic Gradient Desccent (SGD) optimizers such

as Adam [64] (line 14). The target network parameters are held fixed for target steps to

stabilize learning. Then, we softly update the target network parameters towards the first

one, so that the target always reflects the most recent knowledge gained (line 15). Soft

updates towards the target network also help stabilize the learning. Eventually, θ ≈ θ̄

and convergence is achieved.
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Algorithm 2 Oracles controller (agent) training
Input: Environment simulator,
Output: θ: The NN parameters for the approximation Q∗.
1: Initialize parameters of the first network θ randomly.
2: Initialize parameters of second (target) network θ̄ ← θ.
3: for episodes= 1:M do
4: Initialize random monitoring period L ∼ U(72, 168)

5: Initialize state s0 = (p0, T0)

6: for time step t = 0 : L do
7: /**Interaction with the environment**/
8: Select state update action at based on ε-greedy policy
9: Execute at, observe st+1 and rt+1

10: Store the tuple of experience (st, at, st+1, rt+1) in D
11: /**Updating the estimates**/
12: Randomly sample a minibatch F ={

(s
(i)
t , a

(i)
t , s

(i)
t+1, r

(i)
t+1)
}|F|
i=1

from D
13: Calculate Q-targets using the target network

Y (i) ← r
(i)
t+1 + γmax

a
Q(s

(i)
t+1, a; θ̄)

14: Fit Q(s(i), a(i); θ) to the target Y (i):
θ ← θ − η∇θL(θ)

15: Every target steps, update the target network
θ̄ ← τθ + (1− τ)θ̄

Real time, Light-weight Oracle Management Agent

Algorithm 3 Smart Oracle Manager using Deep Q-Network (SOM-DQN)
Input: The trained NN parameters θ,
Output: Status update request decision,
1: for everty time step do
2: Obtain the current coin price pt
3: Calculate the number of time steps since last update Tt
4: Calculate Q∗(st, at) for both values of at (0 and 1) using θ
5: perform at = arg maxaQ∗(st, at)

After the training convergence of Algorithm 2, the trained parameters can be saved
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Figure 3.2: Reinforcement-based interaction between the smart oracle manager (DQN
agent) and the blockchain network

and used for real-time decision making. The agent illustrated previously in Fig. 3.1

executes Algorithm 3 at every time step in order to set the state update request flag to

0 or 1. Note that the execution of Algorithm 3 is lightweight and efficient (single NN

pass). Thus, it can be executed in real-time (every time step).

Fig. 3.2 summarizes the interaction between the proposed agent (smart oracle

manager - SOM) and the blockchain network. The SOM receives the state from the

blockchain network, where the signal of interest is being monitored and recorded. The

maintained Q-network uses this state to predict the optimal action-value function, based

on which a greedy action is selected. The reward is determined based on the use case

requirements, represented by α and β parameters, the action taken, and the current state

(pt, Tt). This control loop is followed on a time-step basis; the agent responds to new

states that arise throughout the monitoring process with optimal actions that are believed

to maximize long term reward.
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Figure 3.3: Ether pricing data

Performance Evaluation

Experimental Settings

The performance of the proposed method is evaluated using the Ethereum public

blockchain settings [26]. The real-world Ethereum coin (Ether) prices starting from

January 1st, 2019, and lasting nine months are used (shown in Fig. 3.3) [65]. In each

month, a random week is extracted and added to the test set. The starting day, time, and

duration of the monitoring process (e.g., shipping date and duration) are modeled as

random variables with uniform distributions. Starting day∼ U(0, 90), time∼ U(0, 23),

and monitoring period ∼ U(72, 168) hours, which corresponds to 3− 7 days.

For the reward function In (3.1), the value ofN is usually set as an odd number since

it simplifies the majority voting aggregation logic. We set N = 5. Ftxn and Fagg are

calculated based on Ethereum internal computational currency “Gas". Computational

operations in Ethereum have Gas expenditure, and the execution cost is predetermined

in terms of Gas units [42]. It can be seen from the Ethereum operations list in [26] that

a transaction has a basic cost of 21, 000 units of Gas. Also, data storing is 5, 000 units
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of Gas (on average, the zeroness of the stored bytes does not change). Sending 32 bytes

of data with the transaction is ∼ 1, 000 units of Gas. Hence, Ftxn requires 27, 000 Gas

units. Fagg depends on the exact aggregation function used. For example, the majority

voting aggregation code contains two main operations, array-max calculation and result

storage, which correspond to approximately 5, 000 and 4, 000 Gas units, respectively.

The Gas values mostly depend on the number of non-zero bytes in each transac-

tion/operation result. Thus, we used approximated values. These values can be either

estimated using the Ethereum computation operation cost list or through coding the

procedure and checking its cost in Ethereum IDE [66]. Users can set the price to

pay per Gas unit. We set the price value to 25 Gweis/Gas unit (1Gwei = 10−9 Ether)

which is an average value that guarantees fast transaction processing by miners [67].

Thus, the status update (on-chain verification) reward can be calculated as follows:

rt = (−5× 27, 000× 25× 10−9)× pt − (9, 000× 25× 10−9)× pt.

Regarding the reward of idle (off-chain) action, we set the values of α and β such

that the reward of always taking the idle action is equivalent to the reward of always

requesting state updates. This configuration indicates that both extreme policies are

equally undesirable, and a tradeoff between them is required. One setup that approx-

imately achieves this is α = β = 0.01, for which the cost of always-on is ≈ 1.2 the

cost of and always idle policy, on an average-length episode, with an average coin price.

m is set to 0.5 to indicate the total uncertainty regarding the probability of a business

logic condition occurrence. Thus, the idle action reward can be calculated as follows:

rt = (−0.01 − 0.01 × 0.5) × Tt. Since different users have biases towards their pref-

erence, we study the effect of multiple α, β, and m choices on the learned policy in

dedicated sections.
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Table 3.1: Oracle Management System Parameters

Parameter Value

Learning episodesM 104

Discount factor γ 0.9
Exploration rate ε 1, with 1× 10−3 Decay
Q-Network layers 3
Q-Network neurons/layer 2, 64, 64, 2
Q-Network learning rate 10−5

Activation function slope 0.01
Replay buffer size |D| 105

Batch size |F| 64
Soft update factor τ 0.001
Soft update period target 4

As the reward function is part of the environment, the agent in the proposed method

does not know nor depend on the parameters defined in this section. The agent can

still and can adapt to any different cost structures for other blockchains and different

user-based parameters.

Reward Convergence

We run the training Algorithm 2 according to the parameters shown in Table 3.1.

These parameters are empirically set; we expect similar architectures to perform simi-

larly. Then, we plot the reward vs. episode number in Fig. 3.4. The shown values are

smoothed over a window of 50 episodes.

For the first 1000 episodes, the ε value is set to 1 (completely random behavior) in

order to have an initial estimate of the random policy, which will form the basis for

improved policies. Then, exponential decay of 0.999 is applied to ε at each episode in

order to smoothly but quickly transition to better policies. The performance (reward)

increases rapidly until episode 2000, where the progress starts to get slower as the
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Figure 3.4: The training process, reward throughout episodes
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Figure 3.5: The learned policy

estimates get better. Eventually, we reach a convergence at a reward value of ∼ −16$.

The learned policy is visualized as a binary heat map in Fig. 3.5 where the state

space is represented by the x and y axis. It can be seen that for a given price range, as

the time from the last state update increases, the state update becomes more necessary

and is required. Also, for a given distance from the last update, higher prices cause the

agent to hold for more time steps before requesting a state update. However, after a

certain idling period, which is 26 time steps, on-chain verification is required even when

the current price is high.
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Performance Comparison

To verify the performance of SOM-DQN, we compare it to a set of standard oracle

management policies explained in the subsections below:

Always idle / Always on (baseline policies)

The always idle policy does not submit any transaction (at = 0,∀t). Thus, it incurs

the cost of audibility and latency at all time steps, on all episodes. On the contrary, The

always-on policy continuously submits transaction (at = 1,∀t), incurring the transaction

fees at every time step, across all episodes.

Random Policy

The uniformly random policy is a heuristic that performs a status update randomly on

every step. at ∼ U [0, 1],∀t. This policy is simple and does provide a tradeoff. However,

its "blindness" to the current blockchain state result in suboptimal performance.

Periodic Policy

Another class of followed heuristics is the periodic submission strategy. Such

strategies create a transaction every pre-defined number of time steps, ω:

at =


1 if t mod ω = 0

0 otherwise

(3.6)

The period is encoded beforehand, and then followed throughout the testing episodes
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Ideal Policy

For the ideal policy, we assume perfect knowledge of future states and solve a

deterministic optimization problem for finding the optimal frequency of state update

submissions. This solution is not practical since future prices are unknown in advance.

However, we provide it as a benchmark. First, we define F , which has the same formula

of r but follows a submission rate of ρ.

F =


−(N × Ftxn)− Fagg if t mod ρ = 0

(−α− β ×m)× Tt otherwise

(3.7)

The utility function is defined as U(ρ) =
∑K

t=0 F (ρ), which is the sum of rewards in

an episode. The optimization problem aims to find the optimal rates ρ0, ρ1, . . . , ρE that

would result in the maximum reward (or equivalently, minimum cost) across all testing

episodes:

max
ρ0,ρ1,...,ρE

E∑
e=0

U(ρe) (3.8)

The problem in (3.8) is combinatorial and can be solved by means of enumeration (or

more efficiently, branch and bound), which results in rates ρ0, ρ1, . . . , ρE that will be

followed across the testing episodes. Note that the problem could be solved because we

assumed prior knowledge of future states to be used in evaluating (3.7).

Results and Discussion

The evaluation method is running each of the policies for the eight testing weeks

(eight episodes) previously extracted from the dataset. The criterion is the final accu-

mulated cost.

The accumulated costs are plotted in Fig. 3.6. Each testing episode represents
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Figure 3.6: Performance comparison between different policies

a monitoring process (e.g., asset shipment, production line, supply chain, and others)

with randomly generated lengths (3-7 days). At the end of the testing periods, the

final accumulated costs (in $) are 943.1, 667.0, 344.0, 128.6, 114.2 for the always idle,

always-on, random, proposed, and ideal policies, respectively. The total number of

status updates requested by each policy, per testing episode, is shown in Table 3.2.

The cost of both of the baseline policies overgrows throughout the episodes. This

is expected as they are inefficient extreme solutions performing the same action all the

time. We aim to strike a tradeoff between these two. The random policy does save

considerable costs and achieves an appreciable tradeoff. However, it does not adapt to

changing prices, nor does it take use case requirements into consideration. Specifically,

the actions’ probabilities stay the same whether the coin price is high or low, and

regardless of the time since the last submission. Hence, further potential cost savings

that could be achieved, for example, through reducing submission probability during

peak hours or increasing it when the idle last submission was long ago.

On the other hand, the proposed policy changes the frequency of state updates to

minimize cost. The submission decision is set in real-time according to the learned
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Table 3.2: Transactions number for policies

Policy W0 W1 W2 W3 W4 W5 W6 W7 Tot.

Always Idle 0 0 0 0 0 0 0 0 0
Always on 125 80 140 100 110 155 99 165 974
Random 70 48 65 55 47 74 46 84 489
Proposed 14 10 17 10 12 12 7 15 97
Ideal 13 8 17 12 13 12 7 16 98

policy, which specifies the best action for each price and state configuration by design.

Thus, it is adaptive and does approach the ideal cost.
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Figure 3.7: Distribution of update requests

Fig. 3.7 gives more insight into the timing requests made by the different policies.

For each pricing group in the testing data set, we plot the ratio between the number

of state updates requested while the price was in that group and the total number of

time steps whose price is in that group. The always-on policy has all bars at 1.0.

Thus, it is not depicted. The random policy requests updates around 50% of the

time, regardless of the price groups. On the other hand, the proposed methods requests

rates are 12.01%, 10.83%, 8.64%, 7.34%, 6.45%), whereas the ideal case percentages are

11.31%, , 11.19%, 9.46%, 7.33%, 6.45% for each price group, respectively. As expected,
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the requests percentage decreases with higher prices. This pattern exists on both the ideal

and proposed solutions. Also, it can be seen that the requests percentage is generally

much less than the random heuristic because this is the optimal request rate for the use

case requirements set earlier for α,β, and m parameters. In the following section, we

study the effect of users’ requirements on the performance of SOM-DQN.

Fig. 3.8 shows the cumulative cost for SOM-DQN and the periodic strategy with

different submission rates, as well as the ideal case. The monitoring period is set to the

maximum (i.e., seven days) in every testing episode to clarify the differences between

these policies (the reward difference grows with extended testing periods). It can be

seen that some rates offer close performance to the ideal one, which indicates that the

simple periodic submission policy with tuned periods can achieve a good tradeoff.

However, it is usually hard to determine these periods prior to the monitoring process

unless the prices are accurately predicted, which is rarely guaranteed in the case of

cryptocurrencies. Even though a reasonable rate is calculated beforehand, it is still risky

to statically follow such a period for extended periods of monitoring since the coin might

undergo more significant fluctuations, deeming the original rate inefficient thereafter. In

contrast, the real-time capability of SOM-DQN allows it to find near-optimal periods at

run-time and to change such period as needed to suit different, even not previously seen,

states due to the generalization capability of neural network. In general, SOM-DQN is

the closest to the ideal costs.
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Figure 3.8: Performance comparison with different period-based heuristic policies

(a) (b)

Figure 3.9: Cost comparison of different security features evaluations

Effect of Different Use Case Requirements

Auditability and Latency Preferences

As discussed earlier, the auditability-loss penalty, α, and the business logic latency

penalty, β, can be set by users according to how much they evaluate these features. Fig.

3.9.a shows the normalized cost (i.e., divided by the episode length) for every testing

week of data for different parameters settings; setting 1 corresponds to α = β = 0.05,

setting 2 corresponds to α = β = 0.1, setting 3 corresponds to α = β = 0.5. Note

that α and β need not be equal, but were set so for simplicity. We also show the setting

where the always-on policy is followed. It can be seen that in general, users incur more
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(a) (b)

Figure 3.10: Cost comparison for different expected business condition occurrence

cost as they raise their evaluation parameters. When these parameters are large, the cost

of the proposed method approaches the always-on policy. This is expected since the

more penalties are assigned to being idle, the more requests are submitted by the agent.

Eventually, as the parameters evaluation increases, The proposed policy will match the

always-on policy, and it will do that earlier for lower prices. In Fig. 3.9.b, we can

see that the number of requests of the proposed policy approaches the maximum (the

episode length). For set.3, it does reach the always-on in episodes 0−4, but still has less

number of requests on 5, 6, 7. This is because these last episodes have higher average

coin prices. Hence, idling at some time steps is still a better option. The analysis in

this section indicates that the always-on policy is actually a special case of the proposed

policy that occurs when the user’s evaluation for blockchain features exceeds the cost of

continuous transaction submission.

Previous Knowledge on Conditions Occurrence

In the part describing the reward of the idle action in Section 3.3.1, we expressed the

expected latency penalty asELatency∼p(Latency)[Latency] = β×m+0×(1−m) = β×m

where p(β) = m. We assumed thatm = 0.5 to indicate the fact that business conditions
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Figure 3.11: Setup of the prototype for a blockchain network implementing the proposed
framework

occurrence is uncertain. However, if users estimated m at a different value, the cost

will be different. Fig. 3.10 shows the cost at different m values (α and β are reset to

0.01). Higherm leads to higher idle penalties since the user believes that business logic

conditions are more likely to occur, and hence idling is mostly not a good action. Thus,

the proposed policy will also favor more frequent transaction submission. The analysis

in this section shows the importance of precisely estimating m; this can be estimated

according to users’ previous experience or learned using machine learning techniques,

especially that the history of all previous events in an SC is permanently recorded on

the blockchain.

Experimental Case Study

To show how the proposed framework can be deployed in practical scenarios, we

present a simple case study for a food supply monitoring SC, which is designed as per

the template in Algorithm 1 with a single business logic condition that depends on the

temperature of monitored goods. Consider the setup shown in Fig. 3.11 that shows

three nodes in a P2P Ethereum blockchain network. These nodes operate through the

Geth library [68] and utilize web3 library [69] to interact with the Ethereum network
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(a)

(b)

(c)

(d)

Figure 3.12: Snapshots for a decision step in a monitoring episode. (a) The main code
snippet of the agent using Torch and Web3 libraries to determine the action and set the
contract’s flag, respectively. (b) a Geth terminal showing the transaction submitted to set
the contract’s flag being mined into a block. (c) Ethereum Remix interface [66] showing
the new value of the flag (d) Remix interface showing the temp value submitted to the
contract by the IoT node
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(i.e., submit transactions). The owner node (Participant 1) contains the trained agent (a

Pytorch model) that takes submission decisions and sets the contract’s flag accordingly.

The Raspberry Pi node (IoT) can then listen to these decisions and submit the sensory

reading as necessary so that the SC can execute the business logic. The state and sensory

inputs are emulated, and Participant 2 node is used for chain monitoring purposes. The

core parts of a decision step are shown In Fig. 3.12.
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CHAPTER 4: TASK ALLOCATION OPTIMIZATION IN SCS: AN RL APPROACH

System model

There are two types of participants in a service provisioning SC; Service providers

that offer services and users that submit requests for services in the form of transactions to

the concerned SC. The service providers can be a base station offering spectrum sharing

services, IoT devices providing remote data sensing, smart meters offering energy in

P2P energy trading, or simply individuals. The blockchain is by design agnostic to the

type of participant. We denote the set of N service providers as I = {0, 1, 2, . . . , N},

and the set of transactions O = {0, 1, 2, . . . , O}.

Fig. 4.1 shows the envisioned blockchain-based model that leverages the chained

data to continuously improve the policy; At a given point in time, a block would

contain performance indicators of the allocation policy being followed by the SC (e.g.,

participants reviews), which can be cast in terms of an experience tuple of state s, action

a, reward r, and next state s′, as will be detailed in the following section. Based on these

indicators, an optimization epoch is performed to improve the allocation policy and use

it in the assignment to be done in the most recent block. The dynamically changing

allocation policy, by means of learning, forms a promising paradigm that we investigate

in this work.

MDP Formulation

The MDP is a modeling framework of the multi-stage sequential decision-making

problem. It is the core framework that RL operates on and aims to solve through

learning. A Markov Decision Process (MDP) is defined as tuple 〈S,A, T ,R, γ〉. At
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Figure 4.1: Task allocation for transactions (service requests) to service providers
(indicated as "P") in the blockchain

every decision epoch t, the agent receives a representation of the environment state

s ∈ S. The agent then executes an action a ∈ A using a policy π(a|s), receives a reward

rt ∈ R, and transition to the next state s′ with probability P (s′|s, a) = T (s, a, s′).

The total feature discounted sum of rewards from time step t until some horizon H is

denoted asRt =
∑H

t′=t γ
t′−trt, with the discount factor γ ∈ [0, 1). The state-action value

function of a specific policy π is defined as Qπ(s, a) = Ea∼π,s′∼T [Rt|st = s, at = a].

It summarises the sum of rewards resulting from taking the action a in state s, and

thereafter following policy π. The state value function V π(s) = Ea∼π[Qπ(s, a)] assesses

the quality of a state when following the policy π. The advantage function is then defined

as Aπ(s, a) = Qπ(s, a)−V π(s), which reflects the advantage of taking action a in state

s.

The optimal policy maximizes the Q-function Qπ∗(s, a) = maxπQ(s, a) (hereafter

referred to asQ∗). The goal of an RL agent is to find such optimal policy through direct

interaction with the environment and without explicit or pre-encoded information about

it, such as the transition probability T . Q-learning finds such policy through firstly

findingQ∗ and then acting greedily with respect to it π∗(a|s) = argmaxaQ
∗(s, a) [11].
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We define the MDP in the context of our system model.

State

At a given decision step t, a service request transaction o ∈ O should be allocated to

a service provider i ∈ I. The learning agent (i.e., SC) should decide on the allocation

based on the state st = 〈lt, ct,pt, dt, Ut〉 defined as follows:

• lt = {l(i)t } for i ∈ I, l
(i)
t ∈ [0 − 1] is a vector representing the current load for

each participant i. A load of 1 indicates a fully loaded participant that cannot

serve users.

• ct = {c(i)t } for i ∈ I, c
(i)
t ∈ [0 − 1] is a vector representing the normalized cost

of serving the transaction o by each participant i. c(i)t = 0 indicates that the user

cannot be served by participant i. 1 represents the highest cost.

• pt = {p(i)t } for i ∈ I, p
(i)
t ∈ [0−1] is a vector of the normalized “reputation score"

for each participant i. It can be used as a measure for the Quality of Experience

(QoE) that can be provided by this participant. Such a score is popular and widely

used in blockchain-based systems due to the previously explained features of

provenance and immutability, which made the blockchain one of the most reliable

platforms for QoE data.

• dt ∈ [0 − 1] The normalized demand of transaction o. A demand of 1 is the

maximum serviceable demand by the participants.

• Ut =

u0,1 u0,2 . . . u0,N

u1,1 u1,2 . . . u1,N

Where u0,i ∈ N for i ∈ I is the smallest number

of time steps until a task is released (user service is ended) from participant i.
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u1,i ∈ [0− 1] is the the amount of load that will be released (set to free), after u0,i

steps, for a participant i.

Such normalization of state elements is standard in service provisioning system in

order to focus on the system performance and abstract away units and unit conversions

that might be specific to the application. Nonetheless, the normalized elements can

always be interpreted or converted back to represent units of interest [56].

Action Space

Based on the state information, the action at = {a(i)t }, ai ∈ {0, 1}, for i ∈ I is

taken by the SC. a(i)t represent whether the participant i is serving the user in time slot t.

Note that while it is possible to serve the same user (transaction o) by multiple service

providers, we study the case of individual assignments.

State Transition

The state transition of the MDP defines the next state st+1 based on the current state

action pairs (st, at), we model the transition of the state elements as follows:

l
(i)
t+1 =



l
(i)
t when a(i)t 6= 1, u0,i 6= 0

l
(i)
t − u1,i when a(i)t 6= 1, u0,i = 0

l
(i)
t +X(i) × dt when a(i)t = 1, u0,i 6= 0

l
(i)
t +X(i) × dt − u1,i when a(i)t = 1, u0,i = 0

(4.1)

The set of calculations in (4.1) describe how the load increases or decreases for a

participant based on whether it was assigned a new task to serve, or a task is released

(i.e., its service time has ended). X(i) ∼ N (µi, σ
2
i ) is the load increase factor, which is

a characteristic of each participant as it depends on its processing power. In other words,
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the service request is reflected differently on the participant’s capacity. For example, the

same task can be insignificant to a workstation participant but causes considerable load

on an embedded system participant.

The other components of a given st are transitioned according to the following:

c
(i)
t+1 ∼ U(0, 1) and dt+1 ∼ U(0, 1). For Ut+1, u0,i = f0(B) where f0 evaluates the

smallest number of time steps until a task is released from participant i. u1,i = f1(B)

where f1 evaluates the amount that would be released after the ut steps, which is equal

to dt− ×X(i) (i.e., the load due to assigning the user, at some previous time t− < t, to

participant i).

Reward Structure

Since each service provider might have a different cost to service, it is desirable

to assign users to low fees providers to save service costs. On the other hand, service

providers have limited service capacities. In general, we assume that the more loaded

the service provider is, the more operation costs it endures. Hence, the assignment

should aim to also minimize the load across service providers.

In order to have viable assignments, the following constraints should hold:

l
(i)
t <= 1,∀i ∈ {0, 1, . . . , N} (4.2)

a
(i)
t = 1 =⇒ c

(i)
t > 0,∀i ∈ {0, 1, . . . , N} (4.3)

The reward at times step t, rt, can then be calculated as a function of the state and action
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pair (st, at) as:

rt =



p
(j)
t × (1− c(j)t )︸ ︷︷ ︸
service cost saving

+
1

N

N∑
i=0

(1− l(i)t )︸ ︷︷ ︸
operation cost saving

(4.2), (4.3) hold

0 otherwise

(4.4)

where j = i : a
(i)
t = 1. The “service cost saving" term indicates the preference of lower

service fees, scaled by the QoE, whereas the operation cost saving term indicates the

preference to lower loads across service providers. Note that rt ∈ [0− 2] as it is the sum

of two normalized terms.

As the MDP elements are now defined, we explore solution methods that lead to the

optimal policy π∗.

RL Agent Design

The optimal Q-function can be written recursively through the Bellman Optimally

Equation [11]:

Q∗(s, a) = Es′∼T [rt + γmax
a′

Q∗(s′, a′)|st = s, at = a] (4.5)

Q∗ can be iteratively calculated through interaction with the environment using dynamic

programming, where at each update iteration k (which is typically a time step t), the

following Bellman update is calculated:

Q∗k+1(s, a) = Es′∼T [rt + γmax
a′

Q∗k(s
′, a′)|st = s, at = a]

where Qk is an estimate of Q∗ at iteration k. As k →∞, Qk converges to Q∗ [11].

TheQ-function (including the optimal one) can be of very high dimensionality or, as

in our case, continuous. Thus, they should be approximated. Neural networks are general

function approximators that proved successful in RL domains. Hence, we use a deep

Q−networkQ(s, a; θ) whose parameters are θ. We optimize those parameters using the
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Temporal Difference error (TD-error) loss function, which pushes the parameters in the

direction that adequately approximate Q∗ [11]. At each iteration k, the loss L is:

Lk(θk) = (yk −Q(s, a; θk))
2 (4.6)

where yk is the TD-target defined as:

yk = rk + γmax
a′

Q(s′, a′; θk) (4.7)

However, optimizing the above objective is likely to diverge or result in poor performance

[62]. We utilize collective improvements from the RL community to stabilize learning.

Namely, replay buffer, fixed targets, double estimation, and dueling network architecture.

As illustrated in [62], keeping a replay buffer of previous experience (i.e., transition

tuples s, a, r, s′) and then optimizing (4.7) through stochastic gradient descent greatly

helps stability. In addition, the parameters used in the TD-target evaluation are frozen

to some previous values θ̄ (fixed targets). The loss is then defined as:

Lk(θk) = E(s,a,r,s′)∼U(D)
[
(yk −Q(s, a; θk))

2] (4.8)

yk = r + γmax
a′

Q(s′, a′, θ̄) (4.9)

Note that using the same network in (4.9) to choose the best action a′ and to evaluate it

can lead to over estimation bias. Thus, it is suggested that the freezed network is used

for the evaluation of the action, wheras the online network is used for choosing that

action [70], making the TD targets as:

yk = r + γQ(s′, arg max
a′

(Q(s′, a′; θk)); θ̄) (4.10)

Of specific interest to this paper is the dueling network architecture introduced in [71],

which is especially useful when multiple actions are approximately similar, which is the

case in this paper. EstimatingQ-function for every state-action pair might be impractical

and slows-down learning. This is because inmany states, the value ofmany actionsmight
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be either irrelevant or similar. For example, when two service providers have relatively

similar states, then assigning one of them should provide some information about the

value of assigning the other. We use the dueling network architecture, which employs

multi-stream neural network design with two streams, one to estimate the state value

function V (s; θ, α) regardless of the action, and another stream to estimate the advantage

functionA(s, a, θ, β) where α and β are the parameters of the two streams, respectively.

The two streams are then aggregated to provide theQ−values of a given state with every

possible action, and the action with the high Q value is taken. As illustrated in [71],

the simple sum aggregation may suffer from the identifiability issue. Hence, we use the

aggregation in (4.11), which provides the best performance empirically.

Q(s, a; θ, α, β) = V (s; θ, α) + (A(s, a; θ, β)− b) (4.11)

where b = 1
|A|
∑

a′ A(s, a′; θ, β). The final algorithm used for training is provided in

Algorithm 4. At every decision step (line 7), an assignment at is chosen to be either

random (with probability ε, or the best action known so far (i.e., as determined by the

network, with probability 1 − ε). This is known as ε−greedy policy, and it allows for

balancing the exploration-exploitation in RL agents. Then, the agent observes the next

state and the reward. These values constitute a tuple of experience that is stored in the

experience replay bufferD (line 11) and used for optimization (lines 11-13). Finally, the

target network is softly updated towards the online network. The parameters are listed

in Table 4.1.
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Algorithm 4 Service Provisioning Agent
Input: System’s parameters,
Output: θ: The NN parameters for the approximation Q∗.
1: Initialize parameters of the online network θ randomly.
2: Initialize parameters of second (target) network θ̄ ← θ.
3: for episodes= 1:M do
4: Initialize state st = 〈l0, c0,p0, d0, U0〉
5: for time step t = 0 : L do
6: /**Interaction with the environment**/
7: Assign a service provider through selecting

at based on ε-greedy policy
8: Execute at, observe st+1 and rt+1

9: Store the experience tuple (st, at, st+1, rt+1) in D
10: /**Updating the estimates**/
11: Randomly sample a minibatch F ={

(s
(m)
t , a

(m)
t , s

(m)
t+1, r

(m)
t+1)

}|F|
m=1

from D
12: Calculate Q-targets using (4.10): Y (m) ← {y(m)}|F|m=1

13: Fit Q(s(m), a(m); θ;α; β) to the targets Y (m):
θ ← θ − δ∇θL(θ)

14: Every target steps, update the target network
θ̄ ← τθ + (1− τ)θ̄

Performance Evaluation

Reward Convergence

Algorithm 1 is executed using the system parameters illustrated in Table 4.1. Fig. 4.2

shows the reward over time, smoothed over a window of 500 steps. It can be seen that the

agent learns more intelligent behavior with time, learning to achieve the desired tradeoff

that results in the highest normalized reward units. Convergence occurs approximately

after 2.0× 104 episodes at a value of ∼ 1.5 units of rewards.

53



Table 4.1: Task Allocation System Parameters

Parameter Value

Learning episodesM 3× 104

Episode length L 50
Service duration h 6
Service providers N 10
Discount factor γ 0.9
Exploration rate ε 1, with 5× 10−4 Decay
Q-Network arch. & layers 1 common, 2 streams, 2 layers/stream
Q-Network neurons/layer 51, 256, streams :(128, 10)
Q-Network learning rate 10−4

Activation function Leaky ReLU, 0.01 -ve slope
Optimizer ADAM
Replay buffer size |D| 2.5× 105

Batch size |F| 64
Soft update factor τ 10−4

Soft update period target 4

Performance Comparison

Greedy Heuristics

To verify the performance of the proposed method, we compare it to a set of task

assignment algorithms currently followed. These include the greedy heuristics family

with its three variants: Greedy with respect to service cost (GS), which always assigns

the user to the service provider with the minimum cost, Greedy with respect to operation

cost (GO), which always assigns the user to the service provider with the least current

load, and Greedy with respect to the reward function in (4.4), denoted as (GR). We plot

the performance of these greedy heuristics, alongwith the randompolicy baseline, which

performs random actions regardless of the state, throughout a 1000 testing episodes in

Fig. 4.3.a. The reward value is averaged over every 50 episodes.

The performance of the greedy heuristic is much better than the baseline. Specifi-
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cally, The GR variant performs the best across the heuristics. This is because the reward

function defined earlier captures the desired tradeoff between service cost and operation

cost, albeit in the current time step only, without lookahead or consideration to the as-

signment in the future states (i.e., how would the load of the assigned participant change

and the potential effects on its ability to service future transactions). Acting greedily

with respect to the service cost performs slightly better compared to the operation costs.

This might be explained by the fact that the operation cost is calculated by averaging

the loads across participants. Thus, even if an allocation strategy did not directly op-

timize for it (as GC does), and caused some high loading of a participant, the effect is

alleviated through the averaging process. Nevertheless, The proposed DRL-based allo-

cation scheme considerably outperforms the greedy heuristics. This is mainly because

of lookahead characteristic of the RL algorithms that do not necessarily always choose

locally optimal solutions, but rather plan to maximize the reward over the long run.

Load-aware Heuristics

Another family of heuristics in service provisioning is load-aware methods, LA(ω),

that assign the user to the service provider with the lowest service cost whose load is

less than some threshold ω. These are compared with the baseline and the DRL solution

in Fig. 4.3.b. In general, the performance is similar to that of the greedy heuristics; a

notable pattern is that with lower ω the reward tends to increase slightly. This is because

overloading a participant, and hence disallowing it from serving a user, causes a reward

of zero. Lower values of ω are less likely to cause such overload. The DRL-based

method leverage the learned knowledge about the system dynamics (specifically, X(i)

state element) and assign the user to the best service provider even though its load is
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high so long as it is not expected to be overloaded.

Planning Methods

We also test Model Predictive Control-based (MPC-based) planning methods [72].

The used MPC variants perform exhaustive search over a horizon η among the combi-

natorial options (a0,a1, . . . ,aη−1). Then, the first action of the best option is taken.

We test with horizons 2 and 3 only as the computation time becomes prohibitive with

increasing values. Besides, resetting the environment simulator is also time-consuming.

For example, using η = 2 consumes an order of magnitude more in time compared to

DRL at inference time. The results are plotted in Fig. 4.3.c

The performance of the MPC-based method is, while still slightly inferior, compa-

rable to that of DRL. Further, the effect of the horizon value is not evident in the testing

cases. This is not unusual as selecting the horizon value is a tunable decision that can

be set according to several techniques in the area optimal control [72]. However, a

significant drawback of MPC-based methods is their dependence on a planning model.

Hence, if a change happens in the environment, the results would be suboptimal due to

biased planning, whereas learning-assisted methods adapt to such changes.

To illustrate this, we conduct another experiment shown in Fig. 4.4. For the first 500

episodes, the performance is similar. Then, we introduce a change in the environment

that is obscure from both methods. Two service providers undergo an outage; They

cannot serve users, and an assignment to them leads to a zero reward. While both

methods initially suffer from a hit in performance, the interaction-driven nature of the

RL method allows it to modify the network parameters based on recently obtained

rewards, and thus adjusts the policy to avoid those participants, regardless of whether
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or not they advertise their services. At episode 1000, another change is introduced; The

two participants are replaced bymore powerful and affordable ones whose service cost is

10% of the previous ones, and operation cost is negligible. While this change reflects on

all methods through higher rewards, it is much more pronounced in the DRL methods,

which leverages these two participants more effectively. Hence, online learning is of

utmost importance in a dynamic environment.
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CHAPTER 5: CONCLUSION

In this thesis, we investigated the integration of blockchain and IoT (The blockchain-

enabled IoT paradigm). While the benefits of such integration were highlighted with

multiple use cases and examples, several issues have been identified. The first issue is

the cost of submitting IoT sensing data to the chain, and the second issue is the inability

of static service provisioning SCs to cope with heterogeneous and dynamic blockchain

participants/ IoT nodes.

First, we studied the transaction submission cost issue and proposed the use of an

RL agent to set this rate in real-time. We then showed that the agent was able to

achieve near-optimal transaction submission rate that can be deduced in real-time based

on the use case requirements and cryptocurrency prices. Our proposed method was

able to achieve the desired tradeoff between low cost and the required security features,

outperforming the currently adopted heuristics.

Second, we studied the task allocation issue in service provisioning SCs and proposed

modeling the SCs as RL agents that leverage the chained data for online-learning. We

established the importance of such a design approach to SCs as opposed to static task

allocation and showed that the RL-based approach delivers better performance and

adaptability as compared to conventional heuristic and planning methods.

In general, we conveyed that online-learning and data-driven optimization by means

of RL provide promising solutions to the blockchain-enabled IoT challenges and con-

stitute a viable path towards the realization of intelligent and secure cyber-physical

systems.

Future work can extend the line of important, but monetarily and computationally

expensive, IoT/Blockchain integration. The focus can be on embedding the intelligence
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in the IoT devices, which might create new potentials such as sensed data-driven submis-

sion decisions/task allocation. This, however, requires further investigation and analysis

of the emerging multi-agent behavior. In general, applying optimal (distributed) control

approaches to optimize different blockchain metrics is a critical direction to be explored.
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